 THESE TERMS GOVERN YOUR USE OF THIS DOCUMENT

Your use of this Ontario Geological Survey document (the “Content”) is governed by the terms set out on this page (“Terms of Use”). By downloading this Content, you (the “User”) have accepted, and have agreed to be bound by, the Terms of Use.

Content: This Content is offered by the Province of Ontario’s Ministry of Northern Development and Mines (MNDM) as a public service, on an “as-is” basis. Recommendations and statements of opinion expressed in the Content are those of the author or authors and are not to be construed as statement of government policy. You are solely responsible for your use of the Content. You should not rely on the Content for legal advice nor as authoritative in your particular circumstances. Users should verify the accuracy and applicability of any Content before acting on it. MNDM does not guarantee, or make any warranty express or implied, that the Content is current, accurate, complete or reliable. MNDM is not responsible for any damage however caused, which results, directly or indirectly, from your use of the Content. MNDM assumes no legal liability or responsibility for the Content whatsoever.

Links to Other Web Sites: This Content may contain links, to Web sites that are not operated by MNDM. Linked Web sites may not be available in French. MNDM neither endorses nor assumes any responsibility for the safety, accuracy or availability of linked Web sites or the information contained on them. The linked Web sites, their operation and content are the responsibility of the person or entity for which they were created or maintained (the “Owner”). Both your use of a linked Web site, and your right to use or reproduce information or materials from a linked Web site, are subject to the terms of use governing that particular Web site. Any comments or inquiries regarding a linked Web site must be directed to its Owner.

Copyright: Canadian and international intellectual property laws protect the Content. Unless otherwise indicated, copyright is held by the Queen’s Printer for Ontario.

It is recommended that reference to the Content be made in the following form: <Author’s last name>, <Initials> <year of publication>, <Content title>; Ontario Geological Survey, <Content publication series and number>, <total number of pages>p.

Use and Reproduction of Content: The Content may be used and reproduced only in accordance with applicable intellectual property laws. Non-commercial use of unsubstantial excerpts of the Content is permitted provided that appropriate credit is given and Crown copyright is acknowledged. Any substantial reproduction of the Content or any commercial use of all or part of the Content is prohibited without the prior written permission of MNDM. Substantial reproduction includes the reproduction of any illustration or figure, such as, but not limited to graphs, charts and maps. Commercial use includes commercial distribution of the Content, the reproduction of multiple copies of the Content for any purpose whether or not commercial, use of the Content in commercial publications, and the creation of value-added products using the Content.

Contact:

<table>
<thead>
<tr>
<th>FOR FURTHER INFORMATION ON</th>
<th>PLEASE CONTACT:</th>
<th>BY TELEPHONE:</th>
<th>BY E-MAIL:</th>
</tr>
</thead>
<tbody>
<tr>
<td>The Reproduction of Content</td>
<td>MNDM Publication Services</td>
<td>Local: (705) 670-5691 Toll Free: 1-888-415-9845, ext. 5691 (inside Canada, United States)</td>
<td>Pubsales@ndm.gov.on.ca</td>
</tr>
<tr>
<td>The Purchase of MNDM Publications</td>
<td>MNDM Publication Sales</td>
<td>Local: (705) 670-5691 Toll Free: 1-888-415-9845, ext. 5691 (inside Canada, United States)</td>
<td>Pubsales@ndm.gov.on.ca</td>
</tr>
<tr>
<td>Crown Copyright</td>
<td>Queen’s Printer</td>
<td>Local: (416) 326-2678 Toll Free: 1-800-668-9938 (inside Canada, United States)</td>
<td>Copyright@gov.on.ca</td>
</tr>
</tbody>
</table>
LES CONDITIONS CI-DESSOUS RÉGISSENT L'UTILISATION DU PRÉSENT DOCUMENT.

Votre utilisation de ce document de la Commission géologique de l'Ontario (le « contenu ») est régie par les conditions décrites sur cette page (« conditions d'utilisation »). En téléchargeant ce contenu, vous (l'« utilisateur ») signifiez que vous avez accepté d'être lié par les présentes conditions d'utilisation.

Contenu : Ce contenu est offert en l'état comme service public par le ministère du Développement du Nord et des Mines (MDNM) de la province de l'Ontario. Les recommandations et les opinions exprimées dans le contenu sont celles de l'auteur ou des auteurs et ne doivent pas être interprétées comme des énoncés officiels de politique gouvernementale. Vous êtes entièrement responsable de l'utilisation que vous en faites. Le contenu ne constitue pas une source fiable de conseils juridiques et ne peut en aucun cas faire autorité dans votre situation particulière. Les utilisateurs sont tenus de vérifier l'exactitude et l'applicabilité de tout contenu avant de l'utiliser. Le MDNM n'offre aucune garantie expresse ou implicite relativement à la mise à jour, à l'exactitude, à l'intégralité ou à la fiabilité du contenu. Le MDNM ne peut être tenu responsable de tout dommage, quelle qu'en soit la cause, résultant directement ou indirectement de l'utilisation du contenu. Le MDNM n'assume aucune responsabilité légale de quelque nature que ce soit en ce qui a trait au contenu.

Liens vers d'autres sites Web : Ce contenu peut comporter des liens vers des sites Web qui ne sont pas exploités par le MDNM. Certains de ces sites pourraient ne pas être offerts en français. Le MDNM se dégage de toute responsabilité quant à la sûreté, à l'exactitude ou à la disponibilité des sites Web ainsi reliés ou à l'information qu'ils contiennent. La responsabilité des sites Web ainsi reliés, de leur exploitation et de leur contenu incombe à la personne ou à l'entité pour lesquelles ils ont été créés ou sont entretenus (le « propriétaire »). Votre utilisation de ces sites Web ainsi que votre droit d'utiliser ou de reproduire leur contenu sont assujettis aux conditions d'utilisation propres à chacun de ces sites. Tout commentaire ou toute question concernant l'un de ces sites doivent être adressés au propriétaire du site.

