LAKE ABITIBI AREA

Discover Abitibi Initiative

Discover Abitibi
A project of innovation, cooperation and revitalization

Découvrons l' Abitibi
Un projet d' innovation, de coopération et de renouvellement

Ontario Airborne Geophysical Surveys
High Resolution MIDAS Magnetic Gradient Survey
Geophysical Data Set 1050

Published by
Ontario Geological Survey
Ministry of Northern Development and Mines
Willet Green Miller Centre
933 Ramsey Lake Road
Sudbury, Ontario P3E 6B5
Canada

Report on Lake Abitibi Area Airborne Geophysical Survey
Geophysical Data Set 1050
TABLE OF CONTENTS

CREDITS .. 2
DISCLAIMER .. 2
CITATION .. 2

1.0 INTRODUCTION .. 3

2.0 SURVEY LOCATION AND SPECIFICATIONS ... 3

3.0 AIRCRAFT, EQUIPMENT AND PERSONNEL .. 5

4.0 DATA ACQUISITION .. 7

5.0 DATA COMPILATION AND PROCESSING ... 9

6.0 FINAL PRODUCTS .. 20

7.0 QUALITY ASSURANCE AND QUALITY CONTROL .. 21

APPENDIX A TESTING AND CALIBRATION ... 26

APPENDIX B PROFILE ARCHIVE DEFINITION .. 41

APPENDIX C KEATING CORRELATION ARCHIVE DEFINITION ... 44

APPENDIX D GRID ARCHIVE DEFINITION ... 45

APPENDIX E GEOTIFF AND VECTOR ARCHIVE DEFINITION .. 46
CREDITS

This survey is part of the Discover Abitibi Initiative (DAI), a regional cluster economic development project based on geoscientific investigations of the western Abitibi greenstone belt. FedNor-Industry Canada, Northern Ontario Heritage Fund Corporation and private sector investors have provided funding for the initiative. Project management was performed by the Timmins Economic Development Corporation.

List of accountabilities and responsibilities:

- **Timmins Economic Development Corporation** (TEDC) – overall project management
- Robert Calhoun, Project Manager, Discover Abitibi Initiative – contract management, project management
- Karl Kwan, Senior geophysicist for Paterson, Grant & Watson Limited (PGW) – responsible for field and office quality assurance (QA) and quality control (QC)
- Thomas Watkins, Ministry of Northern Development and Mines (MNDM) – preparation of base maps and map surrounds
- Fugro Airborne Surveys, Mississauga, Ontario - data acquisition and data compilation

DISCLAIMER

To enable the rapid dissemination of information, this digital data has not received a technical edit. Every possible effort has been made to ensure the accuracy of the information provided; however, the Ministry of Northern Development and Mines does not assume any liability or responsibility for errors that may occur. Users may wish to verify critical information.

CITATION

Information from this publication may be quoted if credit is given. It is recommended that reference be made in the following form:
INTRODUCTION

On October 10th, Fugro Airborne Surveys Corp. (FAS) was awarded the Lake Abitibi Survey by the Timmins Economic Development Corporation (TEDC). The contract required FAS to carry out 11715 line-kilometres of high-resolution helicopter horizontal magnetic gradient survey on one block located in the Lake Abitibi area of Northern Ontario, Canada.

 Traverse lines were oriented North-South, with a spacing of 75 metres. Control lines were oriented perpendicular to traverse lines with a spacing of 3000 metres. Control lines were also flown along the survey boundary when not parallel to the traverse line direction. The survey was flown with a nominal terrain clearance of the higher of 50 metres or 15 metres above the tallest obstacle. The area flown is shown in Figure 1.

The field base of operation for the Lake Abitibi survey was located in Iroquois Falls. After pre-survey flight tests in Timmins, Ontario, and surveying of the Porcupine Destor-Pipestone area, the first production flight was flown out of Iroquois Falls on January 14th, 2004 with helicopter C-GIGS. Surveying commenced with a second system in helicopter C-FFUJ on February 12th, 2004. The last flight over the Lake Abitibi area ended on February 28th, 2004 for C-GIGS and February 29th, 2004 for C-FFUJ. A total of 11715 line kilometers was needed to cover the outlined survey block. Flight line bearing of 0° azimuth was selected by the TEDC technical authority. A total of 754 survey lines and 13 control lines were planned and flown using two helicopters, each installed with the Fugro MIDAS Helicopter Mounted Horizontal Gradient system.

This report describes the survey procedures and data verification which were carried out in the field, and the data processing which followed in the office.

SURVEY LOCATION AND SPECIFICATIONS

The block is located just northeast of Iroquois Falls, Ontario. Figure 1 shows the survey location with respect to the local township boundaries.
Figure 1: Lake Abitibi Survey Area
The airborne survey and noise specifications for the Lake Abitibi survey are as follows:

a) traverse line spacing and direction
 - flight line spacing is 75 m
 - flight line direction is North - South
 - maximum allowable deviation from nominal flight path is +/- 25 m over a distance of 500 metres

b) control line spacing and direction
 - at a regular 3000 m interval, perpendicular to the flight line direction
 - along each survey boundary (if not parallel to the flight line direction)
 - maximum allowable deviation from nominal flight path is +/- 100 m over a distance of 1000 metres

c) terrain clearance
 - nominal terrain clearance is 50 m
 - altitude tolerance limited to ±10 metres, except in areas of severe topography

d) aircraft speed
 - nominal helicopter speed is 40 m/sec
 - aircraft speed tolerance limited to ±5.0 m/sec, except in areas of severe topography

e) magnetic diurnal variation
 - could not exceed a maximum deviation of 10 nT from a 2 minute chord.

f) magnetometer noise envelope
 - in-flight noise envelope could not exceed 0.2 nT
 - Figure of Merit to be no greater than 2.5 nT for the two side mounted magnetometers

3.0 AIRCRAFT, EQUIPMENT AND PERSONNEL

3.1 Aircraft and Geophysical On-Board Equipment for each Aircraft:

Aircraft: 2 Bell 206 Jet Rangers
Operator: National Helicopters
Registrations: C-GIGS, C-FFUJ
Survey Speed: 80 knots / 90 mph / 40m/sec.
Magnetometers: Fugro MP7 processor with 2 Scintrex CS-2 single cell cesium vapour, side-boom mounted installation, sensitivity of 0.01 nT, sampling rate = 0.1 sec., ambient range 20,000 to 100,000 nT. The
general noise envelope was kept below 0.2 nT. Nominal sensor height of 50 metres above ground. Sensor separation 13.4 metres.

Magnetic compensation system: Fugro FASDAS compensator with a resolution of 1 picotesla and an accuracy of 0.035 nT

Digital Acquisition: FUGRO AIRBORNE SURVEYS FASDAS with data storage on an IBM MicroDrive

Radar Altimeter: Sperry RT220, accuracy 5%, sensitivity 0.3 m, range 0 to 2,500 feet, analog device

Laser Altimeter: Optech G-330 with first-last pulse capability, sensitivity +/- 5 cm from 10° to 30° C, +/- 10 cm from -20° to 50° C

Barometric Pressure: Motorola MPX4115AP analog pressure sensor, sensitivity 150 mV/kPa

Camera: Sony DXC-101 video camera with a Panasonic AG720 colour video recorder, super VHS

Electronic Navigation: Novatel 3951R GPS receiver, 1 sec recording interval, with a resolution of 0.00001 degree and an accuracy of ±10m. Real time differential correction was provided by Omnistar. PNAV 2100 interface

GPS receiver for post processing Ashtech Zsurveyor with L1/L2 capability, 12 channel, 0.5 sec recording interval. With post processing, can provide accuracy of greater than 5 metres.

* The dual frequency GPS receiver is located on the starboard boom and the Real time corrected Navigation GPS receiver is located on the port boom.

3.2 Base Station Equipment

Fugro CF1 Base Station consisting of the following:

Magnetometer: Scintrex CS-2 single cell cesium vapour, mounted in a magnetically quiet area, measuring the total intensity of the earth's magnetic field in units of 0.01 nT at intervals of 1.0 second, within a noise envelope of 0.40 nT

GPS Receiver: Ashtech Zsurveyor with L1/L2 capability, measuring all GPS channels, for up to 12 satellites

Computer CF1 has its own LCD screen for display. All data recorded at 1
second intervals on compact flash card.

3.3 Field Office Equipment

Computers: Toshiba Laptop, model 2300, P3 with 40 gByte hard drive

Printer: HP 450C

DVD writer Drive: DVD +R format.

Hard Drive: 20 gB removable Peerless drive

3.4 Field Personnel

The following personnel were on-site during the acquisition program.

Darcy McGill Crew Chief - Geophysicist
Jeff Fullerton Helicopter pilot
Gord Stone Helicopter pilot
Barry Orme Helicopter engineer
Al Singh Helicopter engineer
Troy Will Senior Electronics technician & Operator
Adam Ellis Geophysical Operator
Francois Nguyen Geophysical Operator

The above personnel were responsible for the operation and data handling from the aircraft. All personnel were employees and contractors of Fugro Airborne Surveys, except for the helicopter pilots and engineers who were contracted by National Helicopters. There was a pilot and operator assigned to each of the helicopters used for survey flying.

4.0 DATA ACQUISITION

The town of Iroquois Falls, Ontario was selected as the base of operations to start the project. The survey was carried out from January 14th, 2004 to February 29th, 2004. The area is covered by a total of 11715 line kilometres of flying using two helicopters. The second helicopter was deployed to the survey area on February 12th, 2004. The survey area consisted of a single block, defined by a flight line bearing of 0° azimuth selected to run perpendicular to the average trend of local geologic structures of interest. A total of 754 individual survey lines with a separation of 75 metres, were planned and flown. An additional 13 control lines were flown perpendicular to the traverse lines or along the survey block boundaries, with a separation of 3000 metres.
4.1 General statistics

Survey dates Jan 14th, 2004 to Feb 29th, 2004
Total km 11,715 km
Total flying hours 200.8 hours for 2 machines
Production hours 193.5 hours for 2 machines
Number of production days 34 days for 2 machines
Number of production flights 75 flights for 2 machines
Bad weather days 21 days for 2 machines
Testing 5.3 hours for 2 machines
Equipment breakdown 1.5 days for 2 machines
Aircraft breakdown/maintenance 10.5 days for 2 machines
Pilot Rest Day 0 day for 2 crews
Average production per flight 145 km for both machines
Average production per hour 58.3 km for both machines
Average production per day 183 km for both machines

The following tests and calibrations were performed prior to the commencement of or during the survey flying:

- Magnetometer lag check
- Altimeter calibration
- Magnetometer heading (cloverleaf) check
- Magnetometer FOM check

These tests were flown out of Timmins and at the bases of operations as part of the start-up procedures and ongoing survey tests.

Details of these tests and their results are given in Appendix A.

After each flight, all analogue records were examined as a preliminary assessment of the noise level of the recorded data. Altimeter deviations from the prescribed flying altitudes were also closely examined as well as the magnetic diurnal activity, as recorded on the base station.

