BONANZA RED LAKE EXPLORATIONS INC.
SCHEDULE AND PROGRAM FOR FEASIBILITY STUDY
GOLD PROSPECT, DOME TOWNSHIP
RED LAKE, ONTARIO

JANUARY 15, 1979
HARPER CONSULTING SERVICES INC.
INTRODUCTION

The purpose of this report is to schedule and program the acquisition of the data necessary for a Feasibility Study of the Corporation's known body of gold mineralization located on White Horse Island, Dome Township, Red Lake, Ontario.

PERIOD 1 - January 1 to April 30, 1979 (4 months)

A. AT RED LAKE

1. Initial examination of shaft collar condition.
 - capped? - open? - caved?

2. Opening discussions with local Ontario Mine Inspector on permit requirements, safety, etc., with respect to re-collaring shaft and de-watering mine.

3. Opening discussions with local hydro authorities re establishing a power sub-station on White Horse Island.

4. Enquiries as to availability of water transportation of a size suitable for transporting mining equipment.
5. Enquiries as to docking and loading facilities on White Horse Island and at Red Lake.

B. IN TORONTO

1. Opening discussions with Mines Inspection Branch, Queen's Park.

2. Opening discussions with Ontario Hydro re power sub-station.

3. Opening discussions with Ontario Ministry of Environment respecting control of mine discharge water.

4. Opening discussions with Mining Corporation of Canada (Noranda), Kilborn Engineering, etc., with respect to undertaking Feasibility Study as a Consultant or as a Consultant Participant in
 (a) Ore Reserve Calculations,
 (b) Mine Viability Study as a salvage or as a continuing operation,
 (c) Mine re-habilitation study,
 (d) Production potential.

PERIOD 2 - May 1 to June 30, 1979
(2 months)

A. AT RED LAKE

1. Complete 1979 drill program from ice.
2. Consider cementing any drill hole location found on White Horse Island.

3. With snow and ice gone accurate evaluations can be made respecting
 (a) condition of shaft collar,
 (b) docking and beaching facilities on White Horse Island,
 (c) condition and repair needed to roads between docks, shaft, power sub-station, building sites, etc.

B. IN TORONTO

1. Calculation of tonnage and grade including results of 1979 drill program.

2. Development of underground exploration program.
 i.e. grouting, bulk sampling, underground drilling.

3. Board of Directors decision to proceed with full scale Feasibility Study under Company control OR under the control of a fully integrated Engineering Consulting firm.

From this point it becomes increasingly difficult to correctly project the progress of the Feasibility Study for one cannot pre-determine the speed with which data can be accumulated. If, as is probably the best course of action, the Corporation
retains a fully integrated Engineering Consulting Firm to carry out the Feasibility Study then the Corporation should retain the services of a Consulting Geologist and a Consulting Mining Engineer who can supply overall direction to the integrated Consulting Firm and act as intermediaries with the Board of Directors. In short, if a system of technical controls and checks is not instituted, the Corporation may find itself without quick and positive direction and the cost of studies may mount solely because of indecision.

PERIOD 3 - July 1 to November 15, 1979 (4.5 months)

A. AT RED LAKE

1. Prepare docking and beaching facilities on White Horse Island suitable for off-loading supplies and equipment.
2. Arrange for required water transportation.
3. Design and erection of needed facilities, e.g. power sub-station, shaft collar, head frame, etc.

(The above may be deferred until after freeze-up.)

B. IN TORONTO

1. Assembly of cost estimates respecting the following:
 a. re-collaring shaft;
(b) installation of head frame, hoist, etc.;
(c) installation of power sub-station and
connection to mining plant;
(d) de-watering and mine re-habilitation (ladderways,
timbers, guides, track, signal systems, etc.);
(e) underground mapping, sampling, bulk sampling,
diamond drilling, grouting, etc.

2. Open discussions respecting conditional financing.

3. Open discussions with Red Lake gold mill owners
respecting rental of facilities for custom milling.

4. Investigate the alternatives of mining and developing
through the existing shaft OR through a new decline
entry on Cable Point. The latter would reduce ore
handling charges and permit easier year round
operations.

The data comprising the Feasibility Study will be col-
lected by different people at different times and unless there
is a systematic collection and storage of data there will be much
useless repetition and delay. Data stored in people's heads is
not readily available to a group of people.

A typical field report, particularly near the start of
the feasibility work, might consist of a semi-formal letter re-
porting on the state of the shaft collar, the dock, and an un-
successful attempt to meet the local Mine Inspector, and some
two or three other items. As the number of such reports increases, a particular item becomes increasingly hard to find among a stack of small reports and repetition results. The answer is to maintain a Data Accumulation Brief.

