POTENTIAL DIMENSION STONE
OF
RED PSEUDO-PORPHYRITIC GRANITE
"RED LEOPARD STONE"
FOR
WESAWKWETE ZONE-ONE
HWY. 105
CLAIM 1220641
IN
NORTHWESTERN ONTARIO

by

1998

CHESTER J. KURYLIW, M.Sc., P.Eng.
CONSULTING GEOLOGIST
INDEX

I. Introduction
 1. General Introduction to Dimension Stone Evaluation 2-7
 2. General Geology 8
 3. The Revell Batholith 9
 4. Porphyritic Growth 10

II. RED PSEUDO-PORPHYRITIC GRANITE PROSPECT
 1. Location and Access 12
 2. Stone Description 12
 3. Site Physiography 13
 4. Structure 13
 5. Development Considerations 14

III. PLANS AND PHOTOGRAPHS
 1. Key Map 12-A
 2. Claim Map 12-A
 3. Plan of Recon. Geology 12-A
 4. Color Photo of Sawn Stone, Actual Size (641-2) 13-A
 5. Color Photo of Stone Outcrop 13-A
INTRODUCTION

On May 28, 1998 this writer was commissioned by Henry Wetelainen, President, and Glen Wetelainen, Economic Development Officer of Wesawkwete (Zone 1), to locate, study and evaluate several potential dimension stone quarry sites. These quarry sites in Northwestern Ontario were chosen as near as practical to Wabigoon, Ontario.

Four potentially favourable sites were chosen, that at first reconnaissance evaluations, appeared to meet the required favourable aspects of stone quality, attractiveness and marketability.

SITE 1

The Twin River grey granodiorite was chosen as one potential quarry site. This site was well described in the O.D.M. report by D.G. Farrow, 1996 (1).

SITE 2 & 3

This site is located on Highway 622, about 12 kms S. of Highway 17. Two adjoining quarry sites were chosen, one contains an attractive red porphyritic orthoclase-rich granite, the other contains a white porphyritic plagioclase-rich "granite".

SITE 4

This site occurs on Highway 105 at Perrault Falls. It is a red granite with large aggregated clots of dark mafic minerals that forms a pseudo-porphyritic granite, which has been named the "Red Leopard Stone" by this writer.

The first three sites are located within the Revell Batholith.
GENERAL INTRODUCTION TO DIMENSION STONE EVALUATIONS

Note From, FARROW, D.G., 1996; Potential dimension stone quarry sites in the Kenora, Ignace and Rainy River areas of northwestern Ontario; Ontario Geological Survey, Open File Report 5949, 139p.

EVALUATION CRITERIA
Before a site may be considered a potential dimension stone prospect, a number of restrictive criteria must be satisfied. A potential stone deposit must be assessed with respect to several characteristics which affect the marketability of the stone, encompassing such diverse concerns as formation, colour, texture, mineralogical content, deposit size, extent of outcrop exposure, distance from markets and ease of access. The initial evaluation and quarrying processes which may follow are greatly simplified if the site is relatively free of vegetative and overburden cover, and has moderate positive topographic relief. The criteria must be considered both individually and in relation to each other before an accurate assessment of quarrying potential can be determined. A more in-depth treatment of dimension stone prospect evaluation is provided in OFR 5920 (Papertzian and Farrow, 1995).

STRUCTURE
Examination of the spacing and orientation fractures is fundamental to deposit evaluation, as these limit block size. A commercial block must meet minimum size specifications, depending upon the market sector for which the stone is intended. For example, a quarry producing stone for building cladding or veneer must supply blocks having dimensions of at least 1.5 x 2.0 x 2.0 metres.
Vertical and horizontal primary jointing are often systematically spaced and oriented in plutonic bodies, and measurement of these features can provide a fairly accurate projection of attainable block size. Vertical joint sets should be widely-spaced and intersect with other sets at right angles to form orthogonal systems to facilitate block removal with minimal waste. Horizontal joint sets should have parallel, nearly flat-lying surfaces, preferably spaced to permit extraction with little or no horizontal drilling or cutting.