Utilisation et reproduction du contenu : Le contenu ne peut être utilisé et reproduit qu'en conformité avec les lois sur la propriété intellectuelle applicables. L'utilisation de courts extraits du contenu à des fins non commerciales est autorisé, à condition de faire une mention de source appropriée reconnaissant les droits d'auteurs de la Couronne. Toute reproduction importante du contenu ou toute utilisation, en tout ou en partie, du contenu à des fins commerciales est interdite sans l'autorisation écrite préalable du MDNM. Une reproduction jugée importante comprend la reproduction de toute illustration ou figure comme les graphiques, les diagrammes, les cartes, etc. L'utilisation commerciale comprend la distribution du contenu à des fins commerciales, la reproduction de copies multiples du contenu à des fins commerciales ou non, l'utilisation du contenu dans des publications commerciales et la création de produits à valeur ajoutée à l'aide du contenu.

Renseignements :

<table>
<thead>
<tr>
<th>POUR PLUS DE RENSEIGNEMENTS SUR</th>
<th>VEUILLEZ VOUS ADRESSER À :</th>
<th>PAR TÉLÉPHONE :</th>
<th>PAR COURRIEL :</th>
</tr>
</thead>
<tbody>
<tr>
<td>la reproduction du contenu</td>
<td>Services de publication du MDNM</td>
<td>Local : (705) 670-5691 Numéro sans frais : 1 888 415-9845, poste 5691 (au Canada et aux États-Unis)</td>
<td>Pubsales@ndm.gov.on.ca</td>
</tr>
<tr>
<td>l'achat des publications du MDNM</td>
<td>Vente de publications du MDNM</td>
<td>Local : (705) 670-5691 Numéro sans frais : 1 888 415-9845, poste 5691 (au Canada et aux États-Unis)</td>
<td>Pubsales@ndm.gov.on.ca</td>
</tr>
<tr>
<td>les droits d'auteurs de la Couronne</td>
<td>Imprimeur de la Reine</td>
<td>Local : 416 326-2678 Numéro sans frais : 1 800 668-9938 (au Canada et aux États-Unis)</td>
<td>Copyright@gov.on.ca</td>
</tr>
</tbody>
</table>
Ontario Geological Survey
Miscellaneous Paper MP73

Toward the Inventory of Ontario’s Mineral Aggregates

By

W.R.Cowan

1977
Publications of the Ontario Ministry of Natural Resources
and price list are available through the
Map Unit, Public Service Centre, Queen's Park, Toronto,
and the
Ontario Government Bookstore, 880 Bay Street, Toronto.
Orders for publications should be accompanied by cheque or money order,
payable to the Treasurer of Ontario.

Parts of this publication may be quoted if credit is given. It is recommended that reference to this report be made in the following form:

Cowan, W.R.
ABSTRACT

The availability of mineral aggregates for construction purposes is rapidly declining through inadequate resource planning, restrictive zoning and legislation, and competing land uses. The Geological Branch of the Ontario Ministry of Natural Resources has undertaken to provide aggregate inventory reports for all townships designated under The Pits and Quarries Control Act, 1971, and eventually for all townships in heavily populated areas. The reports contain maps and recommendations for extractive zoning by municipalities; of necessity only the largest deposits are given priority recommendations. It is intended that these reports should improve the resource planning in areas underlain by large aggregate deposits. The inventory is only possible because a concentrated effort has been made to map the Quaternary geology of populated areas over the last ten years. Future needs require that we develop methods to determine the extent of poorly defined and buried aggregates and that we look for natural alternatives.
TOWARD THE INVENTORY OF ONTARIO’S MINERAL AGGREGATES ¹

by

W.R. Cowan²

INTRODUCTION

The management of non-renewable resources in areas of high land-use stress requires acceptance of the concept of sequential land use planning. To accomplish such planning, and to avoid sterilization of mineral resources, adequate inventories of naturally occurring mineral resources are necessary, particularly mineral aggregates which are a high volume—low unit price commodity. In Ontario the inventory of mineral aggregates is the task of the Phanerozoic Geology Section, Geological Branch of the Ontario Ministry of Natural Resources, which is responsible for the geological survey of Ontario’s post Precambrian soil and rock materials. With the help of many agencies and individuals we are now in a position to provide aggregate inventories to most municipalities within the more densely populated areas of Ontario. In this regard we feel we are the leader amongst North American state and provincial geological surveys.

This paper outlines the development and methodology of our inventory and is directed at the primary users i.e. planners, municipal officials, and consulting engineers. The inventory of Ontario’s mineral aggregates may be divided into three phases, The Early Years, The Present Inventory, and The Future.

THE EARLY YEARS (1948-1968)

Modern day inventory of Ontario’s mineral aggregates may be considered to have begun in 1948 when the late Donald F. Hewitt was appointed Industrial Minerals Geologist for the Province of Ontario. Following several years reporting on the numerous industrial minerals which occur within the Grenville Structural Province, Hewitt directed his attention to the study of commercial limestone deposits which resulted in a detailed report in 1960. At about that time, (1957-1964) P.F. Karrow mapped Pleistocene geology for the Ontario Department of Mines within areas identified as containing possibly large gravel resources. These two men combined efforts to produce “Sand and Gravel in Southern Ontario” (Hewitt and Karrow 1963) which relied heavily on the reconnaissance scale physiographic mapping of L.J. Chapman and D.F. Putnam (1951). Simultaneously, Hewitt was drawing attention to the rapid urban expansion in Ontario, the need for sequential land use planning, the need for rehabilitation of pits and quarries, and the urgent need to inventory and properly manage our finite resources of mineral aggregates as well as other industrial minerals (Hewitt 1962; 1968; Hewitt and Vos 1970; Hewitt and Yundt 1971). The Niagara Escarpment Protection Act, 1970 and its successor, The Pits and Quarries Control Act, 1971 in part resulted from Hewitt’s tireless efforts. These served to focus attention on the mineral aggregate

¹A paper presented at the 79th Annual General Meeting of the Canadian Institute of Mining and Metallurgy, Ottawa, 20 April, 1977. The original version of this paper was published as Appendix 3 in “A Policy for Mineral Aggregate Resource Management in Ontario”, the report of the Ontario Mineral Aggregate Working Party to The Honourable Leo Bernier, Minister of Natural Resources (published by the Ministry of Natural Resources, January 1977).
²Geologist, Phanerozoic Geology Section, Geological Branch, Division of Mines.
This report is published by permission of E.G. Pye, Director, Geological Branch.
industry and brought the need for aggregate inventory and planning to a state of urgency.