A Data Accumulation Brief is maintained in chronological order and indexed according to subject. Typical index headings are:

- Shaft Collar
- Transportation Facilities
- Docking and Loading Facilities
- Power Sub-station
- Environmental Requirements
- etc.

To prepare a Data Accumulation Brief is relatively simple. Data from a letter report would be briefly summarized under the appropriate headings together with the date and author of the source report. A report on a specific subject would be included in its entirety. The form of the Data Accumulation Brief is that of a loose leaf notebook and its contents, in total or in part, can be quickly reproduced for the convenience of someone engaged in a specialized part of the Feasibility Study. The Data Accumulation Brief is, in actuality, Volume I of the Feasibility Study.

Unless instructions to the contrary are received, it is the writer's intention to start a Data Accumulation Brief.

Respectfully submitted

HARPER CONSULTING SERVICES INC.

Willowdale, Ontario
January 15, 1979

President.
BONANZA RED LAKE EXPLORATIONS LTD.
ELECTROMAGNETIC, MAGNETIC, & GRADIENT SURVEYS
DOME TOWNSHIP, RED LAKE, ONTARIO

APRIL 12, 1979
HARPER CONSULTING SERVICES INC.
INTRODUCTION

Some experimental geophysical surveying has been done over and about the known area of gold mineralization near White Horse Island on a property under option to Bonanza Red Lake Explorations Inc. The surveys were done from the ice surface between January and April 1979. The surveys done were a Total Field Magnetic survey, a Magnetic Gradient survey, and a VLF Electromagnetic survey. The Magnetic Gradient survey was limited to the water areas as the land areas are topographically too uneven to permit reliable Magnetic Gradient surveying. All surveys were limited by the transmission line of Ontario Hydro which crosses part of the land and water areas within the survey. The area surveyed is confined to portions of three claims (KRL 11325, 11442, & 13251) and cover about 80 acres.

Previous geophysical surveying in the area is almost nonexistent.

Some 35 to 40 years ago some magnetic surveying was done near the shaft. A magnetic contour map exists today but it shows no readings or contour interval and is considered redundant. In the middle 1960's some magnetic surveying was
done under the direction of S. A. Ferguson who was then gathering data in preparation for his report G.R. 45 for the Ontario Ministry of Natural Resources.

PURPOSE OF THE SURVEYS

The survey work was experimental, designed to search for geophysical peculiarities in the vicinity of the known gold mineralization and to see if these extended to the north or south of the known gold mineralization.

SURVEY RESULTS & INTERPRETATION

MAGNETIC GRADIENT SURVEY

Data for this survey is acquired by calculating the difference (positive or negative) between two magnetic readings at each station; the first reading taken four feet above ground level and the second eight feet above ground level. The calculated result enhances magnetic changes and has been found useful in areas of flat topography where the bedrock features are deep buried and relatively smooth.

The Gradient survey was limited to the ice covered portion of the lake lying east of White Horse Island. No gradient
features of significance are distinguishable and the survey results appear to be of minor value.

TOTAL FIELD MAGNETIC SURVEY

It is quite clear from the survey results that the Dome Stock has a generally higher magnetic level than the intruded volcanics and sediments, although each formational group contains relatively small, isolated bodies that are strongly magnetic. The survey does not define the contact between the Dome Stock and the intruded rocks with precision but one can make a reasonable inference as to its location.

VLF ELECTROMAGNETIC SURVEY

This survey is characterized by extremely wide fluctuation in the in phase and quadrature readings that are much greater than normally experienced. One may infer that all of the rocks in the survey area contain many small, discontinuous but highly conductive faults, fractures and seams which must strike in several different directions.

A strong conductor, "A", strikes north-south and lies about 400 feet east of the shaft. This is the fault zone intersected in drill hole R79-1. It extends from 5S, the south limit of the survey, to line 4N where it becomes complicated and is lost - possibly terminated.
A second zone of strong conductivity lies north of White Horse Island between lines 4N and 10N and west of the baseline. This area lies within the Dome Stock and is not an extension of Conductor A. There is no simple, obvious explanation for this conductive zone.

COLLECTIVE RESULTS

All three surveys indicate unusual, but undefinable, conditions between lines 4N and 10N. Individually the unusual survey results are not exceptionally intriguing but collectively the results arouse curiosity particularly since many problems begin near line 4N. For example, the water flow along a diorite dike intersected on the second level of the mine occurs at line 3N; the overburden thickens and drill holes are lost in overburden at line 4N; and finally, no holes have been completed north of line 4N when collared on a westerly bearing. The writer suspects a major fault-fracture system lying between lines 4N and 10N and this inhibits diamond drill investigation of the area. Perhaps the best policy is to start cross sectional drilling north of line 10N and then advance southerly.