Primary jointing is thought to occur during magma cooling, and appears to be affected by the rate of cooling: coarse-grained rocks, usually resulting from slow cooling at depths where conditions of higher pressure and temperature prevail, are often less jointed than finer-grained plutonic rocks more rapidly cooled at shallower depths. In addition, the outer portions of plutonic bodies appear to contain more jointing due to more rapid cooling. In the absence of primary jointing, secondary horizontal sheeting commonly occurs, forming thin layers at surface which frequently become more widely spaced with depth. This is thought to be related to erosional unloading, and is often accompanied by exfoliation of the outcrop surface into very thin sheets, due primarily to weathering in glaciated regions (Verschuren et al., 1985). Granite bodies having a few primary vertical joints and thin horizontal sheets may require diamond drilling or removal of upper layers to gauge the degree and orientation of jointing at depth.
PHYSICAL AND VISUAL PROPERTIES

In most cases, dimension stone is subject to rigorous specifications regarding colour, uniformity, texture, mineral content, strength and durability, all of which can be measured in the field or laboratory.

Colour and texture have a direct bearing on the price a stone will command in the market place, with homogeneous grey and pink granites forming the moderately-priced mainstay of the industry. Produced in large volume and at relatively low cost, they are specified by designers and architects in a wide range of applications. Exotically coloured and textured stone is rarely available in large quantity, and is usually quarried at greater cost, with a high waste factor. End products are accordingly more expensive. In most cases, a dimension stone prospect should display little variation in colour across the outcrop. If the colour is variable, as in gneissic rock, the variation should be consistent over large areas. The same principle applies to the texture of the stone, defined by grain size and arrangement. Textural patterns must be consistent throughout the deposit,—megacrystic zones alternating with equigranular sections over short distances are not desirable. Other characteristics of inhomogeneity which have a negative effect on the marketability of a stone include the presence of veins, inclusions, shear zones, intrusions and various forms of alteration. Deleterious minerals, including those subject to plucking during polishing or oxidization during weathering (causing staining of the processed surface), should be absent.
Depending upon the use for which a stone in intended, standard ASTM (American Society for Testing and Materials) tests are employed to determine such qualities as resistance to abrasion, absorptive capacity and flexural and compressive strengths. A stone which satisfies all such criteria, however, is also subject to market trends. The monument industry has traditionally specified some homogeneous in grain size and colour. Recently, an inclination toward multicolored, streaked, gneissic stone for monuments has emerged in Europe, where stone industry styles have traditionally originated. Depending on the longevity of this new preference, gneissic and migmatitic granites may fine increasing use among North American monument suppliers.

Evaluation of a prospect must, therefore, take into consideration the aesthetic appeal of the stone, a subjective matter requiring knowledge of current market trends. This process is further complicated by the difficulty of visualizing finished product while looking at weathered outcrop in the field.

TOPOGRAPHIC RELIEF

A hillside quarry development can more easily accommodate what is referred to as a drive-in operation in which equipment has direct access to working faces. Drainage problems and waste removal costs are significantly reduced when this method of quarrying is employed. Flat-lying outcrops or depressions are difficult to evaluate and development costs may be significantly higher. Waste rock and quarried blocks may have to be removed from the quarry using a derrick in combination with trucks or front-end loaders, or
development ramps may have to be built to facilitate the drive-in method, adding both time and expense to the quarrying process. Very high cliff faces or steep outcrop surfaces may also be more difficult to develop as quarries.

DEPOSIT SIZE AND EXPOSURE

The volume of stone needed for sustained quarry development varies with production requirements, which in turn depend upon the market for the stone. Many quarries in steady operation produce moderately priced, inexpensive to quarry stone which is immune to changes in fashion. Such quarries may produce 5000 m³ of stone or more each year. (Verschuren et al., 1989). Assuming a waste to production ratio of 1:1, a quarry of this type would require a deposit having a minimum surface area of one hectare (10,000 m²) and a depth of 20 m to operate for a period of 20 years. During field evaluation, there should be sufficient outcrop exposure to determine with a degree of confidence that this minimum volume of stone is available. Deep overburden or dense vegetation may prevent a comprehensive assessment of the site and the expense of removing these barriers may be prohibitive. Smaller-sized deposits may be acceptable in the case of exotic stones, where lower production rates are anticipated.

LOCATION AND ACCESS

In the assessment of a potential quarry site, two distances must be considered: the distance from infrastructure, and the distance of the site from the nearest road. The first may be thought of as location, the second as access.
The location of a potential quarry should be as close to processing facilities as possible, because transportation costs can account for up to 70% of the price of rough quarry blocks delivered to the processor (Verschuren et al., 1989). A product saddled with the disadvantage of high transportation costs must have compensating value in order to compete in the world market. A general-purpose dimension stone has less chance of commercial success if too remotely situated.

