REPORT ON GEOLOGIC
MAPPING AND SAMPLING
OF THE
LAC DES ILES PROPERTY
OF
CREAM SILVER MINES LTD.

RECEIVED
MAY 20 1987
MILLING LANDS SECTION

J.S.D. Parker, P.Eng.
Consulting Geologist

April 15, 1987
Beausejour, Manitoba

W.C. Hood, P.Eng.
Consulting Geologist

WILLIAM C. HOOD, P.Eng.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction</td>
<td>1</td>
</tr>
<tr>
<td>Location, Access, and Physiography</td>
<td>1</td>
</tr>
<tr>
<td>Claim Status</td>
<td>3</td>
</tr>
<tr>
<td>History</td>
<td>5</td>
</tr>
<tr>
<td>Regional Geology</td>
<td>6</td>
</tr>
<tr>
<td>Property Geology</td>
<td>8</td>
</tr>
<tr>
<td>Mineralization</td>
<td>16</td>
</tr>
<tr>
<td>Conclusions and Recommendations</td>
<td>18</td>
</tr>
<tr>
<td>References</td>
<td>20</td>
</tr>
<tr>
<td>Certificates</td>
<td>21</td>
</tr>
<tr>
<td>Appendix I - Exploration Personnel</td>
<td>23</td>
</tr>
<tr>
<td>Appendix II - Petrography</td>
<td>24</td>
</tr>
<tr>
<td>Appendix III - Laboratory Procedures</td>
<td>37</td>
</tr>
</tbody>
</table>

LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fig. 1</td>
<td>Location Map</td>
<td>2</td>
</tr>
<tr>
<td>Fig. 2</td>
<td>Claim Map</td>
<td>4</td>
</tr>
<tr>
<td>Fig. 3</td>
<td>Regional Geology</td>
<td>7</td>
</tr>
<tr>
<td>Fig. 4</td>
<td>Mapping Blocks</td>
<td>10</td>
</tr>
</tbody>
</table>

LIST OF TABLES

<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Table 1</td>
<td>Lithologic Units</td>
<td>11</td>
</tr>
</tbody>
</table>
INTRODUCTION

Cream Silver Mines Ltd hold a 59 claim property in the Lac des Iles area of northwestern Ontario, adjoining the well-known Boston Bay Mines platinum-palladium-gold-nickel-copper deposit presently being explored by Madelaine Mines Ltd. Recent mapping and sampling by Ontario Geological Survey crews has indicated favourable lithologies for the discovery of platinum group metal mineralization on Cream Silver Mines' claims and interesting assay results on adjacent ground.

Geological mapping, trenching, and sampling were undertaken during September and early October, 1986 over most of the property. This work was intended to outline specific lithologic units or areas with a favourable platinum potential for follow-up geochemistry and geophysics. This report summarizes the results of the geological mapping and sampling program. Also included are data sheets describing several representative thin sections.

LOCATION, ACCESS, AND PHYSIOGRAPHY

The Lac des Iles claims of Cream Silver Mines are located 90 kilometers north-northwest of the city of Thunder Bay (Fig.1). Thunder Bay is located on the Trans-Canada Highway and on the CPR mainline. It is an important Great Lakes Seaway port and is well connected by scheduled jet service to Toronto, Winnipeg, and other points.

Practical access to the property is by road and either boat in the summer or skidoo in the winter. The driving distance from Thunder Bay to the boat launch on the south shore of Lac des Iles near the Boston Bay deposit is 157 kilometers, including 58 kilometers of logging and mine road commencing near the village of Raith on the Trans-Canada Highway west of Thunder Bay. Work was also underway during early 1987 to upgrade the old winter road to the Boston Bay deposit from highway #527, the Armstrong road, located 20 kilometers east of Lac des Iles. If this road is completed, it will pass several hundred meters south of the Cream
Silver Mines property and will significantly decrease the driving distance to Thunder Bay. A winter drill road was constructed during February, 1987 to access those portions of the Cream Silver Mines claim group to the immediate east of Lac des Iles.

Alternatively, the property can be accessed by ski- or float-equipped aircraft from Kashabowie, located 105 kilometers west of Thunder Bay. The flying distance to Lac des Iles from Kashabowie is about 85 kilometers. Helicopter service is also available from Thunder Bay.

The property is situated in typical Precambrian terrain with local relief generally less than 25 meters. Low rolling outcrop hills are interspersed with swamp and glacial drift. Boulder till and gravel deposits are common in this area. Vegetation consists mainly of spruce and jackpine. Cedar occurs in some low-lying areas and poplar stands are frequent in drift covered terrain. Outcrops are generally moss covered.

CLAIM STATUS

The Lac des Iles property of Cream Silver Mines consists of 59 staked mining claims totalling approximately 955 hectares (2360 acres). The claims are within the Thunder Bay Mining Division and are shown on Lac des Iles claim map G-739 (Fig.2).

The property comprises claims T.B.886423 through T.B.886465, recorded March 21, 1986, claims T.B.926127 through T.B.926135, recorded July 8, 1986, and claims T.B.961404 through T.B.961410, recorded October 10, 1986. All claims are registered in the name of Cream Silver Mines Ltd. of Vancouver, B.C. Claims T.B.886423 through T.B.886465 and T.B.926127 through T.B.926135 are held under option from Mr. R. Knappett of Rexdale, Ontario.
HISTORY

The Lac des Iles area claims of Cream Silver Mines lie within the northern and eastern portion of an elongate complex of mafic and ultramafic rocks. Over the past three decades most exploration activity has been concentrated within the central and southern portions of the complex, immediately southwest of Cream Silver Mines' ground. Recently, however, exploration activity has been intense throughout the complex.

The first serious exploration effort in the area was in 1958 when F.H. Jowsey Ltd. staked 80 claims over the northern part of Lac des Iles to follow-up several airborne magnetic anomalies. Ground geophysical surveys were followed by several drill holes, but no mineralization was found.