CONCLUSIONS & RECOMMENDATIONS

1. The surveys do not reveal any special conditions related
to the known gold mineralization which can be projected along strike and which can serve as a control or guide for future drill programs.

2. The surveys suggest some form of east-west trending discontinuity occurring between lines 4N and 10N. This suggests that a future drill program should start with cross sectional drilling along lines 14N or 16N and then progress southward.

Respectfully submitted

HARPER CONSULTING SERVICES INC.

President.

Willowdale, Ontario
April 12, 1979
BONANZA RED LAKE EXPLORATIONS INC.

1979 DRILL PROGRAM

DOME TOWNSHIP, RED LAKE
ONTARIO

MAY 18, 1979

HARPER CONSULTING SERVICES INC.
INTRODUCTION

Bonanza Red Lake Explorations Inc. has just completed a diamond drill program on its Dome Township gold prospect and this Report summarizes the results of that program and makes recommendations for future exploration. All details pertaining to the drilling are recorded on the drill logs, drill sections, and drill plan which accompanies this Report.

PREVIOUS DRILL PROGRAMS vs CURRENT DRILL PROGRAM

The partially developed bodies of gold mineralization lie entirely under the water of Red Lake and therefore are awkward to drill except when the lake is frozen. Consequently many of the holes have been drilled on divers bearings from White Horse Island, all of which makes correlation of drill results difficult. A further complication has been the thick bouldery overburden conditions under the waters of Red Lake.
and, in the past, several holes drilled from the ice failed to reach bedrock. For example, in 1939 Mackenzie Red Lake Gold Mines Ltd. held an option on this property and planned a drill program very similar to the current one. Holes were drilled into the mineralized area from the ice on Red Lake. Holes 1 to 4 inclusive intersected the zone approximately on current sections 0 to 3N inclusive and returned respectable gold values across reasonable widths. The next eight drill holes failed to penetrate the overburden and the drill program was abandoned. The current drill program progressed slowly because of the same problems. Only one drill hole was abandoned and two holes did succeed in reaching bedrock where the earlier drilling failed. The difficult overburden problem slowed the drilling to the extent that the planned program could not be completed before the ice weakened, forcing a drill stoppage.

DRILL RESULTS

Five holes B79-1 to 5 inclusive were completed and one hole, not numbered, failed to reach bedrock and was abandoned. All holes were cemented when completed.

The best intersection occurred in hole B79-1, where 17.02 feet averaged 0.159 ounces of gold per ton. Lower values occurred both above and below this intersection.
Holes B79-2 and B79-4 were drilled on Line 4N in the approximate area where Mackenzie Red Lake lost four drill holes in 1939. Neither hole intersected a gold bearing vein. An analysis of all available drill and underground data indicates that the vein system is readily traceable to approximately Line 4N where suddenly all is gone. This is also the area where overburden problems begin. An examination of the geophysical survey data (see Report dated April 12, 1979) shows that all magnetic and electromagnetic data undergoes a marked change in this area, but the nature of the change is unknown. A wide erratic shear zone seems the most likely explanation. A better interpretation might be possible if north-south VLF surveying was done in this area. Meanwhile, all drilling should keep away from this area and move to the north where the geophysical indications are more normal.

Hole B79-3 intersected some interesting veining on Line 1N below the 350 foot level. Low gold values were widespread, the best assay being 0.31 ounces of gold across 1.5 feet. The data suggests that the oreshoots have a plunge, probably to the north.

Hole B79-5 was disappointing in that only low gold values occurred in a very wide and good looking vein intersection. The best value was 0.08 ounces across 3.0 feet with the vein having an overall core length of twenty-one feet. The vein was intersected at a horizon lying between the 275 and 350 foot levels.
where earlier drilling shows respectable values above the 275 foot level.

FUTURE DRILLING

The geophysical hiatus occurring between Lines 3N and 8N has never been bridged by diamond drilling. It was the intention of the Mackenzie Red Lake program to cover this area but it was not possible to carry it out. Indeed, they lost four holes (see map) in the attempt. Also, they were not aware of the geophysical discontinuity. The logical course of action is for the next drill program to commence with cross sectional drilling north of the discontinuity, say about Line 10N, and then move southward.

CONCLUSIONS AND RECOMMENDATIONS

1. The 1979 Drill Program and its related Geophysical Program has provided some data on which future exploration can be based.