THE PRESENT INVENTORY (1968-1980)

To carry out aggregate inventories the first need is maps of bedrock formations, which may be used as crushed rock sources, and maps of the unconsolidated surficial soil materials (variously referred to as maps of glacial geology, surficial geology, Pleistocene geology, and Quaternary geology) for locating surface or near surface deposits of sand and gravel. By 1968 bedrock maps were available for most of southern Ontario, however only a few thousand square miles of surficial geology had been mapped by the Ontario Department of Mines and the Geological Survey of Canada (GSC). Consequently mapping of Quaternary geology was reactivated by the Ontario Department of Mines in 1968 with the hiring of one Quaternary geologist. The staff was continuously increased until by 1974 we had six Quaternary geologists, one Paleozoic geologist, and two resource geologists. In addition a limited amount of contract work has been carried out.

The result of this increased effort to map the surficial materials at a scale of 1:50,000 is shown in Figure 1; note that much of the area east of Toronto was mapped by the GSC without which we would be in a much less fortunate position to carry out inventories. In addition we have mapped the areas immediately surrounding the northern centres of Sudbury, Sault Ste. Marie, and Thunder Bay, while the Timmins-Kirkland Lake area was mapped by the GSC, though at a smaller scale. It is hoped that by 1980 we will have surficial geological maps available, from one source or another, for the southern part of the Province underlain by Paleozoic bedrock formations.

Bedrock Aggregates

Maps showing the location of bedrock aggregates within a municipality are relatively easy to obtain. Firstly the bedrock geology map is examined to determine whether any suitable formations are present within the area. This suitability depends on physical properties and the capability of the rock to withstand stresses placed upon it when it is used as a construction material. Surprisingly few areas are underlain by quality aggregate forming rocks, the best in southern Ontario being the rock which forms the cuesta of the Niagara Escarpment. Given a suitable rock unit, a map showing the thickness of overburden is consulted to determine the feasibility of quarrying the rock; generally 25 feet (8 m) of overburden is considered to be the maximum though up to 50 feet (15 m) or more is tolerated for special products. This information is combined to show the areal extent of feasible quarrying. This is then combined with a rock thickness estimate and specific gravity to give a gross tonnage estimate. Obvious cultural constraints may be subtracted to give a net tonnage. The data may then be submitted to a municipality for extractive zoning consideration.

Granular Aggregates

The assessment of granular aggregates is somewhat more complex than that of the bedrock because of the greater number of deposits (though of smaller size), greater variety of materials, and because available information is often of poorer quality. Much more interpretation is involved and the degree of error can be high though tonnage estimates would usually be conservative. Reports provided to municipalities contain two or three maps: a Quaternary geology map; a granular aggregates probability map; and an extractive area recommendation map. Usually only the first and one of the two latter maps would be provided depending on the nature of the available data.

QUATERNARY GEOLOGY MAPS

These maps show the distribution, nature, and stratigraphy of the various glacial deposits found within an area. Figure 2 is a simplified example of such a map. These usually show a variety of tills of different ages and compositions, sands, silts, clays, and gravels. Tills (Photo 1) are mixtures of mud and rock fragments deposited by a glacier. Sands were deposited by glacial meltwaters flowing as rivers (outwash sands) or deposited into glacial lakes (lacustrine sand), and silts and clays were deposited by and into glacial meltwaters. Gravels were deposited by glacial meltwaters (outwash gravels), as beach or deltaic gravels related to glacial lakes, or as eskers, kames, and morainic deposits collectively described as ice-contact stratified drift because they were deposited in contact with ice at or near glacial margins.
Figure 2--Brantford Township, generalized Pleistocene geology.
Quaternary geology maps are constructed by combining field data, filed geotechnical data obtained from government or private engineering agencies, and air photo interpretation. Field work consists of traversing roads, and examining road cuts, gravel and sand pits, and excavations by test pitting and clearing of debris, and through augering with soil testing apparatus. Stream and lake bluffs are also examined, and where necessary additional information is gained from traversing private property. These data are used to determine the nature, thickness, and vertical and horizontal relationships of different geologic units which are frequently discontinuous and very thin. Field surveys at a scale of 1:50,000, carried out by one field crew, consisting of a geologist and three university students employed for the summer, cover 300 to 500 square miles (800 to 1300 km²) per summer depending on the complexity of the geology.

These field data are augmented from water well records maintained by the Ministry of Environment, geotechnical data filed by the Ministry of Transportation and Communications, and data provided by municipal and consulting engineers and pit or quarry operators. Combining the known data with air photo interpretation results in a map which superficially is a two dimensional portrayal of the geology; however a trained geologist judiciously using the legend and any accompanying report can formulate a reasonable understanding of the three dimensional picture.

GRANULAR AGGREGATES PROBABILITY MAPS

The Quaternary geology map is a basic tool for use by geologists, soils engineers, and persons conversant in geology. However many users require derivative maps which sort mapped variables into a specific theme for direct application. For this reason we produce granular aggregates probability maps (Figure 2) which divide the mapped area into high, moderate, or low categories depending on the interpreted potential a specific zone has for aggregate production. Similar maps have been produced in Illinois (e.g. Hackett and McComas 1969) and in Colorado (Schwochow et al. 1974) though the latter are not described as probability maps.

The probability maps are direct interpretations of the geology and are best compiled by a geologist familiar with the area. The stratified, aggregate forming, glacial deposits of southern Ontario are summarized below and in Table 1 to demonstrate how a probability designation for a map unit might be interpreted from a Quaternary geology map.