Subsequent work in the area focussed mainly on exploration of several platinum-palladium-gold-nickel-copper showings immediately south of Lac des Iles, about three kilometers southwest of Cream Silver Mines' claims. Between 1963 and 1976, a string of companies, including Gunnex, Anaconda American Brass, Boston Bay Mines, and Texasgulf Canada explored this discovery. Work by these companies outlined ore reserves in the Roby Zone totalling 22.5 million tons grading 0.167 oz per ton platinum group metals, 0.22% nickel, 0.22% copper, and 0.02 oz gold per ton. The platinum to palladium ratio is about 1:7. The property was held until recently by The Platinum Group Ltd., owned 90% by Boston Bay Mines and 10% by J.P. Sheridan of Toronto, Ontario. Madelaine Mines Ltd., another company in the J.P. Sheridan fold, announced in 1986 that it would acquire the property through merger or option and attempt to put it in production. Exploration drilling on the Roby Zone since 1986 is believed to have increased reserves significantly. Pre-production stripping of the Roby zone was reported to be underway in March, 1987.

Until recently, the only other exploration work of significance to Cream Silver Mines' ground was in 1967 when Canadian Nickel Company drilled three holes in the northeast part of Lac des Iles, about 400 meters west of claim T.B.886450. Minor sulphide
mineralization was reported. In response to interest in the area, the Ontario Geological Survey mapped the Lac des Iles complex at a scale of 1:15,840 in 1985. During the course of this mapping program and subsequent studies, anomalous platinum-palladium values were reported from samples taken near Cream Silver Mines' claims. Claim staking in late 1985 and 1986 has covered the entire Lac des Iles complex. Active exploration programs have been undertaken by Madelaine Mines Ltd., American Platinum Inc., International Platinum Corp., and Equinox Resources Ltd. on claim groups adjoining Cream Silver Mines property.

REGIONAL GEOLOGY

The Lac des Iles complex is an elongate mafic to ultramafic intrusion within granitic rocks of the Wabigoon province of the Canadian Shield. The Lac des Iles complex is the largest of a group of mafic and ultramafic intrusions in the area (Fig.3). Most of these plutons occur as small plugs or dikes, but the larger ones such as the Lac des Iles complex have an upright conical shape.

The Lac des Iles complex consists of two coalescing ultramafic centers, flanked by a gabbroic complex to the south. The distinct ultramafic centers are defined by lithologic distribution and the attitudes of layering. These rocks show a lithologic sequence ranging from early peridotites, followed by clinopyroxenite, and finally by late websterite and gabbronerite.

The northern ultramafic center consists of serpentinite and wehrlite (olivine cumulates), olivine-clinopyroxene cumulates), and websterite (orthopyroxene-clinopyroxene cumulates). Within the northern center, the olivine cumulates occur mainly around the edge of the complex and the rocks become progressively more pyroxene-rich toward the core.

The southern ultramafic center consists of a wehrlite core surrounded by websterite. The websterite in this area contains inclusions of wehrlite and is evidently younger than the wehrlite
Geology maps showing regional context of the Lac des Iles complex (right) (from Sutcliffe, 1986) and detailed geology of the complex with Cream Silver Mines' claim group outlined (above) (from Sutcliffe and Sweeny, 1986).

W. C. Hood Geological Consulting
In contrast to the northern ultramafic center, rocks in the southern center are predominantly massive and lack well defined igneous layering.

Gabbroic rocks within the complex are largely confined to the area south of Lac des Iles, where they can be separated into three specific phases. Pyroxenite, anorthosite, and pegmatitic gabbro also occur locally in this area. The well known Roby zone of Pt-Pd-Au-Ni-Cu mineralization presently being explored by Madelaine Mines occurs near the contact between two phases of gabbro.

The claims held by Cream Silver Mines cover the eastern and northern portions of the ultramafic complex as shown in Figure 3. The preliminary map published by Sutcliffe and Sweeny (1986) shows the claims to be underlain by a variety of lithologies, including serpentinite, wehrlite, clinopyroxenite, websterite, and gabbro-norite. Also reported locally are pegmatitic ultramafic rocks and serpentinite dikes and breccia.

PROPERTY GEOLOGY

Geologic mapping was undertaken during September and early October, 1986. Except for a few small islands within the north part of Lac des Iles, the entire property was mapped at a scale of 1:2500. This work was completed prior to linecutting on the property so traverse lines were oriented by compass and chained by topofil measuring instruments. As a result, the line numbers and grid coordinates in the geologic mapping differ from the coordinate system used in all subsequent work which was done on a cut grid. Geologic mapping lines were generally spaced 100 meters apart and run from flagged baselines. Magnetic anomalies resulted in local deviations in traverse line orientation and spacing.
The geologic mapping was broken down into four claim blocks, utilizing separate baseline locations and orientations. These mapping blocks are outlined on Figure 4. The interpreted geology of the property is shown on Maps 1 and 2. Claim blocks A, B, and C, including the eastern and northeastern portions of the property are shown on Map 1. Claim block D, covering the northern and northwestern part of the property, is shown on Map 2. Much of block D is covered by the waters of Lac des Iles.

From the current geologic survey, it was determined that the property is largely underlain by a series of interlayered mafic to ultramafic rocks (peridotite, pyroxenite, and gabbro) and by lesser felsic plutonic rocks (tonalite). During this survey, the identification and correlation of lithologic units was based solely on field criteria. Four main lithologic units and several sub-units were identified on the Lac des Iles property of Cream Silver Mines (Table 1).

Subsequent to the geological survey, a total of 10 samples were submitted to Laramide Petrologic Services for thin section petrography, two samples were slabbed to examine textures and sulphide character, and two samples were subjected to X-ray diffraction to identify unknown alteration minerals. The petrographic studies confirmed most field identifications and provided additional detail on mineralogy, petrology, and alteration. The petrographic descriptions are included in Appendix II.

Lithologic contacts and igneous layering throughout the property roughly parallel the contacts with the adjacent granitoid complex. Age relationships between the various lithologic units were not determined during this survey, although other regional studies have indicated that the gabbro and websterite postdate the early peridotite and clinopyroxenite.