2. It is apparent that the known ore shoots have a plunge and the direction of this plunge should be established by further drilling.
3. To the north, the drilling has encountered difficulties because of thick and boulder rich overburden, and due to a geological change of an uncertain nature as indicated by the geophysics. Probably the best solution is to start drilling from the north, say Line 10N, and work south.

4. The known gold mineralization has not been traced south of the shaft according to the old drill records. One or two wildcat holes south of the shaft are amply warranted.

5. A new claim was staked which squares out the east boundary of the Company's property. Sufficient drilling (a 300 foot hole) should be done to bring this claim to Lease.

6. The drill program for the 1980 winter season would approximate 3500 feet and cost about $80,000.00.

This Report is respectfully submitted.

HARPER CONSULTING SERVICES INC.

President.

WILLOWDALE, Ontario
May 18th, 1979
<table>
<thead>
<tr>
<th>Sample No.</th>
<th>Sample Width</th>
<th>Foilage</th>
<th>Foilage No.</th>
<th>Property</th>
<th>Bearing</th>
<th>Logged By</th>
<th>Date</th>
<th>Initials</th>
</tr>
</thead>
<tbody>
<tr>
<td>222</td>
<td>2.0 ft</td>
<td>0.7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Assay Data

<table>
<thead>
<tr>
<th>Sample</th>
<th>Sample Width</th>
<th>Foilage</th>
<th>Foilage No.</th>
<th>Property</th>
<th>Bearing</th>
<th>Logged By</th>
<th>Date</th>
<th>Initials</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Notes:
- Drilled by: [Driller's Name]
- Started: [Start Date]
- Completed: [Completion Date]
- Drilled by: [Driller's Name]
<table>
<thead>
<tr>
<th>Footage</th>
<th>Depth</th>
<th>Logs</th>
</tr>
</thead>
<tbody>
<tr>
<td>515.6-517.5</td>
<td>1.9 ft</td>
<td>Sil., Al., Fe2O3, Cu</td>
</tr>
<tr>
<td>444-500.5</td>
<td>1.5 ft</td>
<td>Sil., Al., Fe2O3, Cu</td>
</tr>
<tr>
<td>496-519</td>
<td>0.0 ft</td>
<td>Sil., Al., Fe2O3, Cu</td>
</tr>
<tr>
<td>455-2, 458</td>
<td>0.0 ft</td>
<td>Sil., Al., Fe2O3, Cu</td>
</tr>
<tr>
<td>440-461</td>
<td>0.4 ft</td>
<td>Sil., Al., Fe2O3, Cu</td>
</tr>
<tr>
<td>427-430</td>
<td>0.0 ft</td>
<td>Sil., Al., Fe2O3, Cu</td>
</tr>
<tr>
<td>390-5, 591.9</td>
<td>1.4 ft</td>
<td>Sil., Al., Fe2O3, Cu</td>
</tr>
<tr>
<td>384.5-393.8</td>
<td>0.3 ft</td>
<td>Sil., Al., Fe2O3, Cu</td>
</tr>
<tr>
<td>382.2</td>
<td>1.2 ft</td>
<td>Sil., Al., Fe2O3, Cu</td>
</tr>
</tbody>
</table>

Sample Footages

- Sample No.: 2Z/00
- Footage: 22.0 ft

Sample Width

- Footage: 3.0 ft
- Width: 1.1 ft

Assay Data

- Location: 1405
- Drill No.: 1405
- Hole No.: 1405
- Date: 1/7/95
- Assay No.: 1405
- Lode: 1405
- Sample: 1405
- Width: 1.1 ft
- Footage: 3.0 ft
- Depth: 591.9 ft
- Logs: Sil., Al., Fe2O3, Cu
Latitudinal Data

<table>
<thead>
<tr>
<th>DEPARTURE</th>
<th>V.D.</th>
<th>H.D.</th>
<th>DRILLED BY</th>
<th>DEPTH</th>
</tr>
</thead>
<tbody>
<tr>
<td>11/9/2021</td>
<td>0.9</td>
<td>1.6</td>
<td></td>
<td>2021</td>
</tr>
<tr>
<td>11/5/2022</td>
<td>1.6</td>
<td>1.0</td>
<td></td>
<td>2021</td>
</tr>
<tr>
<td>11/7/2023</td>
<td>1.0</td>
<td>1.5</td>
<td></td>
<td>2021</td>
</tr>
<tr>
<td>11/8/2024</td>
<td>1.5</td>
<td>1.2</td>
<td></td>
<td>2021</td>
</tr>
<tr>
<td>11/9/2025</td>
<td>1.2</td>
<td>1.6</td>
<td></td>
<td>2021</td>
</tr>
<tr>
<td>11/10/2026</td>
<td>1.6</td>
<td>2.0</td>
<td></td>
<td>2021</td>
</tr>
<tr>
<td>11/11/2027</td>
<td>2.0</td>
<td>2.5</td>
<td></td>
<td>2021</td>
</tr>
</tbody>
</table>