All digital data were verified for validity and continuity. The data from the aircraft and base station were transferred to the PC's hard disk. Basic statistics were generated for each parameter recorded. These included the minimum, maximum and mean values, the standard deviation and any null values located. Editing of all recorded parameters for spikes or datum shifts was done, followed by final data verification via an interactive graphics screen with on-screen editing and interpolation routines.

The quality of the GPS navigation was controlled on a daily basis by recovering the flight path of the aircraft. The differential correction procedure employed Waypoint Grafnav/Grafnet software, which uses the raw ranges from the base station to create improved models of clock error, atmospheric error, and satellite orbit. These models are used to improve the conversion of aircraft raw ranges to aircraft position. For the dual frequency GPS units which were employed on this survey, the accuracy of the final X,Y was considered to be +/- 5 metres.
Checking all data for adherence to specifications was carried out in the field by the Fugro Airborne Surveys field geophysicists.

5.0 DATA COMPILATION AND PROCESSING

5.1 Personnel

The following personnel were involved in the compilation of data and creation of the final products:

Emily Farquhar Manager, Data Processing
Russell Imrie Senior Data Processor
Karl Kwan Senior Geophysicist (Paterson, Grant & Watson) and DAI Technical Manager who was involved with GSC-type magnetic levelling

5.2 Base maps

Base maps of the survey area were supplied by the Ontario Ministry of Northern Development and Mines

Projection description

- Datum: NAD83
- Projection: Universal Transverse Mercator (UTM Zone 17N)
- Central Meridian: 81° West
- False Northing: 0 m
- False Easting: 500,000 m
- Scale factor: 0.9996

*The geophysical data were collected using the UTM NAD83 datum (WGS84 ellipsoid), then reprojected to the NAD27 (Canada NTv2 (20min) local datum) and NAD83 (Canada local datum) datums, in both UTM and geographic (i.e. latitude/longitude) coordinate systems.

5.3 Processing of Base Station data

The recorded magnetic diurnal base station data was reformatted and loaded into the OASIS database. After initial verification of the integrity of the data from statistical analysis, the appropriate portion of the data is selected to correspond to the exact start and end time of the flight. The data were then checked and corrected for spikes using a fourth difference editing routine. Following this, interactive editing of the data is done, where necessary, via a graphic editing tool, to remove events caused by man-made disturbances. A small running average filter equivalent to less than 8 sec was applied to remove high-frequency noise if necessary. The final processing step consists of extracting the long...
wavelength component of the diurnal signal through low pass filtering, to be subtracted from the airborne magnetic data as a pre-leveling step.

5.4 Processing of the Positioning Data (GPS)

The raw GPS data from both dual frequency mobile (aircraft) and base station GPS units were recovered. Using Waypoint Grafnav/Grafnet software, differential corrections were applied to the raw aircraft fixes using the range data recorded by the base station. Solutions were calculated in both the forward and reverse directions in order to improve the quality of the final position. The resulting differentially corrected latitudes and longitudes were then converted from the WGS-84 spheroid to the local map projection and datum (NAD83) and to UTM metres. These final positions were re-merged with the geophysical data based on the GPS time synchronization. A point to point speed calculation was then done from the final X, Y coordinates and reviewed as part of the quality control. The flight data was then cut back to the proper survey line limits and a preliminary plot of the flight path was done and compared to the planned flight path to verify the navigation.

Base station location used for processing of GPS data was determined to be:
Iroquois Falls 48° 44’ 23.3428” N, 80° 47’ 15.30138” W, 273.3 m

5.5 Processing of the Altimeter data

The altimeter data, which includes the radar altimeter, the laser altimeter and the GPS elevation values, after differential corrections, were checked and corrected for spikes using a fourth difference editing routine. Laser altimeter values of ‘0’ were defaulted and a filtered laser altimeter channel was created from the last return laser data, which should best represent the reflection from the ground surface. Following this, a digital terrain trace was computed by subtracting the laser altimeter values from the differentially corrected GPS elevation values. All resulting parameters were then checked, in profile form, for integrity and consistency, using a graphic viewing editor.

Following this the final levelling process was undertaken. This consisted of applying a micro-levelling technique described below to remove residual errors from the digital terrain grid.

5.6 Processing of Magnetic data

The data was reformatted and loaded into an Oasis Montaj™ database. After initial verification of the data by statistical analysis, the data was then checked and corrected for any spikes using a fourth difference editing routine and inspection on the screen using a graphic profile display. Interactive editing, if necessary, is done at this stage. The spike corrected magnetic values from each magnetometer were then adjusted for system lag as determined by the lag test. Following this, the long wavelength component of the diurnal was subtracted from the data from both sensors as a pre-leveling step. A preliminary grid of the values was then created and verified for obvious problems, such as errors in positioning or bad diurnal and also to ensure that data quality was improved by diurnal removal.
The lagged, diurnally corrected magnetic data for the two sensors were averaged to create a dataset centred on the flight path. The International Geomagnetic Reference Field (IGRF) was then calculated from the 2000 model year, for this survey, extrapolated according to the dates associated with each survey flight and calculated at the survey elevation as measured by the differentially corrected GPS altitude for every measurement point. This reference field was removed from the diurnally corrected, lagged, centre averaged magnetic values.

Following this, the final leveling process was undertaken. This consisted of calculating the positions of the control points (intersections of lines and tie lines), calculating the magnetic differences at the control points and applying a series of leveling corrections to reduce the misclosures to near zero. A new grid of the values was then created and checked for residual errors. Any gross errors detected were corrected and the leveling process repeated. Residual errors were extracted from the gridded data using a proprietary microlevelling technique. The microlevel corrections were low-pass filtered to ensure that only non-geologic residual level errors were removed. The correction was also amplitude limited to +/- 5.0 nT although the typical correction value was less than 1.0 nanotesla.

The microlevelling technique used for this survey is very similar to that developed by PGW, the key strength of which is the separation of noise from geological signal and the correction of the profiles rather than being just a grid based operator. The PGW microlevelling technique resulted from a new application of filters used in the process of draping profile data onto a regional magnetic datum (Reford et al., 1990). It is similar to that published by Minty (1991).

Microlevelling is applied in two steps. The decorrugarion steps are as follows:

- Grid the flightline data to a specified cell size using the minimum curvature gridding algorithm.
- Apply a decorrugarion filter in the frequency-domain, using a sixth-order high pass Butterworth filter of specified cut-off wavelength (tuned to the flightline separation), together with a directional cosine filter, so that a grid of flightline-oriented noise is generated.
- Extract the noise from the grid to a new profile channel.

At this stage, the noise grid may be examined to ensure that the flightline noise has been isolated, and to determine what parameters will be required to separate the true residual flightline noise from the high-frequency geological signal incorporated in the filtering described above.

The steps for the microlevelling procedure are as follows:

- Apply an amplitude limit to clip or zero high amplitude values in the noise channel, if desired.
- Apply a low pass non-linear filter (Naudy and Dreyer, 1968), so that only the longer wavelength flightline noise remains, forming the microlevel correction.
- Subtract the microlevel correction from the original data, resulting in the final, microlevelled profile channel.

Report on Lake Abitibi Area Airborne Geophysical Survey
Geophysical Data Set 1050
In the example shown, the data are windowed from an airborne magnetic and electromagnetic survey flown in the Matachewan area of Ontario, over typical Archean granite-greenstone terrain (Ontario Geological Survey, 1997). Standard corrections (e.g. diurnal, IGRF, conventional tieline levelling) were applied to the magnetic data. However, a considerable component of residual flightline noise remains, due for example to inadequate diurnal monitoring or tieline levelling difficulties.

The resultant microlevelled channel can then be gridded for comparison with the original data. In addition, it is useful to examine the intermediate noise channels in profile and grid form, to verify that the desired separation of residual flightline noise and geological signal has occurred.

Microlevelling can be applied selectively to deal with noise that varies in amplitude and/or wavelength across a survey area. It can also be applied to swaths of flightlines, where more regional level shifts are a problem due to inadequate levelling to the control lines. This can be particularly useful on older surveys where tieline data may no longer be available.

Microlevelling will not solve all problems of flightline noise. For example, positioning errors (e.g. poor lag correction) may result in some level shift that microlevelling will reduce. However, shorter wavelength anomalies will still remain mis-aligned. Line-to-line variations in survey height result in anomaly amplitude variations. Again, microlevelling will reduce long wavelength level shifts, but cannot compensate for localized amplitude changes.

Decorrugation Parameters

Decorrugation requires a database of geophysical data, oriented along roughly parallel survey lines. Surveys with more than one line orientation should be separated into blocks of consistent line direction. The profile channel to be microlevelled should have had all standard corrections, and conventional tieline levelling, already applied. Only traverse lines should be selected for microlevelling (i.e. no tie-lines).
Flight Line Spacing
The nominal flightline spacing is required to design the filter parameters. If a survey contains blocks flown at different line spacings, better results will likely be obtained if these blocks are microlevelled separately. If one is attempting to remove wider level shifts, across swaths of lines, then the average width of the swath should be specified instead.

Flight Line Direction
The nominal flightline direction is required so that the directional filtering incorporated in the decorrugation process has the correct orientation. Survey blocks flown with different line directions should be microlevelled separately.

Grid Cell Size for Gridding
The cell size chosen should be small enough so that the residual flightline noise represented in the grid of original data is well-defined on a survey line basis. Thus, a grid cell size of ¼ the line spacing or smaller is recommended. However, a cell size that is too small (i.e., less than 1/10 the line spacing) will not improve the microlevelling results, and will increase the processing time required.

Decorrugation cut-off wavelength
This parameter defines the cut-off wavelength of the sixth-order, high-pass Butterworth filter, that is combined with a directional cosine filter (power of 0.5) oriented perpendicular to the flightline direction, to extract the residual flightline noise component from the grid of the original data. A wavelength of four times the line spacing has typically proven to produce the best results. Setting this wavelength too small will not give the filter enough width to isolate the effect of each flightline. Setting it too large will extract more geological signal than necessary.

Microlevelling Parameters
Once decorrugation has been applied, it is recommended that the decorrugation grid be reviewed and compared to the original data. This is best done by shaded relief imaging. The purpose is to:
- Ensure that the parameters chosen when decorrugation was applied have properly isolated the residual flightline noise.
- Measure the amplitudes (e.g. determine the peak-to-trough amplitude variations between the survey lines) and wavelengths (in the flightline direction) of the residual flightline noise, from the decorrugation grid.

Amplitude limit value
The amplitude limit defines the value estimated by the user as the maximum amplitude of the residual flight line noise in a survey. If the absolute value of the decorrugation noise channel exceeds the specified amplitude for a given record, then it will be clipped to that value, or zeroed, depending on the mode chosen. This is one of the techniques employed to separate residual flightline noise from geological signal. It is assumed than any responses of higher amplitude reflect geology.

The user should also consider the sources of noise for the particular survey that is being microlevelled. When considering aeromagnetic data, the noise amplitudes produced by some sources (e.g. diurnal variation) are not affected by the geological signal of an area, whereas the noise amplitudes from
others (e.g. height variations) are affected by the geology, particularly where the magnetic gradients are strong.