In the course of the current geological survey, several new sulphide-bearing zones and asbestos occurrences were located. Two of the sulphide-bearing zones were subsequently trenched and sampled in detail.
<table>
<thead>
<tr>
<th>Map Unit</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>Tonalite: medium-grained</td>
</tr>
<tr>
<td>3a</td>
<td>Gabbro: fine- to medium-grained</td>
</tr>
<tr>
<td>3b</td>
<td>Gabbro: leucogabbro, anorthositic gabbro, anorthosite</td>
</tr>
<tr>
<td>3c</td>
<td>Gabbro: pegmatitic</td>
</tr>
<tr>
<td>3d</td>
<td>Gabbro: melagabbro</td>
</tr>
<tr>
<td>2a</td>
<td>Pyroxenite: medium- to coarse-grained</td>
</tr>
<tr>
<td>2b</td>
<td>Pyroxenite: fine- to medium-grained</td>
</tr>
<tr>
<td>1a</td>
<td>Peridotite: fine- to medium-grained</td>
</tr>
<tr>
<td>1b</td>
<td>Peridotite: very fine-grained, locally porphyritic</td>
</tr>
</tbody>
</table>

Table 1. Lithologic units and map unit numbers from geologic mapping of Cream Silver Mines Lac des Iles claims.

Unit 1 - Peridotite

Unit la: Unit la is a fine- to medium-grained, olivine-rich peridotite which outcrops in two separate mappable layers in the central and northern part of block B, in two irregular areas of block C, and at two localities on the large island in block D (Maps 1 and 2). Minor outcrops of this lithology occur locally in association with pyroxenites of Unit 2.

In hand sample, Unit la is massive and green to dark green
in color. The rock consists largely of fine- to medium-grained olivine and pyroxene set in an aphanitic to fine-grained, dark green to black matrix. The mineral grains are subequant and impart a distinct granular appearance to the rock. Typically the rocks are weakly to moderately magnetic, indicating the presence of accessory magnetite. In most cases, the magnetite content reflects serpentinization processes which have partially or completely altered most olivine grains (see thin section TS-5, Appendix II).

Locally in block B, Unit 1a also contains sulphide mineralization. Pyrite occurs as fine disseminated, interstitial grains in amounts ranging from trace levels up to about 3% in several outcrops. In Unit 1a near the northeastern corner of block C, asbestos veinlets about one to two millimeters thick were located.

Unit 1b: Unit 1b is a distinctive, extremely fine-grained peridotite which outcrops in a mappable unit in the south-central part of block C. An isolated outcrop of this lithology also occurs near the eastern end of line 22N in block B (Map 1).

In hand sample, this rock type is dark green to black in color and generally massive. The rock is frequently porphyritic with up to 15% coarse-grained pyroxene phenocrysts. As suggested by a moderate to very strong magnetic attraction, magnetite is common and is locally present in discrete veinlets up to 2 mm wide. Hematite staining is also a common feature, especially along fracture surfaces. Very fine-grained disseminated pyrite is noted locally. Unit 1b also hosts minor asbestos veinlets up to 1 mm thick, such as those occurring at the southwestern end of the outcrops exposed in block C.

Unit 2 - Pyroxenite

Unit 2a: The most extensive lithology encountered on the property is the medium- to coarse-grained pyroxenite assigned to Unit 2a (Map 1 and 2). Throughout the property, this lithology is very uniform and, in hand sample, is generally massive to locally foliated, dark green in color, and consists of up to 75% subhedral, medium- to coarse-grained pyroxene and up to 10% fine-grained
plagioclase in an aphanitic, black groundmass. Petrographic studies reveal that these rocks range from hornblende websterites (thin section TS-3) to olivine clinopyroxenites (thin section TS-7). Serpentine, amphibole, and chlorite occur frequently as alteration products in these rocks (thin sections TS-6 and TS-9).

These rocks locally display weak magnetism, due to accessory magnetite often related to serpentinization. Fine-grained, disseminated sulphides, predominantly pyrite, occur interstitially in amounts up to 3%. Sulphide distribution in Unit 2a appears generally random, though in the central portion of block B and the western part of block C, local stratigraphic control may exist.

Unit 2b: Unit 2b is an unusual, light "apple green" colored variety of pyroxenite. It occurs in association with regular pyroxenites in the extreme northwest corner of block C and in two distinct zones near the center of block B (Map 1). At this locality in block B, Unit 2b outcrops in a laterally extensive horizon up to about 30 meters thick, separating Unit 1 peridotite from the regular pyroxenites of Unit 2a. This lithology may offer a useful marker horizon for tracing igneous layering in the complex.

In hand sample, this pyroxenite is massive and consists almost exclusively of fine- to medium-grained pyroxene with up to 5% very fine unidentified black minerals. The pyroxenes of Unit 2a are distinctly acicular on fresh surface and appear to have undergone little or no alteration.

Unit 3 - Gabbro

Unit 3a: Gabbros of Unit 3a outcrop in several areas of the property. The most extensive zone trends northeasterly across the south-central portion of block B and the extreme northwestern corner of block A (Map 1). A smaller occurrence of Unit 3a also occurs in the east-central part of mapping block A. Rocks assigned to Unit 3a occur in association with Unit 2 pyroxenites in the central portion of block B and at the western edge of block C.

In hand sample, the gabbro is massive and medium- to coarse-grained. The rock consists largely of subhedral pyroxene (up to 50%)

WILLIAM C. HOOD, P.Eng
and interstitial, anhedral plagioclase (up to 20%). Weathered surfaces are typically mottled dark green and white, while fresh surfaces are dark green. Pyroxenes are locally chloritized or uralitized (thin section TS-2 and TS-10). Uralitic alteration is considered significant because it is extensive in the Roby ore zone on the nearby Madelaine Mines property. Magnetite is also a common accessory mineral and many samples are weakly to moderately magnetic.

The near ubiquitous presence of disseminated sulphides in gabbroic rocks indicates the potential economic importance of Unit 3a. Sulphides commonly form up to 3% and locally up to 10% of the rock. Pyrite, and minor chalcopryite, pyrrhotite, and pentlandite, range from very fine disseminated grains to coarse intergranular blebs. Two newly-discovered mineralized zones located in the southern part of block B were trenched. Mineralization was also encountered within gabbro at several other widely distributed localities in blocks A, B, and C.

Unit 3b: Unit 3b comprises anorthosite, anorthositic gabbro, and leucogabbro which outcrop at various localities in the central and southern portions of block B (Map 1). Massive, very coarse-grained white anorthosite, consisting of more than 95% plagioclase with minor fine-grained, interstitial chlorite, occurs between lines 18N and 19N near the central part of block B. Quartz veining is also associated with the anorthosite at this locality (thin section TS-4).