Bearing:
- NORTH
- EAST
- SOUTH
- WEST

Hole No.:
- 1

Depth:
- 35' Water
- 0' Sample

Sample Footage:
- Width
- Length

Location:
- 41° 11' 18" N, 113° 7' 20" W

Assay Data:
- Logged By: Harper
- Printed By: Herndon
- Completed: 11/11/2027
- Started: 11/9/2021
- Dip: 55°
- Bearing: 41° N
- Latitude: 35° W

End of Hole:
- 250' Down the hole - 35.5' down
- 248' Down the hole - 35.5' down
- End of hole - Main matter contains
- 247' Down the hole - Med. O_{2} green, very color with
- 246' Down the hole - Med. O_{2} green, very color with
- 245' Down the hole - Med. O_{2} green, very color with
- 244' Down the hole - Med. O_{2} green, very color with
- 243' Down the hole - Med. O_{2} green, very color with
- 242' Down the hole - Med. O_{2} green, very color with
- 241' Down the hole - Med. O_{2} green, very color with
<table>
<thead>
<tr>
<th>FOOTAGE</th>
<th>SAMPLE</th>
<th>SAMPLE WIDTH</th>
<th>Gسل</th>
<th>PL.</th>
<th>FT.</th>
</tr>
</thead>
<tbody>
<tr>
<td>4966</td>
<td>2066</td>
<td>3.0</td>
<td>0</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>4967</td>
<td>2067</td>
<td>3.0</td>
<td>0</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>4968</td>
<td>2068</td>
<td>3.0</td>
<td>0</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>4969</td>
<td>2069</td>
<td>3.0</td>
<td>0</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>4970</td>
<td>2070</td>
<td>3.0</td>
<td>0</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>4971</td>
<td>2071</td>
<td>3.0</td>
<td>0</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>4972</td>
<td>2072</td>
<td>3.0</td>
<td>0</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>4973</td>
<td>2073</td>
<td>3.0</td>
<td>0</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>4974</td>
<td>2074</td>
<td>3.0</td>
<td>0</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>4975</td>
<td>2075</td>
<td>3.0</td>
<td>0</td>
<td>10</td>
<td></td>
</tr>
</tbody>
</table>

Notes:
- Footage data includes location, sample, and width measurements.
- Each entry includes the following columns: Footage, Sample, Sample Width, Gسل, PL, and FT.

Assay Data:
- Assay numbers correspond to each footage entry.
- Assay data are not fully legible in the provided image.
<table>
<thead>
<tr>
<th>Location</th>
<th>Azimuth</th>
<th>Bearing</th>
<th>Distance</th>
<th>Depth</th>
<th>Hole No.</th>
<th>Sample No.</th>
<th>Assay Data</th>
<th>Sample Width</th>
<th>Sample Footage</th>
</tr>
</thead>
<tbody>
<tr>
<td>L1</td>
<td>N 094°</td>
<td>W 094°</td>
<td>200 ft</td>
<td>30</td>
<td>L1</td>
<td>1</td>
<td>2.0</td>
<td>3.0</td>
<td>0.0</td>
</tr>
<tr>
<td>L2</td>
<td>N 094°</td>
<td>W 094°</td>
<td>200 ft</td>
<td>30</td>
<td>L2</td>
<td>2</td>
<td>2.0</td>
<td>3.0</td>
<td>0.0</td>
</tr>
<tr>
<td>L3</td>
<td>N 094°</td>
<td>W 094°</td>
<td>200 ft</td>
<td>30</td>
<td>L3</td>
<td>3</td>
<td>2.0</td>
<td>3.0</td>
<td>0.0</td>
</tr>
</tbody>
</table>

By 1/4 pt. slight - No. 3 area + slight - No. 2 area.

* Footing + Section

Location: L1, L2, L3

Assay Data: 2.0, 3.0

Sample Width: 0.0

Sample Footage: 0.0
LATITUDE

DEPARTURE: -3+00

PROPERTY

BEARING: V.D.

DIP: STARTED: ^ COMPLETED:

DRILLED BY:

ROLE NO.

B 79 ZT

DEPTH: 3 S-S

SLBVATION

LOCATION:

II A prop

An ^ !

LOGGED BY:

OTAGE

SAMPLE FOOTTAGES

SAMPLE No.