If the user does not want to apply an amplitude limit, than a large value, exceeding the dynamic range of the decorrugation noise channel, should be specified. This dynamic range can be determined from the channel statistics.

Amplitude Limit Mode
There are two choices for the amplitude limit mode:

Zero mode – This will set any value in the decorrugation noise channel, whose absolute value exceeds the specified amplitude limit value, to zero prior to application of the non-linear filter. This is suited to areas where the responses exhibit steep gradients (e.g. magnetic survey over near-surface igneous and metamorphic rocks). It has the effect of dividing a simple, high amplitude response into three parts: two flanks centred on a zeroed section, allowing a shorter non-linear filter wavelength to be applied, if appropriate. It also reduces the possibility of this filter distorting a response whose wavelength is close to the filter wavelength.

Clip Mode – This will set any value in the decorrugation noise channel, whose absolute value exceeds the specified amplitude limit value, to the amplitude limit value (with appropriate sign) prior to application of the non-linear filter. This is suited to areas where the magnetic responses exhibit shallow gradients (e.g. magnetic survey over sedimentary terrain). It is also applied where the wavelengths of the residual flightline noise in the line direction are clearly much greater than those of the geological signal in the decorrugation noise grid.

Naudy Filter Length
The Naudy non-linear low pass filter (Naudy and Dreyer, 1968) is used due to its superior qualities for either accepting or rejecting responses beyond the specified filter length. A linear filter, in contrast, would smear an undesirable, short wavelength response into the filtered data, rather than completely remove it. It is applied to the amplitude-limited noise channel, to remove any remaining geological signal. The filter length is set to half the length of the shortest linear noise segments visible in the decorrugation noise grid. In most situations, the lengths of these noise segments will still be considerably larger than the wavelengths of geological signal. The exception occurs where there is strong signal due to geology (e.g. magnetic dykes) that strike subparallel to the line direction. In such cases, it is wise to choose a fairly long filter length for the first pass of microlevelling, and then shorten the filter length for any subsequent microlevelling applied only to survey lines (or parts thereof) where problems remain.

Naudy Filter Tolerance
This parameter sets the amplitude below which the filter will not alter the data. For microlevelling, it is recommended that this value be set quite small (e.g. 0.001 nT for magnetic data) as otherwise, the filtered noise channel may contain low amplitude, high frequency chatter that will then be introduced into the microlevelled channel when the correction is applied.

The microlevelling parameters applied to magnetic and DEM data for the Lake Abitibi survey are as follows:
<table>
<thead>
<tr>
<th></th>
<th>Amplitude limit</th>
<th>mode</th>
<th>filter length</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Magnetic Field</td>
<td>4.0 nT</td>
<td>zero</td>
<td>500 m</td>
</tr>
<tr>
<td>DEM</td>
<td>5.0 m</td>
<td>zero</td>
<td>500 m</td>
</tr>
</tbody>
</table>

Quality Control
Once the microlevelling process has been applied, it is instructive to study five parameters, both in profile and gridded form: original unmicrolevelled data, decorrugated noise, amplitude-limited noise, non-linear filtered noise (i.e. microlevel correction) and microlevelled data. This will allow the user to determine if separation of residual flightline noise from geological signal is satisfactory, and whether any levelling problems remain.

Shaded relief imaging of the total magnetic field and its residual component and/or $1^{st}/2^{nd}$ vertical derivatives will verify that the residual line noise has been minimised, and that new line noise has not been introduced. A grid of the microlevel correction will confirm that significant geological signal has not been removed.

5.7 Measured Horizontal Magnetic Gradient

The diurnally corrected total magnetic field data for the two magnetic sensors was used to calculate the transverse measured magnetic gradient, normalized for sensor separation. The transverse gradient was calculated with respect to the flight line direction. As a first pass correction, the median value was removed from the gradient on a line-by-line basis.

5.8 GSC Levelling of Magnetic Data

In 1989, as part of the requirements for a contract with the Ontario Geological Survey (OGS) to compile and level all existing GSC aeromagnetic data in Ontario, PGW developed a robust method to level the magnetic data of various base levels to a common datum provided by the Geological Survey of Canada (GSC) as 812.8 m grids. The essential theoretical aspects of the levelling methodology were fully discussed in Gupta et al. (1989), and Reford et al. (1990). The method was later applied to the remainder of the GSC data across Canada and the high-resolution AMEM surveys flown by the OGS (Ontario Geological Survey, 1996).

Terminology:

Master grid – refers to the 200 metre Ontario magnetic grid compiled and levelled to the 812.8 metre magnetic datum from the Geological Survey of Canada.

GSC levelling – the process of levelling profile data to a master grid, first applied to GSC data.

Intra-survey levelling or microlevelling – refer to the removal of residual line noise described earlier in this chapter; the wavelengths of the noise removed are usually shorter than tie line spacing.

Inter-survey levelling or levelling – refer to the level adjustments applied to a block of data; the adjustments are the long wavelength (in the order of tens of kilometres) differences with respect to a
common datum, in this case, the 200 metre Ontario master grid, which was derived from all pre-1989 GSC magnetic data and adjusted, in turn, by the 812.8 metre GSC Canada wide grid.

The GSC Levelling Methodology

Several data processing procedures are assumed to be applied to the survey data prior to levelling, such as microlevelling, IGRF calculation and removal. The final levelled data is gridded at 1/5 of the line spacing. If a survey was flown as several distinct blocks with different flight directions, then each block is treated as an independent survey. The GSC leveling was undertaken by Karl Kwan at Paterson, Grant & Watson for the Lake Abitibi data. The process included the following:

1. Create an upward continuation of the survey grid to 305m

Almost all recent surveys (1990 and later) to be compiled were flown at a nominal terrain clearance of 100 metres or less. The first step in the levelling method was to upward continue the survey grid to 305 metres, the nominal terrain clearance of the Ontario master grid. The grid cell size for the survey grids was set at 100 metres. Since the wavelengths of level corrections will be greater than 10 to 15 kilometres, working with 100 metre or even 200 metre grids at this stage will not affect the integrity of the levelling method. Only at the very end, when the level corrections are imported into the databases, will the level correction grids be regridded to 1/5 of line spacing.
The unlevelled 100 metre grid was extended by at least 2 grid cells beyond the actual survey boundary, so that, in the subsequent processing, all data points are covered.

2. Create a difference grid between the survey grid and the Ontario master grid

The difference between the upward continued survey grid and the Ontario master grid, regridded at 100 metres, was computed. The short wavelengths represent the higher resolution of the survey grid. The long wavelengths represent the level difference between the two grids.

Example of Difference grid (difference between survey grid and master grid), Vickers survey.

3. Rotate difference grid so that flight line direction is parallel to grid column or row, if necessary.

4. Apply a first pass of a non-linear filter (Naudy and Dreyer, 1968) of wavelength on the order of 15 to 20 kilometres along the flight line direction. Reapply the same non-linear filter across the flight line direction.

5. Apply a second pass of a non-linear filter of wavelength on the order of 2000 to 5000 metres along the flight line direction. Reapply the same non-linear filter across the flight line direction.

6. Rotate the filtered grid back to its original (true) orientation.
Example of Difference grid after application on non-linear filtering, Vickers Survey.

7. Apply a low pass filter to the non-linear filtered grid

Streaks may remain in the non-linear filtered grid, mostly caused by edge effects. They are removed by a frequency-domain, low pass filter with the wavelengths in the order of 25 kilometres.

Example of Level correction grid, Vickers Survey.

8. Regrid to 1/5 line spacing and import level corrections into database.
9. Subtract the level correction channel from the unlevelled channel to obtain the level corrected channel.

10. Make final grid using minimum curvature gridding algorithm with grid cell size at 1/5 of line spacing.

The GSC leveling was undertaken by PGW and the following leveling parameters were used in the Lake Abitibi survey area:
- Distance to upward continue: 255 metres
- First pass non-linear filter length: 15000 metres
- Second pass non-linear filter length: 5000 metres
- Low pass filter cut-off wavelength: 30000 metres

5.9 Total Magnetic field and Second Vertical Derivative Grids

This GSC leveled residual magnetic field was gridded using both the minimum curvature algorithm (Briggs, 1974) and the bidirectional transverse horizontal gradient enhanced algorithm which is part of the Geosoft Oasis™ software package. No trending was applied to the resulting grid. Continuity of magnetic features should be improved from the minimum curvature results through the use of the transverse gradient. The grid cell size for both grids was 15 metres or 1/5 of the flight line spacing.

Minimum curvature gridding provides the smoothest possible grid surface that also honours the profile line data. However, sometimes this can cause narrow linear anomalies cutting across flight lines to appear as a series of isolated spots.

The second vertical derivative of the total magnetic field was computed to enhance small and weak near-surface anomalies and as an aid to delineate the contacts of the lithologies having contrasting susceptibilities. The location of contacts or boundaries is usually traced by the zero contour of the second vertical derivative map.

The grids of the GSC levelled magnetic field values were then used as input to create the second vertical derivative. The second vertical derivative values are computed using a fast Fourier transform, combining the transfer functions of the second vertical derivative and an eighth-order Butterworth low-pass filter (90 metre cut-off wavelength). The low pass is aimed at attenuating unwanted high frequencies enhanced by the second derivative operator without aliasing the geologic signal.

5.10 Keating Correlation Coefficients

Possible kimberlite targets are identified from the residual magnetic intensity data, based on the identification of roughly circular anomalies. This procedure is automated by using a known pattern recognition technique (Keating, 1995), which consists of computing, over a moving window, a first-order regression between a vertical cylinder model anomaly and the gridded magnetic data. Only the results where the absolute value of the correlation coefficient is above a threshold of 75% were retained. On the magnetic maps, the results are depicted as circular symbols, scaled to reflect the correlation value. The most favourable targets are those that exhibit a cluster of high amplitude solutions.
Correlation coefficients with a negative value correspond to reversely magnetised sources. It is important to be aware that other magnetic sources may correlate well with the vertical cylinder model, whereas some kimberlite pipes of irregular geometry may not.

The cylinder model parameters are as follows:

- Cylinder diameter: 200 m
- Cylinder length: infinite
- Overburden thickness: 8 m (average)
- Magnetic inclination: 74.76° N
- Magnetic declination: 22.22° W
- Model window size: 36 x 36 cells (540 x 540 metres)

6.0 FINAL PRODUCTS

Map products at 1:20,000 and 1:50,000 (10 paper copies)

- GSC leveled total magnetic field colour plus contours, including Keating (1995) kimberlite pipe correlation coefficient and MNDM supplied planimetric base and map surround.
- Colour shadow of the second vertical magnetic gradient map, including Keating (1995) kimberlite pipe correlation coefficient and MNDM supplied planimetric base and map surround.

1:20000 scale maps were presented with flight path. The map layout was optimized at both 1:20000 and 1:50000 scale by TEDC and MNDM to make the best use of E-size sheets.