Recently the map-areas have been divided into units indicating possible number of tons per acre (Table 2). This classification can be improved further by adding data on the coarseness and quality of the aggregate.
Table 1

<table>
<thead>
<tr>
<th>Properties</th>
<th>Sheet Deposits</th>
<th>Outwash</th>
<th>Ice-contact</th>
</tr>
</thead>
<tbody>
<tr>
<td>Shape (Plan)</td>
<td>Tabular</td>
<td>Elongate</td>
<td>Esker</td>
</tr>
<tr>
<td>Topography</td>
<td>Flat (may be pitted)</td>
<td>Flat-terraced</td>
<td>Elongate</td>
</tr>
<tr>
<td>Associated features</td>
<td></td>
<td>Meltwater channels</td>
<td>Rolling-beaded ridge</td>
</tr>
<tr>
<td>Thickness (feet)</td>
<td>5-100</td>
<td>5-100</td>
<td>10-100</td>
</tr>
<tr>
<td>Bedding</td>
<td>Largely horizontal variable development</td>
<td>Abundant X-bedding</td>
<td>Abundant X-bedding</td>
</tr>
<tr>
<td>X-bed orientation</td>
<td>Variable</td>
<td>Well oriented</td>
<td>Variable, may be well oriented</td>
</tr>
<tr>
<td>Sorting</td>
<td>Poor to moderate</td>
<td>Poor to moderate</td>
<td>Poor to moderate</td>
</tr>
<tr>
<td>Rounding (pebbles)</td>
<td>Subangular to rounded</td>
<td>Subangular to rounded</td>
<td>Subangular to rounded</td>
</tr>
<tr>
<td>Deformation (faulting and slumping)</td>
<td>Very local</td>
<td>Very local</td>
<td>Common</td>
</tr>
<tr>
<td>Other features</td>
<td>Proximal-distal facies</td>
<td>—</td>
<td>Highly variable</td>
</tr>
<tr>
<td>Coarse aggregate probability</td>
<td>Moderate to high</td>
<td>High</td>
<td>Moderate</td>
</tr>
<tr>
<td>Comments</td>
<td>Uniform to variable</td>
<td>Uniform</td>
<td>Variable</td>
</tr>
</tbody>
</table>

Glaciofluvial

- Sheet Deposits: Tabular
- Outwash: Elongate, Flat-terraced, Meltwater channels
- Ice-contact: Esker, Elongate, Rolling-beaded ridge, Hummocky
- Thickness (feet): 5-100, 5-100, 10-100
- Bedding: Largely horizontal, Abundant X-bedding
- X-bed orientation: Variable, Well oriented
- Sorting: Poor to moderate
- Rounding (pebbles): Subangular to rounded
- Deformation (faulting and slumping): Very local
- Other features: Proximal-distal facies
- Coarse aggregate probability: Moderate to high
- Comments: Uniform to variable
<table>
<thead>
<tr>
<th></th>
<th>GLACIOLACUSTRINE</th>
<th>GLACIOMARINE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Moraine</td>
<td>Beach</td>
<td>Beach</td>
</tr>
<tr>
<td>Broad</td>
<td>Elongate</td>
<td>Elongate</td>
</tr>
<tr>
<td>Hummocky ridge</td>
<td>Bar or Bluff</td>
<td>Bar or Bluff</td>
</tr>
<tr>
<td>10-100+</td>
<td>Existing lakes</td>
<td>Occur around</td>
</tr>
<tr>
<td></td>
<td>nearby</td>
<td>topographic</td>
</tr>
<tr>
<td></td>
<td>5-40</td>
<td>high</td>
</tr>
<tr>
<td>Abundant</td>
<td>Well stratified,</td>
<td>Largely</td>
</tr>
<tr>
<td>X-bedding</td>
<td>X-bedding</td>
<td>horizontal,</td>
</tr>
<tr>
<td></td>
<td>common</td>
<td>may have</td>
</tr>
<tr>
<td></td>
<td></td>
<td>foresets</td>
</tr>
<tr>
<td>Very variable</td>
<td>Bimodal to</td>
<td>Bimodal to</td>
</tr>
<tr>
<td></td>
<td>variable</td>
<td>variable</td>
</tr>
<tr>
<td>Poor-to</td>
<td>Poor to</td>
<td>Poor to</td>
</tr>
<tr>
<td>moderate</td>
<td>well</td>
<td>well</td>
</tr>
<tr>
<td></td>
<td></td>
<td>moderate</td>
</tr>
<tr>
<td>Angular to</td>
<td>Subangular to</td>
<td>Subangular to</td>
</tr>
<tr>
<td>subrounded</td>
<td>well rounded</td>
<td>well rounded</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Common</td>
<td>Nil</td>
<td>Nil</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Highly variable</td>
<td>Pebbles may be</td>
<td>Pebbles may</td>
</tr>
<tr>
<td>till may be</td>
<td>imbricated</td>
<td>be imbricated,</td>
</tr>
<tr>
<td>present</td>
<td></td>
<td>fossiliferous,</td>
</tr>
<tr>
<td></td>
<td></td>
<td>clay bands</td>
</tr>
<tr>
<td>Moderate to low</td>
<td>High on coarse</td>
<td>High on coarse</td>
</tr>
<tr>
<td></td>
<td>substrate</td>
<td>substrate</td>
</tr>
<tr>
<td>Very variable</td>
<td>Uniform,</td>
<td>Uniform,</td>
</tr>
<tr>
<td></td>
<td>may be fine</td>
<td>may be clayy</td>
</tr>
<tr>
<td></td>
<td></td>
<td>in offshore</td>
</tr>
<tr>
<td></td>
<td></td>
<td>bars</td>
</tr>
</tbody>
</table>
Figure 3—Brantford Township, showing areas of high, moderate and low probability of having coarse granular aggregate.
TABLE 2
SIMPLE MAP CLASSIFICATION OF GRANULAR AGGREGATES.