Thin (1 to 4 cm thick), laterally extensive (over 3 meters long) layers of fine- to medium-grained, massive white anorthosite occurs within peridotites of Unit 1a near the central part of Block B. It is not known whether these anorthosites are part of the cumulate layering or are late dikes.

The most common occurrence of Unit 3b is within the larger confines of Unit 3a gabbro in the south-central portion of block B. Along the northwestern contact of Unit 3, massive, medium-grained anorthositic gabbro and leucogabbro occur interlayered with Unit 3a gabbro and melagabbro (Unit 3d). The layered nature of the gabbros and the apparent distribution of Unit 3b along a specific zone in the igneous layering suggests that, in this area, Unit 3b
is a primary cumulate phase.

The most southerly occurrence of Unit 3b is observed in the trenched zone at 4N near the southern end of block B. In the western trench, thin (1 to 2 cm thick) randomly oriented dikes of very fine- to fine-grained white anorthosite intrude the host gabbro (Unit 3a). This anorthosite consists of 90 to 95% plagioclase and 5 to 10% indeterminant black minerals.

All occurrences of Unit 3b were found to be void of sulphide mineralization.

Unit 3c: Unit 3c is a pegmatitic gabbro which occurs as randomly oriented dikes in the host gabbro (Unit 3a) immediately north of the easternmost trench located in the southern part of block B near 4N (Map 1). The rock consists of up to 50% extremely coarse-grained (up to 10 cm long), randomly oriented, subhedral pyroxenes set in a medium- to coarse-grained, plagioclase-rich matrix. Field evidence indicates that the pegmatitic gabbro (Unit 3c) postdates crystallization of the gabbro (Unit 3a); however, its age relative to the nearby anorthosite dikes (Unit 3b) is unknown.

Unit 3d: Unit 3d is a massive, medium-grained melagabbro which outcrops in several exposures between 11N and 12N immediately west of the small lake along the east claim boundary of the south-central portion of block B (Map 1). The melagabbro is very similar to Unit 3a gabbro in texture, but contains a higher percentage (60 to 70%) of pyroxene than does the regular gabbro. The two units are therefore distinguished by the noticeably darker colored weathered surface of the melagabbro. The melagabbro is typically void of sulphide mineralization, with the exception of a shoreline outcrop at 11 N which contains 1 to 2% fine-grained, disseminated pyrite.

Unit 4 - Tonalite

Unit 4: The granitoid rocks that host the Lac des Iles complex are, on the property, assigned to Unit 4, which outcrops discontinuously along the northern edge of block D (Map 2). These rocks are massive, light grey to buff colored, medium-grained, hypidiomorphic-granular tonalities consisting of quartz (20 to 30%), feldspar
(40 to 60%), and hornblende (15 to 20%). Minor sericitization of feldspar and biotitization of hornblende has occurred.

MINERALIZATION

During the geologic mapping program, numerous sulphide occurrences were located throughout the property. A total of 55 rock samples, representing a wide variety of lithologies, were submitted for geochemical analysis of platinum, palladium, gold, nickel, and copper. These results have been plotted on Sample Location Maps 3 and 4. Although anomalous sample results were returned from several areas of the property, three zones are particularly noteworthy.

1) Peninsula Zone: The Peninsula zone is located in the extreme southwest corner of claim T.B.886451 along the west boundary of mapping block C (Map 3). Sulphides were first noted in this area by the author during a brief examination of the property in 1986. Subsequent geologic mapping outlined a small gabbro/pyroxenite unit in this area and additional sulphide-bearing zones nearby. Grab samples returned anomalous platinum group metal values ranging up to 345 ppb Pt (0.010 oz/ton) and 620 ppb Pd (0.018 oz/ton). Due to the close proximity of this showing to the property boundary, it was decided to delay follow-up work, pending the outcome of exploration by International Platinum Corp. on adjacent ground to the west. At the time of writing, International Platinum Corp. was drilling a showing located about 300 meters west of the Peninsula zone. The occurrence being drilled by International Platinum Corp. was sampled by the Ontario Geological Survey in 1986 and returned 870 ppb Pt (0.025 oz/ton), 1170 ppb Pd (0.034 oz/ton), 360 ppb Au (0.010 oz/ton), 0.231% Cu, and 0.113% Ni.

2) Anomaly Zone: The Anomaly zone is located in the central part of block B (Map 3). Geologic mapping in this area revealed widespread disseminated sulphides in an area of lithologic complexity. Gabbros, pyroxenites, and peridotites all contain trace to minor quantities (up to 3%) of very fine-grained pyrite, chalcopyrite,
and pyrrhotite. Several grab samples from this zone returned anomalous platinum values ranging up to 340 ppb Pt (0.010 oz/ton) with slightly lower palladium assays. Subsequent work also indicated strong soil geochemistry and induced polarization anomalies along the trend of the Anomaly zone. A grab sample taken in pyroxenites about 600 meters north of the Anomaly zone graded 300 ppb Pt (0.009 oz/ton) and 940 ppb (0.027 oz/ton) Pd.

3) Murph Zone: The most promising mineralization found during the course of geologic mapping was in a sulphide-bearing gabbroic unit, herein termed the Murph zone, situated in the northeast corner of claim T.B.886432 in the southern end of block B (Map 3). Sulphide mineralization was located at several points along an irregular outcrop area measuring about 100 meters by 50 meters. Gabbroic pegmatite occurs both as internal pods and as discrete cross-cutting dikes up to 30 cm in width. Fine-grained anorthositic gabbro dikes also cut the host gabbro in this area. These geologic features bear a strong resemblance to the Roby mineralized zone on the adjacent property being explored by Madelaine Mines Ltd.