Digital Archives (10 CDROM copies)

- Profile archives on CD-ROM in GEOSOFT ASCII format and Oasis Montaj binary database .GDB format
- Keating Coefficient Anomaly database in ASCII CSV format and Oasis Montaj binary database .GDB format
- Digital grid files of DTM, TF magnetics levelled to Ontario Master Magnetic Datum and 2nd Vertical Derivative of Magnetics in ASCII uncompressed GXF and GEOSOFT binary grid FLOAT format.
- GeoTIFF files of Total Field Magnetics plus planimetric base and colour-shaded 2nd vertical derivative plus planimetric base in NAD83 datum
- Vector files of flight path, Keating coefficients and magnetic contours at 1:20000 in NAD83 datum in AutoCAD DXF format
- Final digital plot files for the 1:20000 and 1:50000 scale maps in three formats:
 - HP5500 plot files
 - Oasis Montaj packed MAP files
 - GeoTIFF files at 300 dpi
- Final report in Word 97 and Adobe PDF format
7.0 QUALITY ASSURANCE AND QUALITY CONTROL

Quality assurance and quality control (QA/QC) were undertaken by the survey contractor (Fugro Airborne Surveys), by PGW (as DAI Technical Manager), and by TEDC. Stringent QA/QC is emphasised throughout the project so that the optimal geological signal is measured, archived and presented.

7.1 Survey Contractor

Important checks are required during the data acquisition stage to ensure that the data quality is kept within the survey specifications. The following lists in detail the standard data quality checks that were performed during the course of the survey.

Daily quality control

Navigation data

- The differentially corrected GPS flight track is recovered and matched against the theoretical flight path to ensure that any deviations are within the specifications (i.e. deviations not greater than +/- 25 metres from the nominal line spacing over a 500 m distance).

- All altimeter data (radar, laser, barometric and GPS elevation) is checked for consistency and deviations in terrain clearance were monitored closely. The survey is flown in a smooth drape fashion maintaining a nominal terrain clearance of 50 metres, whenever possible. Altitude corrections are done in a smoothly controlled manner, rather than forcing the return to nominal, to avoid excessive motion of the towed-bird which would impact on the quality of the data. A digital elevation trace, calculated from the radar altimeter and the GPS elevation values, is also generated to further control the quality of the altimeter data.

- The synchronicity of the GPS time and the acquired time of the geophysical data is checked by matching the recorded time fields.

- A final check on the navigation data is computing the point-to-point speed from the corrected UTM X and Y values. The computed values should be free of erratic behavior showing a nominal ground speed of 40 m/s.

Magnetometer data

- The diurnal variation is examined for any deviations that exceed the specified 10 nT peak-to-peak over a 2 minute chord. Data was re-flown when this condition is exceeded, with any re-flown line segment crossing a minimum of two control lines. A further quality control done on the diurnal variation is to examine the data for any man-made disturbances. When noted, these artifacts are graphically removed by a polynomial interpolation so that
they are not introduced into the final data when the diurnal values are subtracted from the recorded airborne data.

- The integrity of the airborne magnetometer data is checked through statistical analysis and graphically viewed in profile form to ensure that there are no gaps and that the noise specifications are met.

- A fourth difference editing routine is applied to the raw data to locate and correct any small steps and/or spikes in the data.

- Any effects of filtering applied to the data are examined by displaying in profile form the final processed results against the original raw data, via a graphic screen. This is done to ensure that any noise filtering applied has not compromised the resolution of the geological signal.

- On-going gridding and imaging of the data is also done to control the overall quality of the magnetic data.

Near-final field products

Near-final products of the profile and gridded navigation, altimeter and magnetic products were made available to DAI Technical Manager during visits to the survey site, for review and approval, prior to demobilization.

Quality control in the office

Review of field processing of Magnetic & Electromagnetic data.

The general results of the field processing are reviewed in the profile database by producing a multi-channel stacked display of the data (raw and processed) for every line, using a graphic viewing tool. The magnetic and altimeter data are checked for spikes and residual noise.

Review of leveling of magnetics.

All final levelling of the magnetic data was undertaken in the office following creation of the averaged central total magnetic field value and IGRF removal. Final microlevelling was also applied to the profile data during the office processing.

Creation of second vertical derivative

The second vertical derivative is created from the final gridded values of the total field magnetic data and checked for any residual errors using imaging and shadowing techniques.

Archive files containing the raw and processed profile data and the final gridded parameters were provided to the DAI Technical Manager for review and approval prior to proceeding with creation of final product.
Creation of 1:20,000 and 1:50,000 maps

After approval of the interim data, the 1:20,000 and 1:50,000 maps are created and verified for registration, labeling, dropping weights, general surround information, etc. The hard copy and corresponding digital files were provided to both the DAI Technical Manager and Tom Watkins of Information & Marketing Services Section, MNDM for review and approval.

7.2 DAI Technical Manager

The DAI Technical Manager conducted on-site inspections during data acquisition, focusing initially on the data acquisition procedures, base station monitoring and instrument calibration. As data was collected, it was reviewed for adherence to the survey specifications and completeness. Any problems encountered during data acquisition were discussed and resolved.

The QA/QC checks included the following:

Navigation Data
- appropriate location of the GPS base station
- flight line and control line separations are maintained, and deviations along lines are minimized
- verify synchronicity of GPS navigation and flight video
- all boundary control lines are properly located
- terrain clearance specifications are maintained
- aircraft speed remained within the satisfactory range
- area flown covers the entire specified survey area
- differentially-corrected GPS data does not suffer from satellite-induced shifts ordropouts
- GPS height and radar/laser altimeter data are able to produce an image-quality DEM
- GPS and geophysical data acquisition systems are properly synchronized
- GPS data are adequately sampled

Magnetic Data
- appropriate location of the magnetic base station, and adequate sampling of the diurnal variations
- heading error and lag tests are satisfactory
- magnetometer noise levels are within specifications
- magnetic diurnal variations remain within specifications
- magnetometer drift is minimal once diurnal and IGRF corrections are applied
- spikes and/or drop-outs are minimal to non-existent in the raw data
- filtering of the profile data is minimal to non-existent
- in-field leveling produces image-quality grids of total magnetic field and higher-order products (e.g. second vertical derivative)

Karl Kwan, the DAI Technical Manager reviewed interim and final digital and map products throughout the data compilation phase, to ensure that noise was minimized and that the products adhered to the TEDC contract specifications. Considerable effort was devoted to specifying the data formats, and verifying that the data adhered to these formats.
7.3 MNDM

MNDM prepared all base map and map surround information required for the digital and hard copy maps. This ensured consistency and completeness for all of the TEDC geophysical map products.

MNDM worked with the DAI Technical Manager to ensure that the digital files adhered to the specified ASCII and binary file formats, that the file names and channel names were consistent, and that all required data were delivered on schedule. The map products were carefully reviewed in digital and hard copy form to ensure legibility and completeness.
REFERENCES

C-GIGS

MAGNETOMETER CLOVERLEAF HEADING TEST

A Heading Test was performed, before production started, in the Timmins area. A calibration site, selected to offer a good visual reference and a low magnetic gradient, was used to verify the heading errors of the magnetometer (basic cloverleaf test)

<table>
<thead>
<tr>
<th>Pass 1</th>
<th>LINE #</th>
<th>HEADING</th>
<th>FIDUCIAL HEADING POINT (sec)</th>
<th>GPS ALTITUDE (m)</th>
<th>x (m)</th>
<th>y (m)</th>
<th>TFC1LD (nT)</th>
<th>TFC2LD (nT)</th>
<th>HEADING CORRECTED TFC1</th>
<th>HEADING CORRECTED TFC2</th>
</tr>
</thead>
<tbody>
<tr>
<td>19</td>
<td>270°</td>
<td>40165.0</td>
<td>1507.2</td>
<td>500340.5</td>
<td>5381806.1</td>
<td>57389.03</td>
<td>57397.62</td>
<td>57389.06</td>
<td>57397.48</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>90°</td>
<td>42726.0</td>
<td>1415.0</td>
<td>500340.0</td>
<td>531805.8</td>
<td>57389.70</td>
<td>57397.80</td>
<td>57389.70</td>
<td>57398.01</td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>180°</td>
<td>54912.0</td>
<td>1458.4</td>
<td>500337.9</td>
<td>5381806.0</td>
<td>57389.06</td>
<td>57397.67</td>
<td>57389.49</td>
<td>57397.81</td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>0°</td>
<td>57429.0</td>
<td>1435.2</td>
<td>500345.9</td>
<td>5381807.2</td>
<td>57389.89</td>
<td>57397.95</td>
<td>57389.44</td>
<td>57397.74</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Pass 2</th>
<th>LINE #</th>
<th>HEADING</th>
<th>FIDUCIAL HEADING POINT (sec)</th>
<th>GPS ALTITUDE (m)</th>
<th>x (m)</th>
<th>y (m)</th>
<th>TFC1LD (nT)</th>
<th>TFC2LD (nT)</th>
<th>HEADING CORRECTED TFC1</th>
<th>HEADING CORRECTED TFC2</th>
</tr>
</thead>
<tbody>
<tr>
<td>23</td>
<td>270°</td>
<td>50913.0</td>
<td>1438.6</td>
<td>50035.9</td>
<td>5381792.2</td>
<td>57389.81</td>
<td>57398.17</td>
<td>57389.84</td>
<td>57398.03</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>90°</td>
<td>48567.0</td>
<td>1446.6</td>
<td>500332.0</td>
<td>5381795.2</td>
<td>57389.19</td>
<td>57397.28</td>
<td>57389.19</td>
<td>57397.49</td>
<td></td>
</tr>
<tr>
<td>26</td>
<td>180°</td>
<td>60193.0</td>
<td>1459.8</td>
<td>500323.3</td>
<td>5381794.1</td>
<td>57388.97</td>
<td>57397.55</td>
<td>57389.40</td>
<td>57397.69</td>
<td></td>
</tr>
<tr>
<td>27</td>
<td>0°</td>
<td>62921.0</td>
<td>1420.4</td>
<td>500344.4</td>
<td>5381794.5</td>
<td>57389.91</td>
<td>57397.98</td>
<td>57389.46</td>
<td>57397.77</td>
<td></td>
</tr>
</tbody>
</table>

RESULTS
MAGNETOMETER FOM (Figure Of Merit) Test

The compensation flight was flown at 0(north), 90(east), 180(south), 270(west) directions at high altitude (>7,000 ft) at the airport of Timmins, Ontario, on November 03, 2003. The regional magnetic gradient was smooth, and acceptable. The maneuvers, pitch, roll, and yaw, are between 5-10 degrees. The Figures of Merits, 0.6 nT and 0.5 nT for the two mag sensors respectively, are much less than the industry-accepted standard of 2 nT. The Figures of Merit were the peak-to-peak values of the compensated magnetic data, after application of a high-pass filter (60 fiducials wavelength).