WIDTH FT.

ASSAY DATA

FOOTLAWS

Sample No.

Sample Width

CAL. A

No. FT.

ASSAY DATA

FOOTLAWS

Sample No.

Sample Width

CAL. A

No. FT.

ASSAY DATA

FOOTLAWS

Sample No.

Sample Width

CAL. A

No. FT.

ASSAY DATA

FOOTLAWS

Sample No.

Sample Width

CAL. A

No. FT.

ASSAY DATA

FOOTLAWS

Sample No.

Sample Width

CAL. A

No. FT.

ASSAY DATA

FOOTLAWS

Sample No.

Sample Width

CAL. A

No. FT.

ASSAY DATA

FOOTLAWS

Sample No.

Sample Width

CAL. A

No. FT.

ASSAY DATA

FOOTLAWS

Sample No.

Sample Width

CAL. A

No. FT.

ASSAY DATA

FOOTLAWS

Sample No.

Sample Width

CAL. A

No. FT.

ASSAY DATA

FOOTLAWS

Sample No.

Sample Width

CAL. A

No. FT.

ASSAY DATA

FOOTLAWS

Sample No.

Sample Width

CAL. A

No. FT.

ASSAY DATA

FOOTLAWS

Sample No.

Sample Width

CAL. A

No. FT.

ASSAY DATA

FOOTLAWS

Sample No.

Sample Width

CAL. A

No. FT.

ASSAY DATA

FOOTLAWS

Sample No.

Sample Width

CAL. A

No. FT.
<table>
<thead>
<tr>
<th>Sample No.</th>
<th>Width FT.</th>
<th>Footage</th>
</tr>
</thead>
<tbody>
<tr>
<td>85.0</td>
<td>10.0</td>
<td>20.77</td>
</tr>
<tr>
<td>85.0</td>
<td>15.0</td>
<td>30.6</td>
</tr>
<tr>
<td>68.0</td>
<td>20.0</td>
<td>42.1</td>
</tr>
<tr>
<td>58.0</td>
<td>25.0</td>
<td>54.6</td>
</tr>
<tr>
<td>48.0</td>
<td>30.0</td>
<td>67.1</td>
</tr>
<tr>
<td>38.0</td>
<td>35.0</td>
<td>79.6</td>
</tr>
<tr>
<td>28.0</td>
<td>40.0</td>
<td>92.1</td>
</tr>
<tr>
<td>18.0</td>
<td>45.0</td>
<td>104.6</td>
</tr>
<tr>
<td>9.0</td>
<td>50.0</td>
<td>117.1</td>
</tr>
<tr>
<td>0.0</td>
<td>55.0</td>
<td>129.6</td>
</tr>
</tbody>
</table>

Notes:
- Sample No. 1
- Width FT.
- Footage

Additional Information:
- Location: Site A, Area B
- Property: Building No. 1879-1
Sample Data

<table>
<thead>
<tr>
<th>Foootage</th>
<th>Location</th>
<th>Assay Data</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Drill Hole: 1

Sample Data

<table>
<thead>
<tr>
<th>Footage</th>
<th>Sample Width</th>
<th>Sample No.</th>
<th>FL.</th>
<th>Assay</th>
</tr>
</thead>
<tbody>
<tr>
<td>01</td>
<td>2.0</td>
<td>2048</td>
<td>24</td>
<td>3.68</td>
</tr>
<tr>
<td>02</td>
<td>2.5</td>
<td>2047</td>
<td>24</td>
<td>3.52</td>
</tr>
<tr>
<td>03</td>
<td>1.5</td>
<td>2046</td>
<td>24</td>
<td>3.40</td>
</tr>
<tr>
<td>04</td>
<td>2.0</td>
<td>2045</td>
<td>24</td>
<td>3.32</td>
</tr>
<tr>
<td>05</td>
<td>2.5</td>
<td>2044</td>
<td>24</td>
<td>3.20</td>
</tr>
</tbody>
</table>

Drill Hole: 1

Sample Data

<table>
<thead>
<tr>
<th>Footage</th>
<th>Sample Width</th>
<th>Sample No.</th>
<th>FL.</th>
<th>Assay</th>
</tr>
</thead>
<tbody>
<tr>
<td>01</td>
<td>2.0</td>
<td>2048</td>
<td>24</td>
<td>3.68</td>
</tr>
<tr>
<td>02</td>
<td>2.5</td>
<td>2047</td>
<td>24</td>
<td>3.52</td>
</tr>
<tr>
<td>03</td>
<td>1.5</td>
<td>2046</td>
<td>24</td>
<td>3.40</td>
</tr>
<tr>
<td>04</td>
<td>2.0</td>
<td>2045</td>
<td>24</td>
<td>3.32</td>
</tr>
<tr>
<td>05</td>
<td>2.5</td>
<td>2044</td>
<td>24</td>
<td>3.20</td>
</tr>
</tbody>
</table>