A potential quarry site must be within reasonable distance of a road. Dimension stone evaluation and testing require the use of heavy machinery, even during preliminary examination. If development proceeds to the production stage, access to the quarry by tractor-trailer trucks will be required. In most cases, the site may be 2-3 km from an existing road if the terrain is free of rivers, lakes or rugged topography. The allowable off-road distance decreases rapidly with the addition of such geographic obstacles.
GENERAL GEOLOGY

Northwestern Ontario is underlain by rocks of Archean age (2.5 billion years) of the Superior Province, in the Canadian Shield. The region is characterized by easterly-trending belts of supracrustal rocks separated by large areas of granitic rocks (Douglas, 1968). These belts, or subprovinces, represent discrete bedrock terranes defined by lithologies, structural characteristics, geochronology and metamorphic development. Nowhere in the Superior Province is this striped distribution of the subprovinces better represented than in northwestern Ontario (Breaks et al., 1978)

Although reconnaissance evaluations were completed in several subprovinces during this study, the sites having the highest potential for dimension stone quarrying were located in the Winnipeg River and Wabigoon subprovinces.

WABIGOON SUBPROVINCE (1)

Bounded on the north by the Winnipeg River and English River subprovinces and on the south by the Quetico Subprovince, the Wabigoon Subprovince is composed of metavolcanic and minor metasedimentary rocks enclosed in, and cut by, granitoid batholiths. In the central part of the subprovince, granitic units vary in age from the 3 billion-year old granitoid basement to post-tectonic stocks emplaced about 2.7 billion years ago. The western Wabigoon Subprovince is characterized by the presence of large, elliptical granitoid batholiths, surrounded by interconnected metavolcanic and metasedimentary rocks which are intruded in
several places by smaller, post-tectonic granitoid stocks (Blackburn et al., 1991). As in the Winnipeg River Subprovince, the younger, post-tectonic rocks provide the most promising resources for dimension stone production (1) Farrow D.G., 1996.

THE REVELL BATHOLITH

Highway 622 cuts across the central part of the Revell Batholith, while the Twin River road cuts across the Northwestern portion of the Batholith. At the Twin River road the Granodiorite is medium to coarse grained with a uniform equigranular texture that appears whitish on exposed outcropping ridges. The stone is composed largely of plagioclase feldspar with subhedral interlocking crystals of plagioclase feldspar, dark grey quartz and dark biotite.

Site 2 and 3 occur along Highway 622, near the geographic centre of the Revell Batholith. Along Highway 622, the N.E side of the Batholith is composed of Potash-rich porphyritic granite. The rock is composed of about 50% of large phenocrysts of reddish orthoclase feldspar. These phenocrysts are 10-15 mm. across and 20-30 mm. in length. The groundmass consists of subhedral red orthoclase with rare quartz and some dark mafic minerals which is a mixture of biotite and amphiboles. The texture and composition of this porphyritic stone is homogeneous and the colour pattern and reddish shade is also homogeneous.

At the geographic centre of the Revell Batholith there occurs a white porphyritic "granite" (This granite is actually a syenite.)
This rock is composed mainly of plagioclase feldspar (a sodium-aluminum-silicate.) This rock is composed of about 50% plagioclase feldspar phenocrysts, 10-15mm. across and 15-30mm. long. The groundmass is composed of interlocking grains of medium to coarse grained plagioclase with some irregular grains of dark mafic minerals largely biotite-amphibole, quartz is rare, a few scattered grains of fine sericite-muscovite mica occurs. This white "granite" porphyry forms a stock shaped differentiated segregation at the core of the Revell Batholith. This stock-shaped segregated mass in about 500m. in diameter and it exhibits a kindred crystal porphyry size and texture in the roadcut section across the red granite porphyry and the white "granite" porphyry. Additional evidence is the observation that the near-horizontal joints extend in continuity across both granites and the narrow transition zone.

PORPHYRITIC GROWTH (2)

The phenocrysts originate at depth where conditions of high pressure and slow cooling favour the formation of large crystals of the minerals whose constituents are very abundant in the magma. In granitic magmas an access of feldspathic constituents over the eutectic proportions results in the primary crystal growth of feldspar phenocrysts until the eutectic proportion is reached, the remainder crystallizes out simultaneously to form a granitic groundmass of minerals that is the second stage of crystal growth.