Three shallow trenches totalling about 2 cubic meters were blasted on this outcrop, providing improved exposure of significant features. The best mineralization was revealed in trench #2, exposing disseminated, interstitial sulphide grains up to 0.5 cm in size in a medium- to coarse-grained gabbro. Pyrite is most abundant, but chalcopyrite and pyrrhotite have also been identified. Total sulphide contents are typically about 2%. Thin sections TS-1, -2, and -10 are taken from trench #2. Thin section TS-10 illustrates uralitic alteration of pyroxene, a favourable indicator for platinum potential in the Lac des Iles complex. Grab samples from this trench returned assays up to 0.008 oz/ton Pt and 0.034 oz/ton Pd, along with anomalous gold, nickel, and copper values. The gabbro in trench #3 contains up to 10% sulphides, mostly pyrite, but assays were lower than in trench #2. Trench #1 exposes thin anorthositic dikes cutting gabbro.
Chromite mineralization was noted in two locations within the D block of claims by previous Ontario Geological Survey studies, although they were not located during this mapping program. These occurrences are on a small island in the west-central portion of claim T.B.886455 and along the shore of the large island, just inside the northwest corner of claim T.B.886465 (Map 2). Both chromite seams are reported to be very small and more easily seen in polished slabs than in outcrop. It is interesting to note that the platinum-bearing Merensky Reef within the Bushveld complex of South Africa is flanked by thin chromite seams. Although the Bushveld and Lac des Iles complexes are considerably different in scale and petrogenesis, the presence of chromite may indicate a change in magma conditions that may be suitable for the segregation of platinum-bearing minerals.

CONCLUSIONS AND RECOMMENDATIONS

The current geological survey on Cream Silver Mines' Lac des Iles property has revealed an interlayered sequence of peridotites, pyroxenites, and gabbros. Major lithologic contacts are subparallel to the arcuate contact with the adjacent granitoid rocks. The rocks within the mapped area are structurally intact and reasonably well-preserved, with no major folds or faults having been identified.

Anomalous platinum group metal values have been located in a wide variety of lithologies, including peridotite, pyroxenite, and gabbro. Three anomalous zones are particularly noteworthy—the Peninsula zone, Anomaly zone, and Murph zone. The most promising mineralization located to date has been within the Murph zone, where values up to 0.042 oz/ton Pt+Pd have been indicated, at a Pd:Pt ratio of about 5:1. The Murph zone mineralization occurs in a distinct, sulphide-bearing, coarse-grained to pegmatitic gabbro layer.

The geology of the Murph zone bears many resemblances to the Roby zone ore deposit on the adjacent Boston Bay property being explored by Madelaine Mines Ltd. These similarities include:

1) the presence of widespread disseminated sulphides in websterite, gabbro, and norite lithologies.
2) dike emplacement and brecciation typical of magma mixing.
3) the occurrence of pegmatitic gabbro both as dikes and internal pods.
4) hydrothermal alteration features including chloritization, uralitization, and carbonatization.

Geologic mapping and sampling have been sufficiently encouraging that follow-up work is considered justified and is herein recommended. Four main features should be investigated further:
1) the Murph, Anomaly, and Peninsula zones require further evaluation.
2) several other scattered sample locations with anomalous platinum and palladium assays should be investigated.
3) gabbroic lithologies should be explored in more detail.
4) the chromite occurrences in the northwestern part of the property should be examined to see if they have any relationship to platinum potential.

Since outcrop is relatively sparse in many parts of the property, further exploration will require the use of geophysical and geochemical techniques. Magnetic surveys may help in outlining igneous layering orientations. Induced polarization geophysics can be used to outline disseminated sulphides, if magnetite related anomalies can be screened out. Soil and rock geochemistry should be utilized in conjunction with geophysics to outline specific drill targets.
REFERENCES

2 Northern Miner, 1986/87: various articles on exploration and development work being done by Madelaine Mines on the Lac des Iles property of Boston Bay Mines.

CERTIFICATE

I, William C. Hood, of the Town of Beausejour in the Province of Manitoba, hereby certify that:

1) I am a Consulting Geologist and Registered Professional Engineer with the Association of Professional Engineers of the Province of Manitoba.

2) I reside at 508 Elm Ave., Beausejour, Manitoba.

3) I graduated from the University of Manitoba in 1979 with a B.Sc. Honours Degree in Geology and I have practiced my profession since that time.

4) I do not have, nor do I expect to receive, any interest in the property or securities of Cream Silver Mines Ltd.

5) This report is based on supervision of exploration work on the property during several trips to Lac des Iles between July, 1986 and February, 1987.

April 15, 1987

William C. Hood, P.Eng.
CERTIFICATE

I, Steven Parker, of the City of Winnipeg in the Province of Manitoba, hereby certify that:

1) I am a Consulting Geologist and Registered Professional Engineer with the Association of Professional Engineers of the Province of Manitoba.

2) I reside at 222 Ottawa Ave., Winnipeg, Manitoba.

3) I graduated from the University of Manitoba in 1975 with a B.Sc. Honours Degree and from the University of New Brunswick in 1984 with a M.Sc. Degree in Geology and I have practiced my profession since that time.

4) I do not have, nor do I expect to receive, any interest in the property or securities of Cream Silver Mines Ltd.

5) This report is based on field work conducted on the property during September and early October, 1986.

April 15, 1987

Steven Parker, P.Eng.

WILLIAM C. HOOD, P.Eng.
APPENDIX I - EXPLORATION PERSONNEL

Overall Project Supervision:

William C. Hood, P.Eng.
W.C. Hood Geological Consulting
Box 1722, 508 Elm Ave.
Beausejour, Manitoba R0E 0C0

Geologic Mapping, Trenching, Sampling:

J.S.D. Parker, P.Eng. (Geologist) - Winnipeg, Manitoba
K.G. Murphy, B.Sc. (Geologist) - Winnipeg, Manitoba

Claims held by:

Cream Silver Mines Ltd.
Ste 1900, Daon Bldg.
999 West Hastings St.
Vancouver, B.C. V6C 2W2
APPENDIX II - PETROGRAPHY

PETROGRAPHY OF EIGHT SAMPLES
FROM LAC DES ISLES PGE PROPERTY
NORTHWESTERN ONTARIO

A REPORT PREPARED FOR:
W. C. Hood Geological Consulting
P. O. Box 1722, 508 Elm Avenue
Beausejour, Manitoba
ROE OCO

LPS INVOICE No.: 71263

JANUARY 15, 1987

W. K. MYSYK
M.Sc., FGAC, P.Eng.
Geologist/Manager
Offcut

The sample is a fine-to medium-grained, dark green, massive rock that is strongly magnetic. Stubby, subhedral (rarely euhedral) pyroxenes are responsible for the dark green color. Plagioclase feldspar grains are anhedral and purple-grey in color. A few anhedral disseminated pyrite grains occur.