Drill Hole: 1

Sample Data

<table>
<thead>
<tr>
<th>Footage</th>
<th>Sample Width</th>
<th>Sample No.</th>
<th>FL.</th>
<th>Assay</th>
</tr>
</thead>
<tbody>
<tr>
<td>01</td>
<td>2.0</td>
<td>2048</td>
<td>24</td>
<td>3.68</td>
</tr>
<tr>
<td>02</td>
<td>2.5</td>
<td>2047</td>
<td>24</td>
<td>3.52</td>
</tr>
<tr>
<td>03</td>
<td>1.5</td>
<td>2046</td>
<td>24</td>
<td>3.40</td>
</tr>
<tr>
<td>04</td>
<td>2.0</td>
<td>2045</td>
<td>24</td>
<td>3.32</td>
</tr>
<tr>
<td>05</td>
<td>2.5</td>
<td>2044</td>
<td>24</td>
<td>3.20</td>
</tr>
</tbody>
</table>

Drill Hole: 1

Sample Data

<table>
<thead>
<tr>
<th>Footage</th>
<th>Sample Width</th>
<th>Sample No.</th>
<th>FL.</th>
<th>Assay</th>
</tr>
</thead>
<tbody>
<tr>
<td>01</td>
<td>2.0</td>
<td>2048</td>
<td>24</td>
<td>3.68</td>
</tr>
<tr>
<td>02</td>
<td>2.5</td>
<td>2047</td>
<td>24</td>
<td>3.52</td>
</tr>
<tr>
<td>03</td>
<td>1.5</td>
<td>2046</td>
<td>24</td>
<td>3.40</td>
</tr>
<tr>
<td>04</td>
<td>2.0</td>
<td>2045</td>
<td>24</td>
<td>3.32</td>
</tr>
<tr>
<td>05</td>
<td>2.5</td>
<td>2044</td>
<td>24</td>
<td>3.20</td>
</tr>
</tbody>
</table>

Drill Hole: 1

Sample Data

<table>
<thead>
<tr>
<th>Footage</th>
<th>Sample Width</th>
<th>Sample No.</th>
<th>FL.</th>
<th>Assay</th>
</tr>
</thead>
<tbody>
<tr>
<td>01</td>
<td>2.0</td>
<td>2048</td>
<td>24</td>
<td>3.68</td>
</tr>
<tr>
<td>02</td>
<td>2.5</td>
<td>2047</td>
<td>24</td>
<td>3.52</td>
</tr>
<tr>
<td>03</td>
<td>1.5</td>
<td>2046</td>
<td>24</td>
<td>3.40</td>
</tr>
<tr>
<td>04</td>
<td>2.0</td>
<td>2045</td>
<td>24</td>
<td>3.32</td>
</tr>
<tr>
<td>05</td>
<td>2.5</td>
<td>2044</td>
<td>24</td>
<td>3.20</td>
</tr>
</tbody>
</table>
Type of Survey(s): Electromagnetic, Magnetometer
Township or Area: Dom Twp.
Claim Holder(s): Bananza Red Lake Exploration Inc.
Survey Company: Bananza Red Lake Exploration Inc.
Author of Report: W.C. Herper
Address of Author: 314 Honda Ave, Yellowknife
Covering Dates of Survey: Jan 6/79 to Apr 15/79 (linecutting to office)
Total Miles of Line Cut: 6.36 miles

MINING CLAIMS TRAVERSED
List numerically

<table>
<thead>
<tr>
<th>File No.</th>
<th>Type</th>
<th>Date</th>
<th>Claim Holder</th>
</tr>
</thead>
<tbody>
<tr>
<td>KRL 13251</td>
<td></td>
<td>11442</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>11325</td>
<td></td>
</tr>
</tbody>
</table>

SPECIAL PROVISIONS
CREDITS REQUESTED

ENTER 40 days (includes line cutting) for first survey.
ENTER 20 days for each additional survey using same grid.