*(2) G.W. Tyrell-The Principles of Petrology-1949
WINNIPEG RIVER SUBPROVINCE (1)

Formerly regarded as the southern part of the English River Sub-province (Wilson 1971), the Winnipeg River Sub-province consists of predominantly granitoid rocks, in contrast to the mainly metasedimentary northern terrane of the current English River Subprovince and the volcanic rocks of the recently designated Bird River Subprovince (Card and Ciesielski, 1986). Bounded on the south by the western Wabigoon Subprovince and on the north by the English River and Bird River subprovinces, the Winnipeg River Subprovince comprises four temporally and genetically paired rock suites: tonalitic gneisses and plutons, ranging in age from 2.83 to 3.17 billion years; and, syn-to post-tectonic granitic and mafic suites from 2.66 to 2.71 billion years in age (Beakhouse, 1991). The younger, generally less fractured, deformed and metamorphosed granitic suite includes rocks suitable for use as dimension stone.(1)

On Highway 105 just East of Perrault Falls there is a dyke-like granodiorite intrusion which has had an unusual history of crystallization. This intrusion is up to 300 m. wide. The central portion has crystallized differentially to form a pseudo-porphyry. This central portion of the granodiorite is about 100m. thick and occurs due to an unusual and accidental circumstance that arose during intrusion and crystallization. Large porphyry-like clots or patches of dark mafic minerals segregated as "float" in a granitic groundmass. (Farrow, D.G., 1996).
The accumulation of these dark mafic minerals (largely amphibole-biotite) in clots, occurs in a random pattern but appears to have a surprising relatively homogeneous distribution over a larger area of dispersion. The groundmass consists of subhedral interlocking grains of red orthoclase feldspar with quartz and some lesser dark mafic minerals.

This pseudo-porphyritic granite forms an unusually attractive and relatively rare stone in both pattern and colour. It has been named the "Red Leopard Stone" by this writer.
RED PSEUDO-PORPHYRITIC GRANITE PROSPECT

LOCATION AND ACCESS

An outcropping of this stone occurs on the North side of Hwy. 105 about 200 miles East of the Perrault Falls Bridge. The site may be reached from Hwy. 17 at Vermilion Bay an then along Hwy. 105 to the North for 63 Kms.

Claim 1220641 covers the easterly extension of this stone.

Map reference N.T.S. 52-K-06-5E.

Long. 93° 08' 40" E, Lat. 50° 20' 30" N.

STONE DESCRIPTION

This stone is a reddish granite groundmass that contains 15% - 20% porphyry-like irregular dark mafic mineral clots. The mafic mineral clots are usually 1 - 3 cm's in diameter and are composed of amphibole-pyroxene with minor biotite. The groundmass consists of medium to coarse grained subhedral interlocking grains of reddish orthoclase feldspar with quartz and some scattered small grains of mafic minerals.

The porphyry-like dark clots of mafic minerals are randomly distributed but still appear to have a somewhat even distribution when observed in the larger area of the outcropping (Refer to photo 641-1 and 642-2). There is no observed foliation in this rock.

This outcrop was polished by glaciation some ten thousand years ago yet the surfaced weathering is slight and extends to a depth of 1-2 cm's. The slightly softer mafic clots form indentations 2-3 mm. deep on the polished outcrop surface and weather a greenish shade indicating the dominance of amphibole-pyroxene over biotite.
WESAWKWETE-ZONE 1

PLAN OF RECON. GEOLOGY OF PSEUDO-PORPHYRITIC RED GRANITE "RED LEOPARD STONE"

HWY. 105, CLAIM 1220641
NORTHWESTERN ONTARIO

SCALE: IN METRES

SCALE: IN FEET

Aug 5 1998
This is a competent and uniquely attractive stone for larger area facing uses. It has been named the "Red Leopard Stone" by this writer which is a good artistic description. This "Red Leopard Stone" is a differentiated core near the central portion of an East-North-East trending dyke-like intrusion of red granodiorite. The "Red Leopard Stone" is projected to extend to the East-North-East, over a width of 50-100 metres.