<table>
<thead>
<tr>
<th>Origin</th>
<th>Tons per acre (thousands)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Glaciofluvial Outwash</td>
<td>OW-1>50</td>
</tr>
<tr>
<td></td>
<td>OW-2 25-50</td>
</tr>
<tr>
<td></td>
<td>OW-3 12.5-25</td>
</tr>
<tr>
<td></td>
<td>OW-4 <12.5</td>
</tr>
<tr>
<td>Ice-contact Esker</td>
<td>E-1 OW-2</td>
</tr>
<tr>
<td></td>
<td>E-2 25-50</td>
</tr>
<tr>
<td></td>
<td>E-3 12.5-25</td>
</tr>
<tr>
<td></td>
<td>E-4 <12.5</td>
</tr>
<tr>
<td>Kame</td>
<td>K-1 OW-2</td>
</tr>
<tr>
<td></td>
<td>K-2 25-50</td>
</tr>
<tr>
<td></td>
<td>K-3 12.5-25</td>
</tr>
<tr>
<td></td>
<td>K-4 <12.5</td>
</tr>
<tr>
<td>Kame Terrace</td>
<td>KT-1 OW-2</td>
</tr>
<tr>
<td></td>
<td>KT-2 25-50</td>
</tr>
<tr>
<td></td>
<td>KT-3 12.5-25</td>
</tr>
<tr>
<td></td>
<td>KT-4 <12.5</td>
</tr>
<tr>
<td>Kame Moraine</td>
<td>KM-1 OW-2</td>
</tr>
<tr>
<td></td>
<td>KM-2 25-50</td>
</tr>
<tr>
<td></td>
<td>KM-3 12.5-25</td>
</tr>
<tr>
<td></td>
<td>KM-4 <12.5</td>
</tr>
<tr>
<td>Glaciolacustine Beach</td>
<td>LB-1 OW-2</td>
</tr>
<tr>
<td></td>
<td>LB-2 25-50</td>
</tr>
<tr>
<td></td>
<td>LB-3 12.5-25</td>
</tr>
<tr>
<td></td>
<td>LB-4 <12.5</td>
</tr>
<tr>
<td>Delta</td>
<td>LD-1 OW-2</td>
</tr>
<tr>
<td></td>
<td>LD-2 25-50</td>
</tr>
<tr>
<td></td>
<td>LD-3 12.5-25</td>
</tr>
<tr>
<td></td>
<td>LD-4 <12.5</td>
</tr>
<tr>
<td>Marine Beach</td>
<td>MB-1 OW-2</td>
</tr>
<tr>
<td></td>
<td>MB-2 25-50</td>
</tr>
<tr>
<td></td>
<td>MB-3 12.5-25</td>
</tr>
<tr>
<td></td>
<td>MB-4 <12.5</td>
</tr>
<tr>
<td>Delta</td>
<td>MD-1 OW-2</td>
</tr>
<tr>
<td></td>
<td>MD-2 25-50</td>
</tr>
<tr>
<td></td>
<td>MD-3 12.5-25</td>
</tr>
<tr>
<td></td>
<td>MD-4 <12.5</td>
</tr>
</tbody>
</table>

Types of Deposits

GLACIOFLUVIAL SEDIMENTS

Outwash

Outwash deposits are sands and gravels deposited by glacial meltwaters beyond the glacier margins. They occur as sheet deposits or as terraced valley fills (valley trains) and may be very large in size. Well developed outwash deposits have predominantly horizontal bedding (Photo 2), are generally uniform in size-composition, and large clasts are rounded. Less well-developed outwash is more variable in terms of sizing. Proximal (near ice) units may have ice-contact features. The probability of locating useful granular aggregates is high to moderate depending on how much information on size grading and thickness is available. Several of the best gravel deposits in Ontario are located in this type of material e.g. the deposits of Caledon, Erin, Paris, Guelph, and the large undeveloped deposits of Grey County.

Ice-Contact Deposits

These include materials deposited by glacial meltwaters in contact with the glacier itself. Associated landforms are eskers, kames, end moraines (kame moraines), and ice-contact terraces (kame terraces). They are characterized by wide ranges of particle sizes (boulders to clay), extreme variability, deformation structures (Photo 3), till inclusions, variable crossbedding, and hummocky topography.

Ice-contact Terraces (kame terraces): These are glaciofluvial features deposited between the glacier and a confining topographic high such as the Niagara Escarpment. The deposits are similar to outwash except that they have extensive ice-contact features on the ice border side. They most commonly occur along the Niagara Escarpment and in re-entrants in the Escarpment such as the Hockley Valley. The probability of locating aggregates is high though the quality may be unpredictable. They are generally quite large in areal extent.

Eskers: These sinuous ridges usually parallel the local direction of glacier retreat and represent the deposits of meltwaters flowing in tunnels within or beneath the ice or in channels on the ice surface. They vary greatly in size and commonly
Inventory of Mineral Aggregates

Photo 2—Well stratified outwash gravel, Paris Ontario.

Photo 3—Slump features in esker, Wingham Ontario.
consist of a gravel core flanked by sands. The probability of locating aggregates in these features is high though sand may predominate and much variability may be expected.

Virtually all eskers in southern Ontario have had pits in them at one time and many eskers have nearly been excavated in their entirety. On the other hand many of the large eskers have large remaining aggregate resources. Examples of eskers presently being worked are found at Frankford, Norwood, Omemee, Brampton, and Seaforth. The linear nature of eskers poses problems in planning as they cross numerous property lines; for example the Brampton esker has been worked in nine different locations over a 3-mile (5 km) length.

Kames: By definition these are isolated hills or knobs of ice-contact stratified drift. Classic examples are sparse in southern Ontario though features of similar origin are common. They form as small deltas, crevasse fillings, and depression fillings on or in contact with the glacier. On melting of the glacier they remain as collapsed features. They have a moderate probability of containing coarse aggregates. The deposit size and variability of material usually relegates these features to secondary sources and very few can maintain permanent processing equipment.