AIRBORNE CREDITS (Special provision credits do not apply to airborne surveys)

Magnetometer: Electromagnetic: N/A Radiometric: Geological: Geochemical:

DATE: April 15/79 SIGNATURE: W.C. Herper

Res. Geol. Qualifications

Previous Surveys

<table>
<thead>
<tr>
<th>File No.</th>
<th>Type</th>
<th>Date</th>
<th>Claim Holder</th>
</tr>
</thead>
</table>

TOTAL CLAIMS 3
GEOPHYSICAL TECHNICAL DATA

GROUND SURVEYS – If more than one survey, specify data for each type of survey

<table>
<thead>
<tr>
<th>Number of Stations</th>
<th>336</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of Readings</td>
<td>1474</td>
</tr>
<tr>
<td>Station interval</td>
<td>100' x 200'</td>
</tr>
<tr>
<td>Line spacing</td>
<td>100'</td>
</tr>
<tr>
<td>Profile scale</td>
<td>1" = 30'</td>
</tr>
<tr>
<td>Contour interval</td>
<td>N/A, variable</td>
</tr>
</tbody>
</table>

MAGNETIC

<table>
<thead>
<tr>
<th>Instrument</th>
<th>Geometrics G216 Piston Magnetometer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Accuracy – Scale constant</td>
<td>+ 1 ppm</td>
</tr>
<tr>
<td>Diurnal correction method</td>
<td>± check at base and control stations</td>
</tr>
<tr>
<td>Base Station check-in interval (hours)</td>
<td>1 hour</td>
</tr>
<tr>
<td>Base Station location and value</td>
<td>BL 0+00, LI 0+00 – Value 609108</td>
</tr>
<tr>
<td>Total Field Survey</td>
<td>Read 4' abo Ground + Upper Reading 8' abre ground</td>
</tr>
</tbody>
</table>

ELECTROMAGNETIC

<table>
<thead>
<tr>
<th>Instrument</th>
<th>Roko FM 16 VLF cm unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coil configuration</td>
<td>fixed for a vert.</td>
</tr>
<tr>
<td>Coil separation</td>
<td>+ 1%</td>
</tr>
<tr>
<td>Accuracy</td>
<td>+ 1%</td>
</tr>
<tr>
<td>Method</td>
<td>≥ Fixed transmitter</td>
</tr>
<tr>
<td>Frequency</td>
<td>21.4 kHz – Annapolis, M.D.</td>
</tr>
<tr>
<td>Parameters measured</td>
<td>Vertical in phase & out of phase components</td>
</tr>
</tbody>
</table>

GRAVITY

<table>
<thead>
<tr>
<th>Instrument</th>
</tr>
</thead>
<tbody>
<tr>
<td>Scale constant</td>
</tr>
<tr>
<td>Corrections made</td>
</tr>
<tr>
<td>Base station value and location</td>
</tr>
<tr>
<td>Elevation accuracy</td>
</tr>
</tbody>
</table>

INDUCED POLARIZATION RESISTIVITY

<table>
<thead>
<tr>
<th>Instrument</th>
</tr>
</thead>
<tbody>
<tr>
<td>Method</td>
</tr>
<tr>
<td>Parameters – On time</td>
</tr>
<tr>
<td>– Off time</td>
</tr>
<tr>
<td>– Delay time</td>
</tr>
<tr>
<td>– Integration time</td>
</tr>
<tr>
<td>Frequency</td>
</tr>
<tr>
<td>Frequency Domain</td>
</tr>
<tr>
<td>Parameters</td>
</tr>
<tr>
<td>– Range</td>
</tr>
<tr>
<td>Power</td>
</tr>
<tr>
<td>Electrode array</td>
</tr>
<tr>
<td>Electrode spacing</td>
</tr>
<tr>
<td>Type of electrode</td>
</tr>
</tbody>
</table>
BONANZA RED LAKE EXPLORATIONS INC.
DOME TWP. - RED LAKE, ONTARIO
Electromagnetic Survey

Transmitting Station: ANnapolis, Md.
BONANZA RED LAKE EXPLORATIONS INC.
DOME TWP. - RED LAKE, ONTARIO
TOTAL FIELD MAGNETIC SURVEY
Geometrics Proton Magnetometer G816

LEGEND
- under 600 Gausses
- 600 to 700 Gausses
- 700 to 800 Gausses
- 800 to 900 Gausses
- 900 to 1000 Gausses
- over 1000 Gausses

Baseline Permanent Station

EXPLORATIONS INC
DOME TWP. - RED LAKE, ONTARIO
TOTAL FIELD MAGNETIC SURVEY
Geometrics Proton Magnetometer G816
Baseline Permanent Station

SCALE: 1" = 20 V OF GRADIENT

BONANZA RED LAKE EXPLORATIONS INC.
DOME TWP. - RED LAKE, ONTARIO
MAGNETIC GRADIENT SURVEY
Geometrics Proton Magnetometer GB16