Data Table

<table>
<thead>
<tr>
<th>Direction</th>
<th>Average of all directions (nT)</th>
<th>Heading correction values (nT)</th>
<th>Average N-S difference (nT)</th>
<th>Average E-W difference (nT)</th>
<th>Mean orthogonal difference (nT)</th>
</tr>
</thead>
<tbody>
<tr>
<td>270°</td>
<td>57389.42</td>
<td>0.03</td>
<td>-0.03</td>
<td></td>
<td>-0.86</td>
</tr>
<tr>
<td>90°</td>
<td>57389.45</td>
<td>0.00</td>
<td>0.00</td>
<td></td>
<td>0.00</td>
</tr>
<tr>
<td>180°</td>
<td>57389.02</td>
<td>0.43</td>
<td>-0.89</td>
<td></td>
<td>-0.16</td>
</tr>
<tr>
<td>0°</td>
<td>57389.90</td>
<td>-0.45</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Mean magnetometer base value
= 57411.2 nT

TFC1LD
Port sensor, lagged and diurnally corrected

TFC2LD
Stbd Sensor, lagged and diurnally corrected

Report on Lake Abitibi Area Airborne Geophysical Survey

Geophysical Data Set 1050

27
MAGNETOMETER LAG CHECK

The system lag for the magnetometer and electromagnetic system was verified by flying several passes, in opposite directions, over a recognizable feature on the ground giving a sharp magnetic response. Results of this test were made available to DAI Technical Manager for the first field inspection.
MEAN SPEED = \((V_1 + V_2) / 2 \)
DISTANCE = \(\sqrt{(X_2 - X_1)^2 + (Y_2 - Y_1)^2} \)
LAG = \((\text{DISTANCE} / 2) / \text{MEAN SPEED} \)

RESULTS:

<table>
<thead>
<tr>
<th>MEAN SPEED</th>
<th>27.50 m/sec</th>
</tr>
</thead>
<tbody>
<tr>
<td>DISTANCE</td>
<td>20.12 m</td>
</tr>
<tr>
<td>LAG</td>
<td>0.37 sec for L10 and 20</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>MEAN SPEED</th>
<th>28.50 m/sec</th>
</tr>
</thead>
<tbody>
<tr>
<td>DISTANCE</td>
<td>21.59 m</td>
</tr>
<tr>
<td>LAG</td>
<td>0.38 sec for L30 and 40</td>
</tr>
</tbody>
</table>

Starboard Sensor

<table>
<thead>
<tr>
<th>LINE #</th>
<th>HEADING</th>
<th>Radar Altimeter (Feet)</th>
<th>FIDUCIAL (sec)</th>
<th>X (m)</th>
<th>Y (m)</th>
<th>SPEED (m/sec)</th>
<th>MAGNETIC FIELD (nT)</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>150.60</td>
<td>77460</td>
<td>504771.6</td>
<td>5385093.2</td>
<td>26</td>
<td>58758.2</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>150.20</td>
<td>77884.0</td>
<td>504789.4</td>
<td>5385093.3</td>
<td>29</td>
<td>58332.9</td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>146.20</td>
<td>78307</td>
<td>504764.8</td>
<td>5385093.4</td>
<td>26</td>
<td>58769.2</td>
<td></td>
</tr>
<tr>
<td>40</td>
<td>153.50</td>
<td>78720.0</td>
<td>504785.8</td>
<td>5385095.4</td>
<td>31</td>
<td>58790.1</td>
<td></td>
</tr>
</tbody>
</table>

MEAN SPEED = \((V_1 + V_2) / 2 \)
DISTANCE = \(\sqrt{(X_2 - X_1)^2 + (Y_2 - Y_1)^2} \)
LAG = \((\text{DISTANCE} / 2) / \text{MEAN SPEED} \)

RESULTS:

<table>
<thead>
<tr>
<th>MEAN SPEED</th>
<th>27.50 m/sec</th>
</tr>
</thead>
<tbody>
<tr>
<td>DISTANCE</td>
<td>17.80 m</td>
</tr>
<tr>
<td>LAG</td>
<td>0.32 sec for L20 and L30</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>MEAN SPEED</th>
<th>28.50 m/sec</th>
</tr>
</thead>
<tbody>
<tr>
<td>DISTANCE</td>
<td>21.10 m</td>
</tr>
<tr>
<td>LAG</td>
<td>0.37 sec for L60 and L70</td>
</tr>
</tbody>
</table>
ALTIMETER CALIBRATION

Radar and barometer calibrations

Radar and barometer calibrations were conducted at Timmins airport at 50 foot intervals from 50 to 600 feet. Results of radar altimeter in m vs. differentially corrected GPS altitude (see attached plot) indicate good linear correction. Radar and laser altimeters correlate well also. Results of this test were made available to DAI Technical Manager for the first field inspection and are given below:

<table>
<thead>
<tr>
<th>Altitude (feet)</th>
<th>Radar (ft)</th>
<th>Radar (m)</th>
<th>laser</th>
<th>GPS (Z)</th>
<th>GPSs (base removed)</th>
<th>Baro (m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>50</td>
<td>54.4</td>
<td>16.58112</td>
<td>19.2</td>
<td>300</td>
<td>39.5</td>
<td>323.5</td>
</tr>
<tr>
<td>100</td>
<td>105.7</td>
<td>32.21736</td>
<td>35.3</td>
<td>317</td>
<td>56.7</td>
<td>347.3</td>
</tr>
<tr>
<td>150</td>
<td>150.7</td>
<td>45.93336</td>
<td>49.1</td>
<td>328</td>
<td>67.9</td>
<td>330.0</td>
</tr>
<tr>
<td>200</td>
<td>211.1</td>
<td>64.34328</td>
<td>67.6</td>
<td>344</td>
<td>83.7</td>
<td>343.9</td>
</tr>
<tr>
<td>300</td>
<td>297.2</td>
<td>90.58656</td>
<td>94.2</td>
<td>369</td>
<td>109.1</td>
<td>369.3</td>
</tr>
<tr>
<td>400</td>
<td>409.3</td>
<td>124.75464</td>
<td>128.7</td>
<td>404</td>
<td>143.7</td>
<td>389.2</td>
</tr>
<tr>
<td>500</td>
<td>529</td>
<td>161.2392</td>
<td>166</td>
<td>440</td>
<td>180.1</td>
<td>418.8</td>
</tr>
<tr>
<td>600</td>
<td>712.5</td>
<td>217.17</td>
<td>222.6</td>
<td>496</td>
<td>235.8</td>
<td>452.7</td>
</tr>
</tbody>
</table>
a) Static GPS test

Two static tests were performed to check the quality of the GPS Post Processing system. These tests were preformed on Nov 7th and 12th. The following figures (Nov 12 results) visually demonstrate the improvement inaccuracy between raw and post processed GPS.

System:
Airborne: Ashtech Z-surveyor with L1/L2 capability
Location: Starboard boom, 2.6 meters from centre of helicopter.

Base: Ashtech Z-surveyor with L1/L2 capability
Location: Vi-Mar Hotel, Matheson Ont.
48° 32” 03.19592 North
80° 30” 15.99891 West
Figure 1: Raw Gps Scatter Plot, Nov 12. 1 square= 2 m

Figure 2: Post Processing Airborne GPS, Nov 12. 1 square= 3 cm
The compensation flight was flown at 0(north), 90(east), 180(south), 270(west) directions at high altitude (>7,000 ft) at Iroquois Falls, Ontario, on February 12, 2004. The regional magnetic gradient was smooth, and acceptable. The maneuvers, pitch, roll, and yaw, are between 5-10 degrees. The Figures of Merits, 1.19 nT and 1.2 nT for the two mag sensors respectively, are much less than the industry-accepted standard of 2 nT. The Figures of Merit were the peak-to-peak values of the compensated magnetic data, after application of a high-pass filter (60 fiducials wavelength).

<table>
<thead>
<tr>
<th>Project #</th>
<th>3083</th>
</tr>
</thead>
<tbody>
<tr>
<td>Client:</td>
<td>TEDC</td>
</tr>
<tr>
<td>Pilot:</td>
<td>Gord Stone</td>
</tr>
<tr>
<td>Operator:</td>
<td>Francois Nguyen</td>
</tr>
<tr>
<td>Compiled By:</td>
<td>Darcy McGill</td>
</tr>
<tr>
<td>Aircraft:</td>
<td>C-FFUJ</td>
</tr>
<tr>
<td>Location:</td>
<td>Iroquois Falls, Ontario</td>
</tr>
<tr>
<td>Date:</td>
<td>12/02/2004</td>
</tr>
<tr>
<td>Configuration:</td>
<td>MIDAS</td>
</tr>
<tr>
<td>Database:</td>
<td>FFUJ_FOM_feb12.GDB</td>
</tr>
</tbody>
</table>

TFU1: Uncompensated Port Sensor
TFC1: Compensated Port Sensor
TFU2: Uncompensated Starboard Sensor
TFC2: Compensated Starboard Sensor

VALUES DETERMINED USING 6 SECONDS (60 FIDUCIALS) HIGH PASS FILTER
VALUES DETERMINED USING MEAN PEAK TO PEAK OF EACH MANEUVER

<table>
<thead>
<tr>
<th>NORTH</th>
<th>LINE NUMBER</th>
<th>FID RANGE</th>
<th>TFU1</th>
<th>TFC1</th>
<th>TFU2</th>
<th>TFC2</th>
</tr>
</thead>
<tbody>
<tr>
<td>PITCH</td>
<td>L10</td>
<td>12554-12667</td>
<td>0.546</td>
<td>0.117</td>
<td>0.145</td>
<td>0.087</td>
</tr>
<tr>
<td>ROLL</td>
<td>L20</td>
<td>12708-12805</td>
<td>1.783</td>
<td>0.105</td>
<td>0.333</td>
<td>0.122</td>
</tr>
<tr>
<td>YAW</td>
<td>L30</td>
<td>12825-12906</td>
<td>0.747</td>
<td>0.099</td>
<td>0.157</td>
<td>0.068</td>
</tr>
<tr>
<td>TOTAL</td>
<td></td>
<td></td>
<td>3.076</td>
<td>0.321</td>
<td>0.635</td>
<td>0.277</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>EAST</th>
<th>LINE NUMBER</th>
<th>FID RANGE</th>
<th>TFU1</th>
<th>TFC1</th>
<th>TFU2</th>
<th>TFC2</th>
</tr>
</thead>
<tbody>
<tr>
<td>PITCH</td>
<td>L20</td>
<td>15261-15341</td>
<td>0.747</td>
<td>0.098</td>
<td>0.411</td>
<td>0.080</td>
</tr>
<tr>
<td>ROLL</td>
<td>L40</td>
<td>15380-15450</td>
<td>2.789</td>
<td>0.156</td>
<td>1.180</td>
<td>0.120</td>
</tr>
<tr>
<td>YAW</td>
<td>L50</td>
<td>15478-15579</td>
<td>0.870</td>
<td>0.118</td>
<td>0.194</td>
<td>0.165</td>
</tr>
<tr>
<td>TOTAL</td>
<td></td>
<td></td>
<td>4.406</td>
<td>0.372</td>
<td>1.785</td>
<td>0.365</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SOUTH</th>
<th>LINE NUMBER</th>
<th>FID RANGE</th>
<th>TFU1</th>
<th>TFC1</th>
<th>TFU2</th>
<th>TFC2</th>
</tr>
</thead>
<tbody>
<tr>
<td>PITCH</td>
<td>L30</td>
<td>14234-14332</td>
<td>0.422</td>
<td>0.061</td>
<td>0.149</td>
<td>0.075</td>
</tr>
<tr>
<td>ROLL</td>
<td>L40</td>
<td>14372-14455</td>
<td>1.336</td>
<td>0.075</td>
<td>0.469</td>
<td>0.119</td>
</tr>
<tr>
<td>YAW</td>
<td>L50</td>
<td>14495-14596</td>
<td>0.531</td>
<td>0.136</td>
<td>0.158</td>
<td>0.112</td>
</tr>
<tr>
<td>TOTAL</td>
<td></td>
<td></td>
<td>2.289</td>
<td>0.272</td>
<td>0.776</td>
<td>0.306</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>WEST</th>
<th>LINE NUMBER</th>
<th>FID RANGE</th>
<th>TFU1</th>
<th>TFC1</th>
<th>TFU2</th>
<th>TFC2</th>
</tr>
</thead>
<tbody>
<tr>
<td>PITCH</td>
<td>L40</td>
<td>13447-13537</td>
<td>0.380</td>
<td>0.074</td>
<td>0.186</td>
<td>0.081</td>
</tr>
<tr>
<td>ROLL</td>
<td>L50</td>
<td>13583-13676</td>
<td>1.389</td>
<td>0.131</td>
<td>0.584</td>
<td>0.116</td>
</tr>
<tr>
<td>YAW</td>
<td>L60</td>
<td>13729-13802</td>
<td>0.242</td>
<td>0.022</td>
<td>0.141</td>
<td>0.056</td>
</tr>
</tbody>
</table>