SITE PHYSIOGRAPHY

The reconnaissance geology mapped area plan of claim 1220641 indicates a rounded low outcrop ridge to the south of Hwy. 105 immediately south of the "Red Leopard Stone" outcrop on the North side of Highway 105. South of Hwy. 105 the "Red Leopard Stone" phases into a granodiorite whose mafic minerals begin to occur as streaks, then grains parallel to the East-North-East trend of the granodiorite. The East-North East projection of the "Red Leopard Stone" underlies overburden in a relatively flat heavily treed valley. About 700 metres East-North-East there is a low topographic ridge South of Hwy.105 that may be covered by shallow overburden and may also be underlain by the "Red Leopard Stone". Some prospecting is warranted by strip trenching of shallow overburden.

The location of the "Red Leopard Stone" outcrop 200 m. East-North-East of the Perrault Falls Bridge on Hwy.105 is too close to habitation and infrastructures such as highway, gas pipeline and Scenic Falls to allow quarry development at the outcrop exposure.
PHOTO 641-1

ROCK OUTCROP, NORTH SIDE OF HWY.105 (LOOKING WEST)

This Photo portrays the RED PSEUDO-PORPHYRITIC GRANITE named the "Red Leopard Stone" Note the scatter pattern of distribution of black Clots of Mafic Minerals 2-4 Cms in diameter. The Perrault Falls tourist Camp is situated in the upper background of this Photo. Note the two westerly trending Steep dipping Joints, in this glaciated outcrop.
A Sawn Rock Sample of RED PSEUDO-PORPHYRITIC GRANITE named "The Red Leopard Stone" taken from an outcrop of the rock located on the North Side of Hwy 105 near Perrault Falls. This Outcrop is shown in Photo 641-1. Note the large Clots of Mafic Minerals surrounded by a matrix of medium to Coarse grained Red Granite.
STRUCTURE

At examination of the outcrop exposure of "Red Leopard Stone" 200-metres East of the Perrault Falls Bridge (Photo 641-1) portrays the larger pattern of dark mafic spots in the red granitic groundmass. Two steep dipping joint sets also portrayed these joints strike N-85°-E in one set and N-65°-E in the other set. This outcrop is too shallow an exposure to show the existence of any flat joint patterns.

DEVELOPMENT CONSIDERATIONS

The one exposed outcrop of "Red Leopard Stone" at 200 M. East of the Perrault Falls bridge is not a favourable quarry location site. It is under Highway 105, near a bridge, near a scenic falls, near a gas pipeline, and close to tourist camps. Further prospecting is required to locate an East-North-Eastward projection of the "Red Leopard Stone" under what appears to be shallow overburden on a knoll about 1-Km East of the Perrault Falls Bridge. If, this prospecting (by overburden trench stripping?) succeeds in locating the "Red Leopard Stone" a potentially valuable and attractive stone can be quarried.

August 5, 1996

Consulting Geologist
Report of Work Conducted
After Recording Claim
Mining Act

the Mining Act. This information will be used for correspondence. Questions about
1. Ministry of Northern Development and Mines, Fourth Floor, 159 Cedar Street,

- A separate copy of this form must be completed for each Work Group.
- Technical reports and maps must accompany this form in duplicate.
- A sketch, showing the claims the work is assigned to, must accompany this form.

<table>
<thead>
<tr>
<th>Recorded Holder(s)</th>
<th>CHESTER J. KURYLIW</th>
<th>Client No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Address</td>
<td>46 INGALL DR, DRYDEN, ONT.</td>
<td></td>
</tr>
<tr>
<td>Mining Division</td>
<td>KENORA.</td>
<td></td>
</tr>
<tr>
<td>Township/Area</td>
<td>PERRAULT LAKE</td>
<td></td>
</tr>
</tbody>
</table>

Work Performed (Check One Work Group Only)

<table>
<thead>
<tr>
<th>Work Group</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>Geotechnical Survey</td>
<td></td>
</tr>
<tr>
<td>Physical Work, Including Drilling</td>
<td></td>
</tr>
<tr>
<td>Rehabilitation</td>
<td></td>
</tr>
<tr>
<td>Other Authorized Work</td>
<td>SAWN SAMPLES FOR TESTING, FACING STONE</td>
</tr>
<tr>
<td>Assays</td>
<td></td>
</tr>
<tr>
<td>Assignment from Reserve</td>
<td></td>
</tr>
</tbody>
</table>

Total Assessment Work Claimed on the Attached Statement of Costs $ 986.00

Note: The Minister may reject for assessment work credit all or part of the assessment work submitted if the recorded holder cannot verify expenditures claimed in the statement of costs within 30 days of a request for verification.