End Moraines: These are belts of glacial drift deposited at and parallel to the glacial margin. They frequently consist of ice-contact stratified drift and in such instances they are often referred to as kame moraines. The Oak Ridges, Orangeville, and Waterloo Moraines have been described as kame moraines though this is an oversimplification in places. Kame moraines frequently result from deposition between two glacial lobes (interlobate moraines).

These features pose a great problem to planners. They may be very large and contain vast aggregate resources, however the location of the aggregates is usually only poorly defined. How does a planner consider a large area for extractive zoning when the geologist tells him that only ten or twenty percent of the area is actually underlain by good aggregates? This remains a challenge for the geologist.

The probability of locating aggregates within such features is moderate to low. Exploration and development costs are high. The large number of pits and the variability of materials in Whitchurch and Uxbridge Townships are an example of the problem.

GLACIOLACUSTRINE DEPOSITS

These are the vestiges of former large lakes which formed when glaciers dammed up the natural drainage system. Several blockages of the St. Lawrence drainage system left numerous beach and deltaic features in southern Ontario. In northern Ontario glaciers retreating northward toward Hudson Bay upheld large lakes which normally would have drained northward.

Beach Deposits: Glacial lake shorelines are indicated by erosional bluffs or depositional features such as beaches and bars. The latter frequently
contain useful aggregates. Well developed beach deposits are well stratified, are sorted into discrete size ranges (Photo 4), and pebbles and cobbles are well rounded and may be imbricated. Composition depends on the nature of the materials being re-worked to form the beach and the size and time span of the attendant lake. The probability of locating coarse aggregates is high when the deposit is developed from a coarse substrate, such as stony till, and low when developed on fine grained materials. Beaches are linear, narrow features usually less than 20 feet (6 m) thick and frequently less than 10 feet (3 m) thick; large baymouth bars may be many times thicker than this.

Beach deposits of the well known Lake Iroquois have been worked in many places along the north shore of Lake Ontario. Many of these pits are now depleted and several have been reclaimed for use as parks, housing projects, or landfill sites.

Deltas: These formed when streams or rivers of glacial meltwaters debouched into lakes with subsequent deposition of transported sediments. In Ontario these deposits tend to consist mainly of sand and much silt. However in near ice or ice-contact situations coarse material may be present. The delta-beach complex of the so-called Fonthill Kame is an example of this. In other situations channel fills may provide coarse material or the upper beds (topsets) of the delta may essentially consist of outwash gravel; the deposits north of London are believed to be an example of the latter.

Although deltaic deposits may be very large, the probability of obtaining coarse material is generally low.

MARINE-GLACIOMARINE DEPOSITS

Surficial deposits of marine origin occur in eastern Ontario (Champlain Sea) and in the James Bay Lowland (Tyrrell Sea). These represent marine incursions while the land areas were recovering from the depression of the Earth's crust caused by the large mass of the recently withdrawn glaciers. Potential aggregate sources are similar to the lacustrine deposits.

Beaches: Beach deposits in eastern Ontario range from rock rubble, where beaches are weakly developed on thin bedded limestones, to well sorted gravels developed on coarse tills or older glaciofluvial materials. Fossil molluscs are present and clay beds may cause processing problems. Here too, beach deposits are linear and may pose planning problems; also many of these deposits are very small. The best beach deposits in eastern Ontario are reworked glaciofluvial materials as at Twin Elm, Herbet's Corners, and Greely.

Deltas: Deltaic deposits laid down in the Champlain Sea consist mainly of fine sand. The deltas near Ottawa and Petawawa are examples. These materials are mainly useful for fill, sand cushion and other low value products.

EXTRACTIVE AREA RECOMMENDATION MAPS

If data are sufficient the geologist may interpret beyond the probability map shown in Figure 3 and make recommendations to the planners based on calculated "Possible" aggregate reserves. These are determined from measured map area, a thickness estimate, and a tonnage factor of 2,500 tons per acre per foot of depth for sand and gravel. In areas underlain by suitable bedrock formations, this potential is calculated as well. Obvious cultural constraints are subtracted from the gross tonnage to give net tonnage for each deposit — this may only be a percentage factor in many cases. The various deposits are then ranked in terms of importance and recommendations are made to the municipality as to which deposits should be given priority for extractive zoning.

Figure 4 and Table 3 illustrate the data supplied for Brantford Township in southern Ontario (Cowan 1976) for six deposits considered to contain important aggregate resources. In this case an official of the Division of Mines, Ontario Ministry of Natural Resources, met with municipal officials and representatives from the aggregate industry to discuss the recommendations. Additional information from industry representatives allowed a size reduction of the areas and further reductions were made due to cultural and environmental conflicts. Through discussion accord was reached and the most important aggregate areas accepted for extractive zoning.

Summary

The above example provides a model for other groups to act upon, however it may only be accomplished when the basic data are available and are provided to the municipality in a suitable format.

1Performance Standards of the Association of Professional Engineers of the Province of Ontario.
Inventory of Mineral Aggregates

TABLE 3
POSSIBLE AGGREGATE RESERVES FOR MAJOR DEPOSITS IN BRANTFORD TOWNSHIP (ABOUT 55 PERCENT OF POSSIBLE TOWNSHIP RESERVES). APPROXIMATELY 1400 ACRES WERE LICENSED IN 1975.

<table>
<thead>
<tr>
<th>Area on Map</th>
<th>Approx. Acreage</th>
<th>Estimated Average Thickness (feet)</th>
<th>Gross Tonnage (Millions of Tons)</th>
<th>Estimated Cultural Loss %</th>
<th>Net Tonnage (Millions of Tons)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1000</td>
<td>30</td>
<td>75</td>
<td>10</td>
<td>67</td>
</tr>
<tr>
<td>2</td>
<td>1200</td>
<td>20</td>
<td>60</td>
<td>5</td>
<td>57</td>
</tr>
<tr>
<td>3</td>
<td>800</td>
<td>20</td>
<td>40</td>
<td>10</td>
<td>36</td>
</tr>
<tr>
<td>4</td>
<td>1750</td>
<td>25</td>
<td>109</td>
<td>10</td>
<td>98</td>
</tr>
<tr>
<td>5</td>
<td>175</td>
<td>20</td>
<td>8.8</td>
<td>5</td>
<td>8.3</td>
</tr>
<tr>
<td>6</td>
<td>650</td>
<td>30</td>
<td>48.8</td>
<td>15</td>
<td>41</td>
</tr>
</tbody>
</table>

TOTAL 5575 307

The Ontario Ministry of Natural Resources, through the Geological Branch, Division of Mines, has proposed to provide similar information to all townships now designated under The Pits and Quarries Control Act, 1971; it is expected that this will be expanded to include most of the heavily developed part of the Province within the near future.