Report on Lake Abitibi Area Airborne Geophysical Survey
Geophysical Data Set 1050
ALTIMETER CALIBRATION

Radar and barometer calibrations

Radar and barometer calibrations were conducted at Iroquois Falls at 50 feet intervals from 50 to 600 feet. Results of radar altimeter in m vs. differentially corrected GPS altitude (see attached plot) indicate good linear correlation. Radar and laser altimeters correlate quite well also. Results are given below:

Altimeter Test

<table>
<thead>
<tr>
<th>Project #</th>
<th>3083</th>
<th>Date</th>
<th>10/02/2004</th>
</tr>
</thead>
<tbody>
<tr>
<td>Client</td>
<td>TEDC</td>
<td>Location</td>
<td>Iroquois Falls, Ontario</td>
</tr>
<tr>
<td>Pilot</td>
<td>Gord Stone</td>
<td>Aircraft</td>
<td>C-FFUJ</td>
</tr>
<tr>
<td>Operator</td>
<td>Francois Nguyen</td>
<td>Configuration</td>
<td>MIDAS</td>
</tr>
<tr>
<td>Compiled By</td>
<td>Darcy McGill</td>
<td>Database</td>
<td>FFUJ_ALT_feb10.GDB</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Nominal altitude (ft)</th>
<th>Radar (ft)</th>
<th>Radar (m)</th>
<th>Laser (m)</th>
<th>Baro (m)</th>
<th>GPS (m)</th>
<th>GPS, Base removed (m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>50</td>
<td>62.812</td>
<td>19.15</td>
<td>14.87</td>
<td>375.0</td>
<td>326.4</td>
<td>14.9</td>
</tr>
<tr>
<td>100</td>
<td>114.2096</td>
<td>34.82</td>
<td>30.12</td>
<td>392.2</td>
<td>341.6</td>
<td>30.1</td>
</tr>
<tr>
<td>150</td>
<td>157.9976</td>
<td>48.17</td>
<td>44.33</td>
<td>402.3</td>
<td>355.7</td>
<td>44.2</td>
</tr>
<tr>
<td>200</td>
<td>214.02</td>
<td>65.25</td>
<td>61.60</td>
<td>419.2</td>
<td>373.1</td>
<td>61.6</td>
</tr>
<tr>
<td>250</td>
<td>266.4016</td>
<td>81.22</td>
<td>77.80</td>
<td>433.4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>300</td>
<td>315.6672</td>
<td>96.24</td>
<td>92.84</td>
<td>447.7</td>
<td>402.7</td>
<td>91.2</td>
</tr>
<tr>
<td>400</td>
<td>413.5752</td>
<td>126.09</td>
<td>123.33</td>
<td>475.8</td>
<td>429.3</td>
<td>117.8</td>
</tr>
<tr>
<td>500</td>
<td>530.9008</td>
<td>161.86</td>
<td>160.70</td>
<td>506.5</td>
<td>475.7</td>
<td>164.2</td>
</tr>
<tr>
<td>600</td>
<td>665.84</td>
<td>203.00</td>
<td>207.28</td>
<td>538.6</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

GPS Base Elev. (m): 273.3 Ellipsoidal height

311.5 Orthometric height
Report on Lake Abitibi Area Airborne Geophysical Survey
Geophysical Data Set 1050
MAG LAG TEST

Project #: 3083
Client: TEDC
Pilot: Gord Stone
Operator: Francois Nguyen
Compiled By: Darcy McGill
Date: 2/10/2004
Location: Iroquois Falls, Ontario
Aircraft: C-FFUJ
Configuration: MIDAS
Database: FFUJ_LAG_feb10.GDB

<table>
<thead>
<tr>
<th>LINE #</th>
<th>HEADING (°)</th>
<th>Radar Altimeter (Feet)</th>
<th>FIDUCIAL (sec)</th>
<th>X (m)</th>
<th>Y (m)</th>
<th>SPEED (m/sec)</th>
<th>MAGNETIC FIELD (nT)</th>
</tr>
</thead>
<tbody>
<tr>
<td>9001</td>
<td>N</td>
<td>175.00</td>
<td>17913</td>
<td>504738</td>
<td>5385077</td>
<td>29</td>
<td>57796.300</td>
</tr>
</tbody>
</table>

Report on Lake Abitibi Area Airborne Geophysical Survey
Geophysical Data Set 1050
MEAN SPEED = \((V_1 + V_2) / 2\)
DISTANCE = \(\sqrt{(X_2 - X_1)^2 + (Y_2 - Y_1)^2}\)
LAG = \((DISTANCE / 2) / MEAN SPEED\)

RESULTS:

<table>
<thead>
<tr>
<th>MEAN SPEED</th>
<th>DISTANCE</th>
<th>LAG</th>
</tr>
</thead>
<tbody>
<tr>
<td>30.80 m/sec</td>
<td>39.29 m</td>
<td>0.64 sec Lines 9001-9002</td>
</tr>
<tr>
<td>MEAN SPEED</td>
<td>DISTANCE</td>
<td>LAG</td>
</tr>
<tr>
<td>30.00 m/sec</td>
<td>24.80 m</td>
<td>0.41 sec Lines 9003-9004</td>
</tr>
</tbody>
</table>

Sensor 2 (Starboard Sensor)

<table>
<thead>
<tr>
<th>LINE #</th>
<th>HEADING (°)</th>
<th>Radar Altimeter (Feet)</th>
<th>FIDUCIAL (sec)</th>
<th>X (m)</th>
<th>Y (m)</th>
<th>SPEED (m/sec)</th>
<th>MAGNETIC FIELD (nT)</th>
</tr>
</thead>
<tbody>
<tr>
<td>9001</td>
<td>N</td>
<td>175.00</td>
<td>17913</td>
<td>504738</td>
<td>5385077</td>
<td>29</td>
<td>57796.300</td>
</tr>
<tr>
<td>9002</td>
<td>S</td>
<td>173.40</td>
<td>18442.0</td>
<td>504777</td>
<td>5385082</td>
<td>32.6</td>
<td>58484.400</td>
</tr>
<tr>
<td>9003</td>
<td>N</td>
<td>175.80</td>
<td>20611</td>
<td>504777</td>
<td>5385092</td>
<td>30.1</td>
<td>58310.600</td>
</tr>
<tr>
<td>9004</td>
<td>S</td>
<td>172.80</td>
<td>21139.0</td>
<td>504755</td>
<td>5385080</td>
<td>29.9</td>
<td>58314.300</td>
</tr>
</tbody>
</table>

MEAN SPEED = \((V_1 + V_2) / 2\)
DISTANCE = \(\sqrt{(X_2 - X_1)^2 + (Y_2 - Y_1)^2}\)
LAG = \((DISTANCE / 2) / MEAN SPEED\)

RESULTS:

<table>
<thead>
<tr>
<th>MEAN SPEED</th>
<th>DISTANCE</th>
<th>LAG</th>
</tr>
</thead>
<tbody>
<tr>
<td>30.80 m/sec</td>
<td>39.29 m</td>
<td>0.64 sec Lines 9001-9002</td>
</tr>
<tr>
<td>MEAN SPEED</td>
<td>DISTANCE</td>
<td>LAG</td>
</tr>
<tr>
<td>30.00 m/sec</td>
<td>24.80 m</td>
<td>0.41 sec Lines 9003-9004</td>
</tr>
</tbody>
</table>
HEADING TEST:

Project #: 03083
Date: 29-Feb-04
Client: TEDC
Location: Iroquois Falls
Pilot: Gord Stone
Aircraft: C-FFUJ
Configuration: Bell 206 Jet Ranger
Operator: Francois Nguyen
Geophysicist: Darcy McGill

Pass 1:

<table>
<thead>
<tr>
<th>LINE #</th>
<th>HEADING</th>
<th>FIDUCIAL</th>
<th>GPS ALT</th>
<th>x</th>
<th>y</th>
<th>TFC1DL</th>
<th>TFC2DL</th>
<th>HEADING CORR TFC1</th>
<th>HEADING CORR TFC2</th>
</tr>
</thead>
<tbody>
<tr>
<td>4000</td>
<td>270°</td>
<td>11688.0</td>
<td>805.9</td>
<td>500344.9</td>
<td>5381805.9</td>
<td>57354.80</td>
<td>57352.40</td>
<td>57353.85</td>
<td>57351.30</td>
</tr>
<tr>
<td>3001</td>
<td>90°</td>
<td>19007.0</td>
<td>750.6</td>
<td>500346.0</td>
<td>5381795.3</td>
<td>57353.90</td>
<td>57351.30</td>
<td>57353.85</td>
<td>57351.45</td>
</tr>
<tr>
<td>2000</td>
<td>180°</td>
<td>29580.0</td>
<td>844.1</td>
<td>500350.5</td>
<td>5381794.4</td>
<td>57352.40</td>
<td>57349.90</td>
<td>57353.80</td>
<td>57351.40</td>
</tr>
<tr>
<td>1000</td>
<td>0°</td>
<td>27228.0</td>
<td>836.9</td>
<td>500346.1</td>
<td>5381796.5</td>
<td>57354.70</td>
<td>57352.50</td>
<td>57354.30</td>
<td>57351.95</td>
</tr>
</tbody>
</table>

Pass 2:

<table>
<thead>
<tr>
<th>LINE #</th>
<th>HEADING</th>
<th>FIDUCIAL</th>
<th>GPS ALT</th>
<th>x</th>
<th>y</th>
<th>TFC1DL</th>
<th>TFC2DL</th>
<th>HEADING CORR TFC1</th>
<th>HEADING CORR TFC2</th>
</tr>
</thead>
<tbody>
<tr>
<td>4001</td>
<td>270°</td>
<td>16027.0</td>
<td>738.2</td>
<td>500346.2</td>
<td>5381805.3</td>
<td>57353.90</td>
<td>57351.90</td>
<td>57352.95</td>
<td>57350.80</td>
</tr>
<tr>
<td>3002</td>
<td>90°</td>
<td>23049.0</td>
<td>828.8</td>
<td>500347.7</td>
<td>5381785.2</td>
<td>57353.00</td>
<td>57350.50</td>
<td>57352.95</td>
<td>57350.65</td>
</tr>
<tr>
<td>2001</td>
<td>180°</td>
<td>34228.0</td>
<td>869.8</td>
<td>500339.8</td>
<td>5381795.9</td>
<td>57351.60</td>
<td>57349.20</td>
<td>57353.00</td>
<td>57350.70</td>
</tr>
<tr>
<td>1001</td>
<td>0°</td>
<td>31931.0</td>
<td>748.5</td>
<td>500351.9</td>
<td>5381794.7</td>
<td>57352.90</td>
<td>57350.70</td>
<td>57352.50</td>
<td>57350.15</td>
</tr>
</tbody>
</table>

RESULTS:

<table>
<thead>
<tr>
<th>Direction</th>
<th>Average TFC1LD (nT)</th>
<th>Average of all directions (nT)</th>
<th>Heading correction values (nT)</th>
<th>Average N-S difference (nT)</th>
<th>Average E-W difference (nT)</th>
<th>Mean orthogonal difference (nT)</th>
</tr>
</thead>
<tbody>
<tr>
<td>270°</td>
<td>57354.35</td>
<td>57353.40</td>
<td>-0.95</td>
<td>0.90</td>
<td></td>
<td>-2.70</td>
</tr>
<tr>
<td>90°</td>
<td>57353.45</td>
<td></td>
<td>-0.05</td>
<td>1.40</td>
<td></td>
<td></td>
</tr>
<tr>
<td>180°</td>
<td>57352.00</td>
<td></td>
<td>1.40</td>
<td>-1.80</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0°</td>
<td>57353.80</td>
<td></td>
<td>-0.40</td>
<td>0.90</td>
<td></td>
<td>-2.70</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Direction</th>
<th>Average TFC2LD (nT)</th>
<th>Average of all directions (nT)</th>
<th>Heading correction values (nT)</th>
<th>Average N-S difference (nT)</th>
<th>Average E-W difference (nT)</th>
<th>Mean orthogonal difference (nT)</th>
</tr>
</thead>
<tbody>
<tr>
<td>270°</td>
<td>57352.15</td>
<td>57351.05</td>
<td>-1.10</td>
<td>1.25</td>
<td></td>
<td>-3.30</td>
</tr>
<tr>
<td>90°</td>
<td>57350.90</td>
<td></td>
<td>0.15</td>
<td>-2.05</td>
<td></td>
<td></td>
</tr>
<tr>
<td>180°</td>
<td>57349.55</td>
<td></td>
<td>1.50</td>
<td>-2.05</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0°</td>
<td>57351.60</td>
<td></td>
<td>-0.55</td>
<td>0.15</td>
<td></td>
<td>-3.30</td>
</tr>
</tbody>
</table>

Report on Lake Abitibi Area Airborne Geophysical Survey
Geophysical Data Set 1050
38
Mean magnetometer base value = 57192.6 nT
TFC1LD Port sensor, lagged and diurnally corrected
TFC2LD Stbd Sensor, lagged and diurnally corrected

Static GPS test

Two static tests were performed to check the quality of the GPS Post Processing system on the second helicopter, C-FFUJ. These tests were performed on Dec 15th. The following figures visually demonstrate the improved accuracy between raw and post processed GPS.

System:
Airborne: Ashtech Z-surveyor with L1/L2 capability
Location: Starboard boom, 2.6 meters from centre of helicopter.

Base: Ashtech Z-surveyor with L1/L2 capability
Location: Iroquois Falls, Onario
48° 44” 23.3443 North
80° 47.15.3013 West
273.30 m

Processing system: Waypoint Grafnav. Version 7.0

Figure 1 Raw GPS Scatter Plot, Dec 15th. 1 square=1 m.
Figure 2 Post Processed GPS Scatter Plot, Dec 15th. 1 square = 1 cm.
APPENDIX B PROFILE ARCHIVE DEFINITION

Geophysical Data Set 1050 is derived from a survey carried out using the MIDAS helicopter mounted horizontal magnetic gradient system by Fugro Airborne Surveys Corp.

Data File Layout

The files for the Lake Abitibi Geophysical Survey 1050 are archived on CD-ROM and sold as 4 separate products, as outlined below:
The content of the ASCII and Geosoft® binary file types are identical. They are provided in both forms to suit the user’s available software. The survey data is archived as follows:

CD - 1050a
- ASCII (GXF) grids
 - IGRF corrected and GSC leveled magnetic field in both NAD27 and NAD83
 - Second vertical derivative of the IGRF-corrected magnetic field in both NAD27 and NAD83
 - Digital elevation model in both NAD27 and NAD83
 - Keating correlation (kimberlite) database (ASCII CSV format)
- DXF files of entire survey block in NAD83 for:
 - Flight path
 - Keating correlation targets based on the IGRF-corrected magnetic field grid
 - Contours of GSC leveled magnetic field
- GEOTIFF images in NAD83 of the entire survey block for:
 - GSC leveled magnetic field with planimetric base
 - Colour shaded Second vertical derivative of the IGRF corrected magnetic field with planimetric base
- Project report (Word® 97 and Adobe® PDF formats)

CD – 1050b
- Geosoft® Binary (GRD) grids
 - IGRF corrected and GSC leveled magnetic field in both NAD27 and NAD83
 - Second vertical derivative of the IGRF-corrected magnetic field in both NAD27 and NAD83
 - Digital elevation model in both NAD27 and NAD83
 - Keating correlation (kimberlite) database (binary GDB format)
- DXF files of entire survey block in NAD83 for:
 - Flight path
 - Keating correlation targets based on the IGRF-corrected magnetic field grid
 - Contours of GSC leveled magnetic field
- GEOTIFF images in NAD83 of the entire survey block for:
 - GSC leveled magnetic field with planimetric base
 - Colour shaded Second vertical derivative of the IGRF corrected magnetic field with planimetric base
- Project report (Word® 97 and Adobe® PDF formats)
CD - 1050c
- Profile database of magnetic data (10 Hz sampling) in ASCII (XYZ) format
- Keating correlation (kimberlite) database (ASCII CSV format)
- Project report (Word® 97 and Adobe® PDF formats)

CD – 1050d (2 CD set)
- Profile database of magnetic data (10 Hz sampling) in Geosoft® OASIS montaj (GDB) format
- Keating correlation (kimberlite) database (GDB format)
- Project report (Word® 97 and Adobe® PDF formats)

Coordinate Systems

The profile and Keating coefficient data are provided in four coordinate systems:
- Universal Transverse Mercator (UTM) projection, Zone 17N, NAD27 datum, Canada NTv2 (20min) local datum
- Universal Transverse Mercator (UTM) projection, Zone 17N, NAD83 datum, Canada local datum
- Latitude/longitude coordinates, NAD27 datum, Canada NTv2 (20min) local datum
- Latitude/longitude coordinates, NAD83 datum, Canada local datum

The gridded data are provided in two UTM coordinate systems:
- Universal Transverse Mercator (UTM) projection, Zone 17N, NAD27 datum, Canada NTv2 (20min) local datum
- Universal Transverse Mercator (UTM) projection, Zone 17N, NAD83 datum, Canada local datum

Line Numbering

The line numbering convention for survey 1050 is as follows:

Line number x 10 + part number

i.e. Line 4001 part 1 is identified as 40011

The same convention is used for the labeling of the control lines.

Profile Data

The profile data are provided in two formats, one ASCII and one binary:

ASCII
***Zipped ASCII XYZ file of magnetic data, sampled at 10 Hz is divided into two files:
- Lakeabitibi.xyz : profile data for lines 40010 to 49130

Binary
*** Geosoft® OASIS Montaj binary database file (no compression) of magnetic data sampled at 10 Hz is divided into 2 files:
- Lakeabitibi1.gdb : profile data for lines 40010 to 44490
- Lakeabitibi2.gdb : profile data for lines 41000 to 49130
The contents of lakeabitibi.xyz/lakeabitibi1.gdb (both file types contain the same set of data channels) were compressed using WinZip® utility, lakeabitibi2.gdb is uncompressed. The contents of all three files are summarized as follows:

<table>
<thead>
<tr>
<th>Channel Name</th>
<th>Description</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>GPS_X_REAL</td>
<td>REAL TIME GPS X NAD83</td>
<td>METRES</td>
</tr>
<tr>
<td>GPS_Y_REAL</td>
<td>REAL TIME GPS Y NAD83</td>
<td>METRES</td>
</tr>
<tr>
<td>GPS_Z_REAL</td>
<td>REAL TIME GPS Z NAD83</td>
<td>METRES</td>
</tr>
<tr>
<td>GPS_X_FINAL</td>
<td>DIFFERENTIALLY CORRECTED GPS X NAD83</td>
<td>METRES</td>
</tr>
<tr>
<td>GPS_Y_FINAL</td>
<td>DIFFERENTIALLY CORRECTED GPS Y NAD83</td>
<td>METRES</td>
</tr>
<tr>
<td>GPS_Z_FINAL</td>
<td>DIFFERENTIALLY CORRECTED ORTHOMETRIC HEIGHT</td>
<td>METRES</td>
</tr>
<tr>
<td>LON_NAD83</td>
<td>LONGITUDE NAD 83 DATUM</td>
<td>DEGREES</td>
</tr>
<tr>
<td>LAT_NAD83</td>
<td>LATITUDE NAD 83 DATUM</td>
<td>DEGREES</td>
</tr>
<tr>
<td>X_NAD83</td>
<td>DIFFERENTIALLY CORRECTED UTM EASTING OF HELICOPTER</td>
<td>METRES</td>
</tr>
<tr>
<td>Y_NAD83</td>
<td>DIFFERENTIALLY CORRECTED UTM NORTING OF HELICOPTER</td>
<td>METRES</td>
</tr>
<tr>
<td>LON_NAD27</td>
<td>LONGITUDE NAD 27 DATUM</td>
<td>DEGREES</td>
</tr>
<tr>
<td>LAT_NAD27</td>
<td>LATITUDE NAD27 DATUM</td>
<td>DEGREES</td>
</tr>
<tr>
<td>LASER_RAW</td>
<td>RAW LASER ALTIMETER HEIGHT OF MAGNETOMETER ABOVE TERRAIN</td>
<td>METERS</td>
</tr>
<tr>
<td>LASER_FINAL</td>
<td>CORRECTED LASER ALTIMETER - HEIGHT ABOVE TERRAIN</td>
<td>METERS</td>
</tr>
<tr>
<td>BARO_RAW</td>
<td>RAW BAROMETRIC HEIGHT OF HELICOPTER</td>
<td>METRES</td>
</tr>
<tr>
<td>BARO_FINAL</td>
<td>CORRECTED BAROMETRIC HEIGHT OF HELICOPTER</td>
<td>METRES</td>
</tr>
<tr>
<td>DEM</td>
<td>TOPOGRAPHIC HEIGHT ABOVE SEA LEVEL</td>
<td>METRES</td>
</tr>
<tr>
<td>FIDUCIAL</td>
<td>FIDUCIAL</td>
<td>SECONDS</td>
</tr>
<tr>
<td>FLIGHT</td>
<td>FLIGHT NUMBER</td>
<td></td>
</tr>
<tr>
<td>LINE_NUMBER</td>
<td>FULL FLIGHTLINE NUMBER</td>
<td></td>
</tr>
<tr>
<td>LINE</td>
<td>FLIGHTLINE NUMBER</td>
<td></td>
</tr>
<tr>
<td>LINE_PART</td>
<td>FLIGHTLINE PART NUMBER</td>
<td></td>
</tr>
<tr>
<td>TIME_UTC</td>
<td>UNIVERSAL TIME</td>
<td>SECONDS</td>
</tr>
<tr>
<td>TIME_LOCAL</td>
<td>LOCAL TIME</td>
<td>SECONDS AFTER MIDNIGHT</td>
</tr>
<tr>
<td>DATE</td>
<td>LOCAL DATE YYYYMMDD</td>
<td></td>
</tr>
<tr>
<td>MAG_BASE_RAW</td>
<td>RAW MAGNETIC BASE STATION DATA</td>
<td>NANTESLAS</td>
</tr>
<tr>
<td>MAG_BASE_FINAL</td>
<td>CORRECTED MAGNETIC BASE STATION DATA</td>
<td>NANTESLAS</td>
</tr>
<tr>
<td>PORT_MAG_RAW</td>
<td>DESPIKED RAW PORT TOTAL MAGNETIC FIELD</td>
<td>nT</td>
</tr>
<tr>
<td>STAR_MAG_RAW</td>
<td>DESPIKED RAW STARBOARD TOTAL MAGNETIC FIELD</td>
<td>nT</td>
</tr>
<tr>
<td>PORT_MAG_LAG</td>
<td>LAGGED PORT TOTAL MAGNETIC FIELD</td>
<td>nT</td>
</tr>
<tr>
<td>STAR_MAG_LAG</td>
<td>LAGGED STARBOARD TOTAL MAGNETIC FIELD</td>
<td>nT</td>
</tr>
<tr>
<td>PORT_MAG_DIURN</td>
<td>DIURNAL REMOVED PORT TOTAL MAGNETIC INTENSITY</td>
<td>nT</td>
</tr>
<tr>
<td>STAR_MAG_DIURN</td>
<td>DIURNAL REMOVED STARBOARD TOTAL MAGNETIC INTENSITY</td>
<td>nT</td>
</tr>
<tr>
<td>MAG</td>
<td>DIURNAL CORRECTED AVERAGE TMI FROM PORT AND STARBOARD SENSORS</td>
<td>nT</td>
</tr>
<tr>
<td>IGRF</td>
<td>INTERNATIONAL GEOMAGNETIC REFERENCE FIELD</td>
<td>nT</td>
</tr>
<tr>
<td>MAG_IGRF</td>
<td>IGRF CORRECTED MAGNETIC FIELD</td>
<td>nT</td>
</tr>
<tr>
<td>MAG_LEV</td>
<td>LEVELED IGRF CORRECTED MAGNETIC FIELD</td>
<td>nT</td>
</tr>
<tr>
<td>MAG_FINAL</td>
<td>MICROLEVELED IGRF CORRECTED MAGNETIC FIELD</td>
<td>nT</td>
</tr>
<tr>
<td>HGRAD</td>
<td>LEVELED MEASURED HORIZONTAL MAGNETIC GRADIENT</td>
<td>nT/m</td>
</tr>
<tr>
<td>LEVEL_CORR</td>
<td>CORRECTION FOR LEVELLING TO MASTER GRID</td>
<td>nT</td>
</tr>
<tr>
<td>MAG_GSCLEVEL</td>
<td>FINAL MAGNETIC FIELD LEVELLED TO MASTER GRID</td>
<td>nT</td>
</tr>
<tr>
<td>FLUXGATEX</td>
<td>X COMPONENT - FLUXGATE MAGNETOMETER</td>
<td>bits</td>
</tr>
<tr>
<td>FLUXGATEY</td>
<td>Y COMPONENT - FLUXGATE MAGNETOMETER</td>
<td>bits</td>
</tr>
<tr>
<td>FLUXGATEZ</td>
<td>Z COMPONENT - FLUXGATE MAGNETOMETER</td>
<td>bits</td>
</tr>
</tbody>
</table>
APPENDIX C KEATING CORRELATION ARCHIVE DEFINITION

Kimberlite Pipe Correlation Coefficients

The Keating kimberlite pipe correlation coefficient data are provided in two formats, one ASCII and one binary:
- lakeatingcoefficients.csv – ASCII comma-delimited format
- lakeatingcoefficients.gdb – Geosoft® OASIS montaj binary database file

Both file types contain the same set of data channels, summarized as follows:

<table>
<thead>
<tr>
<th>Channel Name</th>
<th>Description</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>UTME_NAD27</td>
<td>Easting in UTM coordinates, NAD27 datum Z17N</td>
<td>metres</td>
</tr>
<tr>
<td>UTMN_NAD27</td>
<td>Northing in UTM coordinates, NAD27 datum Z17N</td>
<td>metres</td>
</tr>
<tr>
<td>UTME_NAD83</td>
<td>Easting in UTM coordinates, NAD83 datum Z17N</td>
<td>metres</td>
</tr>
<tr>
<td>UTMN_NAD83</td>
<td>Northing in UTM coordinates, NAD83 datum Z17N</td>
<td>metres</td>
</tr>
<tr>
<td>LAT_NAD27</td>
<td>Latitude in NAD27 datum Z17N</td>
<td>degrees</td>
</tr>
<tr>
<td>LONG_NAD27</td>
<td>Longitude in NAD27 datum Z17N</td>
<td>degrees</td>
</tr>
<tr>
<td>LAT_NAD83</td>
<td>Latitude in NAD83 datum Z17N</td>
<td>degrees</td>
</tr>
<tr>
<td>LONG_NAD83</td>
<td>Longitude in NAD83 datum Z17N</td>
<td>degrees</td>
</tr>
<tr>
<td>CORRELATION_COEFFICIENT</td>
<td>Correlation coefficient</td>
<td>percent*10</td>
</tr>
<tr>
<td>NORMALIZED_STANDARD_ERROR</td>
<td>Standard error normalized to amplitude</td>
<td>percent</td>
</tr>
<tr>
<td>ANOMALY_AMPLITUDE</td>
<td>Peak-to-peak anomaly amplitude in window</td>
<td>nanoTeslas</td>
</tr>
<tr>
<td>NEGATIVE_CORRELATION_COEFFICIENT</td>
<td>Negative Correlation Coefficient</td>
<td>percent</td>
</tr>
<tr>
<td>POSITIVE_CORRELATION_COEFFICIENT</td>
<td>Positive Correlation Coefficient</td>
<td>percent</td>
</tr>
</tbody>
</table>
APPENDIX D GRID ARCHIVE DEFINITION

Gridded Data

The gridded data are provided in two formats, one ASCII and one binary:

* *.gxf - Geosoft® ASCII Grid eXchange Format (revision 3.0, no compression)
* *.grd - Geosoft® OASIS montaj binary grid file (no compression)

The grids are summarized as follows:

<table>
<thead>
<tr>
<th>Grid Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lamagnad27.grd/.gxf</td>
<td>IGRF-corrected and GSC levelled magnetic field in nanoteslas (UTM coordinates, NAD27 datum) (minimum curvature gridding)</td>
</tr>
<tr>
<td>Lamagnad83.grd/.gxf</td>
<td>IGRF-corrected and GSC levelled magnetic field in nanoteslas (UTM coordinates, NAD83 datum) (minimum curvature gridding)</td>
</tr>
<tr>
<td>La2vdnad27.grd/.gxf</td>
<td>second vertical derivative of the IGRF-corrected and GSC levelled magnetic field in nanoteslas per metre-squared (UTM coordinates, NAD27 datum) (minimum curvature gridding)</td>
</tr>
<tr>
<td>La2vdnad83.grd/.gxf</td>
<td>second vertical derivative of the IGRF-corrected and GSC levelled magnetic field in nanoteslas per metre-squared (UTM coordinates, NAD83 datum) (minimum curvature gridding)</td>
</tr>
<tr>
<td>Lamaghgnad27.grd/.gxf</td>
<td>IGRF-corrected and GSC levelled magnetic field in nanoteslas (UTM coordinates, NAD27 datum) (bidirectional transverse horizontal gradient enhanced gridding)</td>
</tr>
<tr>
<td>Lamaghgnad83.grd/.gxf</td>
<td>IGRF-corrected and GSC levelled magnetic field in nanoteslas (UTM coordinates, NAD83 datum) (bidirectional transverse horizontal gradient enhanced gridding)</td>
</tr>
<tr>
<td>La2vdhgnad27.grd/.gxf</td>
<td>second vertical derivative of the IGRF-corrected and GSC levelled magnetic field in nanoteslas per metre-squared (UTM coordinates, NAD27 datum) (bidirectional transverse horizontal gradient enhanced gridding)</td>
</tr>
<tr>
<td>La2vdhgnad83.grd/.gxf</td>
<td>second vertical derivative of the IGRF-corrected and GSC levelled magnetic field in nanoteslas per metre-squared (UTM coordinates, NAD83 datum) (bidirectional transverse horizontal gradient enhanced gridding)</td>
</tr>
<tr>
<td>Lademnad27.grd/.gxf</td>
<td>digital elevation model in metres above sea level (UTM coordinates, NAD27 datum)</td>
</tr>
<tr>
<td>Lademnad83.grd/.gxf</td>
<td>digital elevation model in metres above sea level (UTM coordinates, NAD83 datum)</td>
</tr>
</tbody>
</table>
APPENDIX E GEOTIFF AND VECTOR ARCHIVE DEFINITION

GeoTIFF Images

Geographically referenced colour images are provided in GeoTIFF format for use in GIS applications.

The images were grouped by theme as follows:
Lakeabitibitmi.tif IGRF-corrected and GSC levelled magnetic field with planimetric base (UTM coordinates, NAD83 datum)
Lakeabitibi2vd.tif shadowed second vertical derivative of the IGRF-corrected and GSC levelled magnetic field with planimetric base (UTM coordinates, NAD83 datum)

Vector Archives

Vector line work from the maps is provided in DXF(v12) ASCII format as follows:
lakeating20000.dxf Keating correlation targets based on the IGRF-corrected magnetic field grid (UTM coordinates, NAD83 datum)
laflightpath20000.dxf flight path of the survey area (UTM coordinates, NAD83 datum)
lamagcontours20000.dxf contours of the IGRF-corrected magnetic field in nanoteslas (UTM coordinates, NAD83 datum)