Mineralogy

<table>
<thead>
<tr>
<th>Minerals</th>
<th>Est. Vol. %</th>
<th>Interpretation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clinopyroxene (Augite)</td>
<td>50</td>
<td>Primary</td>
</tr>
<tr>
<td>Orthopyroxene (Enstatite-Hypersthene)</td>
<td>16</td>
<td>"</td>
</tr>
<tr>
<td>Olivine (Fayalite)</td>
<td>8</td>
<td>"</td>
</tr>
<tr>
<td>Plagioclase</td>
<td>7</td>
<td>"</td>
</tr>
<tr>
<td>Hornblende</td>
<td>6</td>
<td>"</td>
</tr>
<tr>
<td>Biotite</td>
<td>5</td>
<td>"</td>
</tr>
<tr>
<td>Opaques (Pyrite)</td>
<td><1</td>
<td>"</td>
</tr>
<tr>
<td>Chlorite</td>
<td>5</td>
<td>Alteration</td>
</tr>
<tr>
<td>Serpentine</td>
<td>2</td>
<td>"</td>
</tr>
<tr>
<td>Opaques (Magnetite)</td>
<td><1</td>
<td>"</td>
</tr>
</tbody>
</table>

Texture

The section is fine-to medium-grained, xenomorphic granular with the grain boundaries more indistinct and irregular than Sample TS-2. No foliation occurs. The pyroxenes are larger, anhedral grains that dominate the thin section. Olivine grains are anhedral and altered. Plagioclase crystals are wide, but short. Biotite is anhedral and is generally associated with the alteration patches. Pyrite occurs as discrete subhedral to euhedral grains.

Alteration

A minor amount of serpentinization has occurred. Chlorite, serpentine and magnetite form patches of anhedral alteration of relict olivine (and possibly hornblende, although chlorite alteration is more common for the amphibole). The magnetite is fine-grained and it is generally smeared in linear (planar?) fashion in the alteration patches.

Classification: PLAGIOCLASE Brg. PYROXENITE (WEBSTERITE)
ROCK FIELD NAME

Sample No. TS-2

Offcut

The rock is medium- to coarse-grained, massive, black and weakly magnetic. Pyroxenes are mainly responsible for the dark color. Feldspar grains are purple-grey. Pyrite occurs as a few disseminated grains.

Mineralogy

<table>
<thead>
<tr>
<th>Minerals</th>
<th>Est. Vol. %</th>
<th>Interpretation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Orthopyroxene (Hypersthene-Enstatite)</td>
<td>50</td>
<td>Primary</td>
</tr>
<tr>
<td>Plagioclase (Andesine-Labradorite)</td>
<td>20</td>
<td>"</td>
</tr>
<tr>
<td>Clinopyroxene (Augite)</td>
<td>15</td>
<td>"</td>
</tr>
<tr>
<td>Olivine (Fayalite)</td>
<td>4</td>
<td>"</td>
</tr>
<tr>
<td>Hornblende</td>
<td>3</td>
<td>"</td>
</tr>
<tr>
<td>Biotite</td>
<td>3</td>
<td>"</td>
</tr>
<tr>
<td>Opaques (Pyrite)</td>
<td>Tr.</td>
<td></td>
</tr>
<tr>
<td>Chlorite</td>
<td>4</td>
<td>Alteration</td>
</tr>
<tr>
<td>Calcite</td>
<td>1</td>
<td>"</td>
</tr>
<tr>
<td>Opaques (Magnetite)</td>
<td><1</td>
<td>"</td>
</tr>
</tbody>
</table>

Texture

The sample is medium-to coarse-grained, xenomorphic to (rarely) hypautomorphic granular. No foliation occurs. Orthopyroxene and plagioclase are larger grains that dominate the section. Part of the thin section is notable for fine-grained augite poikilitically contained within a large feldspar grain. Olivine, hornblende and biotite are medium-grained, anhedral and randomly distributed. The pyrite consists of small, subhedral, disseminated grains. Chlorite and calcite are fine grained and anhedral.

Alteration

The alteration is less common than in TS-1 and it is a different type. Minor amounts of olivine, hornblende and orthopyroxene have been altered to patches of chlorite, calcite and magnetite. The magnetite is smeared similar to TS-1. Biotite is associated with the scattered alteration patches.

Classification: GABBRONORITE

The rock has too much plagioclase to be termed a pyroxenite.
ROCK FIELD NAME: PYROXENITE

TS-3

SAMPLE NO. 1+O0N, 1+25E

Offcut

The sample is dark green (fresh surface) to light-grey (sawed face), fine-grained, massive and nonmagnetic. The weathered surface is pale grey-green and pitted due to differential weathering of minerals. A few small anhedral, disseminated pyrite grains are visible on the sawed face.

Mineralogy

<table>
<thead>
<tr>
<th>Minerals</th>
<th>Est.Vol.%</th>
<th>Interpretation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clinopyroxene (Augite)</td>
<td>50</td>
<td>Primary</td>
</tr>
<tr>
<td>Amphibole (Hornblende?)</td>
<td>25</td>
<td>"</td>
</tr>
<tr>
<td>Orthopyroxene (Enstatite)</td>
<td>15</td>
<td>"</td>
</tr>
<tr>
<td>Unknown (Chlorite??)</td>
<td>10</td>
<td>Alteration</td>
</tr>
<tr>
<td>Magnetite</td>
<td>Tr</td>
<td>"</td>
</tr>
</tbody>
</table>

Texture

Augite occurs as smaller (<1mm), anhedral grains that often display diallage parting. The centres of many augite grains have been replaced by a clear mineral (totally opaque under crossed nicols) which has numerous small clear inclusions; this mineral may be an unusual type of chlorite, but x-ray diffraction is not conclusive. Amphibole occurs as subhedral, generally elongate grains (rarely fibrous), 1 to 2 mm in size and primary in nature. Exact identity of the amphibole is not positive, as optical properties (extinction angle, pleochroism, birefringence) are ambiguous and x-ray diffraction seems to indicate anthophyllite; the amphibole may be a hybrid type. Orthopyroxene occurs as squarish, anhedral, colorless grains, 1 mm or less in size.

Alteration

The only significant alteration is the replacement of the central area of numerous augite grains by an unknown clear, opaque mineral tentatively called chlorite.