The task of refining the rough data provided by the Ministry is monumental in some cases. In Brantford Township the aggregate industry was able to provide data which allowed streamlining. This is not going to be available in many areas and the municipalities must be prepared to accept the responsibility of either proving out aggregate resources or zoning extractive areas in which the resources are inadequately outlined.

THE FUTURE

The future of aggregate inventory in Ontario appears to be tripartite. Firstly much of central and northern Ontario has not been investigated though major targets have been outlined along the north shores of Lakes Huron and Superior (Gartner Lee Associates Limited 1974). Inventory of these areas will proceed as funding allows.

Secondly, in southern Ontario large areas of morainic deposits mapped as ice-contact stratified drift have to be re-investigated to define those areas actually underlain by economic aggregate resources. This will involve knowing the sedimentation history of the deposits and developing a co-ordinated geophysical and test drilling approach to measuring the resources. Until such an approach is refined we will be unable to provide the planners with adequate information. Similar methods will be required to explore buried aggregate resources. Given the techniques, who will pay for these costly procedures?

Finally, the investigation of geologic alternatives to the naturally washed sands and gravels we now use must be considered. What, for example, is the potential for producing aggregates from coarse-grained bouldery tills. This must be investigated; though processing costs would be higher these could be recovered by reducing transport costs. Alternate bedrock sources may exist; the physical properties of different facies of bedrock formations are not well known at present. The underground mining of bedrock aggregates is a topical solution to much of the problem, but to date no feasible proposals have come to light.
ADDITONAL STUDIES

Auxiliary to the program carried out by the Phanerozoic Geology Section, the Division of Mines has commissioned several studies related to the regional planning exercise. Firstly, in 1973-74 a study was made of the Regional Municipality of Waterloo and South Wellington County by C.R. Bryant and A.G. McLellan of the University of Waterloo (Bryant and McLellan 1974). This study consisted of an aggregate inventory and inventory methodology, a computer study of a large gravel deposit, and recommendations for the effective planning of the areas underlain by aggregates.

From 1974 to 1976, the Ministry has had the Proctor and Redfern Group Limited analyze the aggregate needs, availability, and planning requirements and problems for the Central, Eastern, and Southwestern (administrative) Regions respectively. These served to outline the problems ahead if resource planning is not improved and also provided the public with a greater awareness of the problem.

CONCLUSIONS

Though the inventory of Ontario's mineral aggregate is incomplete we have provided or will provide in the immediate future inventory data for all municipalities designated under The Pits and Quarries Control Act, 1971. We plan to be able to do this for all southern Ontario and principal commercial centres of northern Ontario by 1980. In this regard we feel we have no North American peers. The immediate challenge is for all levels of government, environmentalists, planners, aggregate producers, and others to recognize that these are non-renewable resources, that they are finite, that there is presently no alternative, that they must be conserved, and that accord must be reached.

Future needs require that we determine the extent of poorly defined and buried aggregates and that we look for natural alternatives.

ACKNOWLEDGMENTS

Helpful comments on the manuscript were provided by G.J. Burwasser. Final drafting was by A. Rodriguez and R. Balgalvis. The paper is dedicated to the late D.F. Hewitt for his work in mineral aggregate resource planning and inventory.

REFERENCES

Bryant, C.R. and McLellan, A.G.

Chapman, L.J. and Putnam, D.F.
1951: The Physiography of Southern Ontario; University of Toronto Press, 284p.

Cowan, W.R.

Gartner Lee Associates Ltd.

Hackett, J.E. and McComas, M.R.

Hewitt, D.F.

Hewitt, D.F. and Karrow P.F.

Hewitt, D.F. and Vos, M.A.

Hewitt, D.F. and Yundt, S.E.

McLellan, A.G. and Bryant, C.R.

Schwochow, S.D., Shroba, R.R., and Wicklein, P.C.
1974: Sand, Gravel, and Quarry Aggregate Resources, Colorado Front Range Counties; Colorado Geol. Surv., Special Publ. 5-A, 43p.

Vos, M.A.
PUBLISHED MAPS AND REPORTS:
QUATERNARY GEOLOGY

ALEXANDRIA
Gwyn, Q.H.J. and Lohse, H.

ALLISTON
Gwyn, Q.H.J. and White S.

BARRIE WEST
Burwasser, G.J., and Cairns, B.D.

BOLTON
White, O.L.

BRAMPTON
Hewitt, D.F.

BRANTFORD
Cowan, W.R.

BROCKVILLE — MALLORYTOWN
Henderson, E.P.

CHALK RIVER
Gadd, N.R.
1963: Surficial Geology, Chalk River, Ontario-Quebec; Geol. Surv. Canada, Map 1132A, scale 1 inch to 1 mile.

COLLINGWOOD-NOTTAWASAGA
Burwasser, G.J.

CONESTOGO
Karrow, P.F.

CORNWALL
Terasmae, J.
1965: Surficial Geology of the Cornwall and St. Lawrence Seaway Project Areas, Ontario; Geol. Surv. Canada, Bull. 121, 54p. Accompanied by Map 1175A, scale 1 inch to 1 mile.

CORNWALL-CARDINAL
Owen, E.B.

DUNNVILLE
Feenstra, B.H.

DUNNVILLE
Feenstra, B.H.

ETOBICOKE
Watt, A.K.

GANANOQUE — WOLFE ISLAND
Henderson, E.P.