Persons and Survey Company Who Performed the Work (Give Name and Address of Author of Report)

<table>
<thead>
<tr>
<th>Name</th>
<th>Address</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHESTER J. KURYLIW</td>
<td>46 INGALL DR, DRYDEN, ONT.</td>
</tr>
</tbody>
</table>

(attach a schedule if necessary)

Certification of Beneficial Interest * See Note No. 1 on reverse side

I certify that at the time the work was performed, the claims covered in this work report were recorded in the current holder's name or held under a beneficial interest by the current recorded holder.

Name and Address of Person Certifying

CHESTER J. KURYLIW 46 INGALL DR, DRYDEN ONT. P6N 3B7

Certification of Work Report

I certify that I have a personal knowledge of the facts set forth in this Work report, having performed the work or witnessed same during and/or after its completion and annexed report is true.

Name and Address of Person Certifying

CHESTER J. KURYLIW 46 INGALL DR, DRYDEN ONT. P6N 3B7

For Office Use Only

Total Value Cr. Recorded Date Recorded Mining Recorder

Deemed Approval Date Date Approved

Date Notice for Amendments Sent

RECEIVED JUN 7 2000
GEOSCIENCE ASSESSMENT OFFICE
Credits you are claiming in this report may be cut back. In order to minimize the adverse effects of such deletions, please indicate from which claims you wish to prioritize the deletion of credits. Please mark (x) one of the following:

1. □ Credits are to be cut back starting with the claim listed last, working backwards.
2. □ Credits are to be cut back equally over all claims contained in this report of work.
3. □ Credits are to be cut back as prioritized on the attached appendix.

In the event that you have not specified your choice of priority, option one will be implemented.

Note 1: Examples of beneficial interest are unrecorded transfers, option agreements, memorandum of agreements, etc., with respect to the mining claims.

Note 2: If work has been performed on patented or leased land, please complete the following:

I certify that the recorded holder had a beneficial interest in the patented or leased land at the time the work was performed.

Signed: [Signature]
Date: [Date]
Dear Sir or Madam:

Submission Number: 2.20374

Status

We have reviewed your Assessment Work submission with the above noted Transaction Number(s). The attached summary page(s) indicate the results of the review. **WE RECOMMEND YOU READ THIS SUMMARY FOR THE DETAILS PERTAINING TO YOUR ASSESSMENT WORK.**

If the status for a transaction is a 45 Day Notice, the summary will outline the reasons for the notice, and any steps you can take to remedy deficiencies. The 90-day deemed approval provision, subsection 6(7) of the Assessment Work Regulation, will no longer be in effect for assessment work which has received a 45 Day Notice. Allowable changes to your credit distribution can be made by contacting the Geoscience Assessment Office within this 45 Day period, otherwise assessment credit will be cut back and distributed as outlined in Section #6 of the Declaration of Assessment work form.

Please note any revisions must be submitted in DUPLICATE to the Geoscience Assessment Office, by the response date on the summary.

If you have any questions regarding this correspondence, please contact BRUCE GATES by e-mail at bruce.gates@ndm.gov.on.ca or by telephone at (705) 670-5856.

Yours sincerely,

Steven B. Beneteau

ORIGINAL SIGNED BY
Steve B. Beneteau
Acting Supervisor, Geoscience Assessment Office
Mining Lands Section
Work Report Assessment Results

Submission Number: 2.20374
Date Correspondence Sent: July 19, 2000
Assessor: BRUCE GATES

<table>
<thead>
<tr>
<th>Transaction Number</th>
<th>First Claim Number</th>
<th>Township(s) / Area(s)</th>
<th>Status</th>
<th>Approval Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>W0010.00055</td>
<td>1220641</td>
<td>PERRAULT LAKE</td>
<td>Approval</td>
<td>July 19, 2000</td>
</tr>
</tbody>
</table>

Section:
18 Other INDUS

At the discretion of the Ministry, the assessment work performed on the mining lands noted in this work report may be subject to inspection and/or investigation at any time.

Correspondence to:
Resident Geologist
Kenora, ON

Recorded Holder(s) and/or Agent(s):
CHESTER J. KURYLIW
DRYDEN, Ontario

Assessment Files Library
Sudbury, ON