Classification: HORNBLENDE WEBSTERITE
The quartz is fine- to medium-grained and varies from grey to white to pale red on the sawed surface. When wet, the color is more of a yellow-brown. A few small, anhedral, disseminated pyrite grains occur.

Mineralogy

<table>
<thead>
<tr>
<th>Minerals</th>
<th>Est. Vol.%</th>
<th>Interpretation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Quartz</td>
<td>85</td>
<td>Primary</td>
</tr>
<tr>
<td>Plagioclase</td>
<td>11</td>
<td>"</td>
</tr>
<tr>
<td>Clinopyroxene (Augite)</td>
<td>2</td>
<td>"</td>
</tr>
<tr>
<td>Opaques (Pyrite)</td>
<td>1</td>
<td>Secondary (or Primary?)</td>
</tr>
<tr>
<td>Hematite</td>
<td>1</td>
<td>Alteration</td>
</tr>
<tr>
<td>Chlorite</td>
<td>Tr</td>
<td>"</td>
</tr>
<tr>
<td>Unknown (Blue birefr.)</td>
<td>Tr</td>
<td>"</td>
</tr>
</tbody>
</table>

Texture

The quartz is anhedral and generally very fine-grained with a few larger grains (1-2mm) which usually display rounded globules and/or irregular blebs of immiscible inclusions. Plagioclase is subhedral to euhedral, usually fine-grained with a few larger grains (1-2mm) and also contains inclusions, usually in the same localized area as the quartz grains. Clinopyroxene is anhedral, fine-grained and occurs mainly interstitial to the quartz and plagioclase, plus rarely as inclusions in plagioclase. Pyrite occurs as small, anhedral grains randomly disseminated in the sample. Hematite is present as small anhedral usually in contact with pyrite.

Alteration

The hematite appears to be an alteration product of pyrite. The chlorite and unknown mineral are associated with clinopyroxene and plagioclase.

Classification: PLAGIOCLASE Br. QUARTZ VEIN
The sample is dark green (fresh surface) to dark grey-green on the sawed surface (black when wet), massive and strongly magnetic. Grain size appears to vary from fine-to medium-grained. The cut surface is strongly scored with saw marks.

Mineralogy

<table>
<thead>
<tr>
<th>Minerals</th>
<th>Est. Vol.%</th>
<th>Interpretation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Serpentine (Antigorite)</td>
<td>75</td>
<td>Alteration</td>
</tr>
<tr>
<td>Opaques (Magnetite)</td>
<td>10</td>
<td>"</td>
</tr>
<tr>
<td>Chlorite</td>
<td>10</td>
<td>"</td>
</tr>
<tr>
<td>Hematite</td>
<td>3</td>
<td>"</td>
</tr>
<tr>
<td>Olivine</td>
<td>1</td>
<td>Primary</td>
</tr>
<tr>
<td>Clinopyroxene</td>
<td>1</td>
<td>"</td>
</tr>
</tbody>
</table>

Texture

Serpentine occurs as pseudomorphs after olivine and clinopyroxene in the form of anhedral fibrolamellar aggregates. The magnetite occurs mainly as very fine-grained "stringers" that have separated out of the olivine along the lamellae in one part of the thin section; however at the other end of the thin section, magnetite occurs as three larger granular aggregates (3-4 mm in length) with no stringers visible. Chlorite is anhedral, fine-grained and intimately associated with the serpentine and olivine. Hematite is very fine-grained, anhedral and associated with magnetite and clinopyroxene. Olivine and clinopyroxene are present in small quantities now, but their initial presence is noted by the preserved fracturing in the serpentinized olivine grains and the bronzitic or diallage partings of the clinopyroxene.

Alteration

Serpentinization of olivine and clinopyroxene has occurred almost to completion. Chlorite and magnetite are products of this alteration process. Hematite is a later stage minor alteration feature.

Classification: SERPENTINITE
ROCK FIELD NAME: SAMPLE NO.: 1-9-10

Offcut

The rock is fine-to medium-grained, massive, medium green on the fresh surface, light grey on the sawed surface (dark grey when wet) and nonmagnetic.

Mineralogy

<table>
<thead>
<tr>
<th>Minerals</th>
<th>Est. Vol.%</th>
<th>Interpretation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clinopyroxene (Augite)</td>
<td>65</td>
<td>Primary</td>
</tr>
<tr>
<td>Orthopyroxene</td>
<td>10</td>
<td>"</td>
</tr>
<tr>
<td>Amphibole (Anthophyllite)</td>
<td>10</td>
<td>"</td>
</tr>
<tr>
<td>Olivine</td>
<td>3</td>
<td>"</td>
</tr>
<tr>
<td>Magnetite</td>
<td>1</td>
<td>"</td>
</tr>
<tr>
<td>Chlorite</td>
<td>5</td>
<td>Alteration</td>
</tr>
<tr>
<td>Clinozoisite</td>
<td>3</td>
<td>"</td>
</tr>
<tr>
<td>Serpentine</td>
<td>3</td>
<td>"</td>
</tr>
<tr>
<td>Calcite</td>
<td>Tr</td>
<td>"</td>
</tr>
</tbody>
</table>

Texture

The augite is anhedral to (rarely) subhedral, about 1-3 mm (usually 2 mm) in size, riddled with inclusions and lamellar exsolution textures and displays some diallage parting; grain boundaries are generally sharp, but some are indistinct due to exsolution and alteration. Amphibole occurs as subhedral, longer (3-4mm) prismatic grains with irregular grain boundaries. Orthopyroxene occurs as anhedral, slightly fractured grains 1 to 2 mm in size. Remnants of fractured, anhedral olivine grains (up to 2 mm in size) appear to be completely replaced by serpentine. Chlorite is totally opaque and occurs as extremely fine-grained masses selectively replacing parts of augite grains. Clinozoisite appears as small columnar grains and aggregates replacing parts of augite grains. Calcite occurs as fine, anhedral grains associated with clinozoisite and also occurs as a filling in a small fracture.

Alteration

Chloritization (accompanied by clinozoisite and calcite) of the augite has occurred and serpentinization of the small amount of olivine is noted.

Classification: AMPHIBOLE WEBSTERITE
ROCK FIELD NAME: Sample No.: AW-1

Offcut

The rock is medium-grained, massive, strongly magnetic, black on the fresh surface, and mottled grey and black on the sawed surface.