GRAND BEND
Cooper, A.J. and Clue, Jack
<table>
<thead>
<tr>
<th>Location</th>
<th>Author(s)</th>
<th>Year</th>
<th>Title</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>PETERBOROUGH</td>
<td>Gravenor, C.P.</td>
<td>1952</td>
<td>Glacial Geology of the Peterborough Map Area, Ontario; Geol. Surv. Canada, Paper 52-14, 9p. Accompanied by Map, scale 1 inch to 1 mile.</td>
<td></td>
</tr>
</tbody>
</table>
Accompanied by Map 53-11, scale 1 inch to 1 mile.

SCARBOROUGH
Karrow, P.F.

SCUGOG
Gravenor, C.P.

SIMCOE
Barnett, P.J., Girard, C.K., and Watt, A.K.

ST. MARYS
Karrow, P.F.

ST. THOMAS WEST
Dreimanis, A.

ST. THOMAS EAST
Dreimanis, A.

STRATFORD - CONESTOGO
Karrow, P.F.

SUDBURY
Burwasser, G.J.

SUDBURY
Burwasser, G.J.

THORNHILL
Karrow, P.F.

VAUDREUIL—HUNTINGDON
Gwyn, Q.H.J. and Girard, K.

WELLAND
Feenstra, B.H.

WESTPORT
Henderson, E.P.

WINDSOR—ESSEX EAST
Vagners, U.J.

WINDSOR—ESSEX WEST
Vagners, U.J.

WOODSTOCK
Cowan, W.R.
APPENDIX B

PUBLISHED REPORTS:
RECOMMENDATIONS
FOR SAND AND GRAVEL EXTRACTIVE AREAS

ADJALA
OFR 5199 Recommendations for Sand and Gravel Extractive Areas, Adjala Township, Simcoe County, Southern Ontario (30 M/13W, 31D/-4W); by Q.H.J. Gwyn, approximately 8p., 2 tables, 3 maps.

BRANTFORD
OFR 5200 Recommendations for Sand and Gravel Extractive Areas, Brantford Township, Brant County, Southern Ontario (40 P/1); by W.R. Cowan, approximately 8p., 2 tables, 2 maps.

BRIGHTON
OFR 5201 Recommendations for Sand and Gravel Extractive Areas, Brighton Township, Northumberland County, (31 C/4); by John Z. Fraser, approximately 9p, 2 tables, 1 map.

BROCK
OFR 5164 Recommendations for Sand and Gravel Extractive Areas, Brock Township, Southern Ontario (31 D/6, 7; 30 M/2,3); by Q.H.J. Gwyn, 10p., 2 tables, 3 maps.

CALEDON
OFR 5202 Recommendations for Sand and Gravel Extractive Areas, Caledon Township, Peel County, Southern Ontario (30 M/12W, 13W; 40 P/-1E); by John Z. Fraser, approximately 11p., 2 tables, 2 maps.

CRAMAHE
OFR 5203 Recommendations for Sand and Gravel Extractive Areas, Cramahe Township, Northumberland County, Southern Ontario (30 N/-13W; 31 C/4W); by John Z. Fraser, approximately 8p., 2 tables, 2 maps.

ERAMOSA
OFR 5188 Recommendations for Sand and Gravel Extractive Areas, Eramosa Township, Southern Ontario (40 P/9); by G.J. Burwasser, approximately 14p, 2 tables, 3 maps.

ERIN
OFR 5189 Recommendations for Sand and Gravel Extractive Areas, Erin Township, Southern Ontario (30 M/12W; 40 P/9E, 16E); by W.R. Cowan, approximately 16p., 2 tables, 4 maps.

GUELPH CITY
OFR 5190 Recommendations for Sand and Gravel Extractive Areas, Municipality of Guelph (Guelph City), Southern Ontario (40 P/9E); by G.J. Burwasser, approximately 12p., 1 table, 2 maps.

GUELPH TOWNSHIP
OFR 5191 Recommendations for Sand and Gravel Extractive Areas, Guelph Township, Southern Ontario (40 P/8, 9); by G.J. Burwasser, approximately 12p., 2 tables, 3 maps.

MANVERS
OFR 5204 Recommendations for Sand and Gravel Extractive Areas, Manvers Township, Durham County, Southern Ontario (31 D/2E, 7E); by Q.H.J. Gwyn, 11p., 2 tables, 2 maps.

MONO
OFR 5205 Recommendations for Sand and Gravel Extractive Areas, Mono Township, Dufferin County, Southern Ontario (30 M/13W; 31 D/-4W; 40 P/16E; 41 A/E); by W.R. Cowan and Q.H.J. Gwyn, 11p., 2 tables, 4 maps.

MULMER
OFR 5206 Recommendations for Sand and Gravel Extractive Areas, Mulmer Township, Dufferin County, Southern Ontario (31D/4W; 41 A/E, 8E); by Q.H.J. Gwyn, 10p., 2 tables, 3 maps.

NORTH DUMFRIES
OFR 5207 Recommendations for Sand and Gravel Extractive Areas, North Dumfries Township, Waterloo County, Southern Ontario (40 P/8); by W.R. Cowan, 11p., 2 tables, 2 maps.

PILKINGTON
OFR 5192 Recommendations for Sand and Gravel Extractive Areas, Pilkington Township, Southern Ontario, (40 P/8, 9); by G.J. Burwasser, approximately 13p., 2 tables, 2 maps.

PUSLINCH
OFR 5193 Recommendations for Sand and Gravel Extractive Areas, Puslinch Township, Southern Ontario (40 P/9W, 10E); by G.J. Burwasser, approximately 13p., 2 tables, 3 maps.

SOUTH DUMFRIES
OFR 5208 Recommendations for Sand and Gravel Extractive Areas, South Dumfries Township, Brant County, Southern Ontario (40 P/1,8); by W.R. Cowan, 11p., 2 tables, 4 maps.

WHITCHURCH
OFR 5178 Recommendations for Sand and Gravel Extractive Areas, Whitchurch Township, Southern Ontario, (30 M/14; 31 D/3); by Q.H.J. Gwyn, 8p., 2 tables, 3 maps.