Mineralogy

<table>
<thead>
<tr>
<th>Minerals</th>
<th>Est. Vol.%</th>
<th>Interpretation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clinopyroxene (Augite)</td>
<td>44</td>
<td>Primary</td>
</tr>
<tr>
<td>Olivine</td>
<td>30</td>
<td>"</td>
</tr>
<tr>
<td>Serpentine (Antigorite)</td>
<td>15</td>
<td>Alteration</td>
</tr>
<tr>
<td>Chlorite</td>
<td>10</td>
<td>"</td>
</tr>
<tr>
<td>Magnetite</td>
<td>1</td>
<td>"</td>
</tr>
</tbody>
</table>

Texture

The olivine is yellow-green in color, anhedral, pervasively fractured and varies in size from about 1 to 3 mm. Augite is colorless, anhedral to subhedral, generally fractured and frequently has diassage partings and irregular exsolution blebs of silica. Some augite grains are entirely surrounded by olivine. Serpentine occurs as fibrolamellar aggregates which are pseudomorphs after olivine. Magnetite occurs as very fine segregation stringers along the serpentine lamellae and along fractures within or interstitial to the augite and olivine. Chlorite appears to replace augite, almost totally in some cases, and is completely opaque under crossed nicols, showing no texture or color.

Alteration

The olivine has been partially serpentinized and the augite has been partly altered to opaque chlorite.

Classification: SERPENTINIZED OLIVINE CLINOPYROXENITE
Offcut

The sample is medium-grained, massive, nonmagnetic, grey-green on the fresh surface, and light grey on the sawed surface (grey-green when wet).

Mineralogy

<table>
<thead>
<tr>
<th>Minerals</th>
<th>Est.Vol.%</th>
<th>Interpretation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Orthopyroxene (Enstatite)</td>
<td>15</td>
<td>Primary</td>
</tr>
<tr>
<td>Clinopyroxene (Augite)</td>
<td>10</td>
<td>"</td>
</tr>
<tr>
<td>Plagioclase</td>
<td>5</td>
<td>"</td>
</tr>
<tr>
<td>Unknown</td>
<td>5</td>
<td>"</td>
</tr>
<tr>
<td>Amphibole (Anthophyllite)</td>
<td>45</td>
<td>Alteration</td>
</tr>
<tr>
<td>Clinozoisite</td>
<td>10</td>
<td>"</td>
</tr>
<tr>
<td>Saussurite</td>
<td>4</td>
<td>"</td>
</tr>
<tr>
<td>Chlorite</td>
<td>3</td>
<td>"</td>
</tr>
<tr>
<td>Serpentine</td>
<td>3</td>
<td>"</td>
</tr>
<tr>
<td>Talc</td>
<td>Tr</td>
<td>"</td>
</tr>
</tbody>
</table>

Texture

Enstatite has been largely altered to anthophyllite. The original form of the enstatite is not distinguishable and is now anhedral; anthophyllite is anhedral after the enstatite, but also occurs as long (2 to 5 mm) prisms which occasionally are fibrous. Augite occurs as small (1mm), anhedral grains that are fractured, display diallage partings and are slightly altered. Plagioclase occurs as small (1-2mm) anhedral to subhedral grains, mostly altered to saussurite. An unknown mineral is clear in plane light, grey in crossed nicols, anhedral, slightly elongate or fractured granular aggregates and mainly altered to clinozoisite. Talc appears to be present as a minor alteration of anthophyllite.

Alteration

The rock has been strongly altered (amphibolitized) as noted from the large amount of anthophyllite. Talc is a late stage, trace alteration of anthophyllite. Plagioclase has been extensively altered to saussurite.

Classification: AMPHIBOLITIZED WEBSTERITE (AMPHIBOLITE)
ROCK FIELD NAME: SAMPLE NO.: DN-2

Offcut

The sample is fine- to medium-grained, massive, weakly magnetic, medium green on the fresh surface, and light grey on the sawed surface with about 5% anhedral, black grains up to 4 mm in diameter.

Mineralogy

<table>
<thead>
<tr>
<th>Minerals</th>
<th>Est. Vol.%</th>
<th>Interpretation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Orthopyroxene (Enstatite)</td>
<td>51</td>
<td>Primary</td>
</tr>
<tr>
<td>Clinopyroxene (Augite)</td>
<td>25</td>
<td>"</td>
</tr>
<tr>
<td>Olivine</td>
<td>10</td>
<td>"</td>
</tr>
<tr>
<td>Chlorite</td>
<td>10</td>
<td>Alteration</td>
</tr>
<tr>
<td>Serpentine (Antigorite)</td>
<td>3</td>
<td>"</td>
</tr>
<tr>
<td>Magnetite</td>
<td>1</td>
<td>"</td>
</tr>
</tbody>
</table>

Texture

Orthopyroxene occurs as anhedral grains up to 2 mm in size that are slightly fractured, and do not have diallage partings. The augite is anhedral, varies in size from about 1 to 3 mm, and some grains display diallage parting or strong exsolution textures. Olivine occurs as fractured, anhedral, scattered, larger (3-5 mm) grains in the pyroxene matrix. Chlorite is a very fine-grained, anhedral, totally opaque replacement of the augite; grain boundaries are indistinct in areas where chlorite is more abundant. Antigorite occurs as a fibrolamellar pseudomorph after olivine. Magnetite occurs as extremely fine-grained material associated with the antigorite and also as small, anhedral grains disseminated in the clinopyroxene.

Alteration

The clinopyroxene has been strongly chloritized and the olivine has been slightly serpentinized.

Classification: CHLORITIZED OLIVINE WEBSTERITE
The rock displays a gradational grain size change from medium to coarse. It is medium grey in color on both fresh and sawed surfaces, massive (no foliation) and nonmagnetic.

Mineralogy

<table>
<thead>
<tr>
<th>Minerals</th>
<th>Est. Vol.%</th>
<th>Interpretation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clinopyroxene (Augite)</td>
<td>40</td>
<td>Primary</td>
</tr>
<tr>
<td>Plagioclase (Labradorite)</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>Quartz</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Magnetite</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Uralite</td>
<td>20</td>
<td>Alteration</td>
</tr>
<tr>
<td>Saussurite</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>Chlorite</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>Biotite</td>
<td>2</td>
<td></td>
</tr>
</tbody>
</table>

Texture

Augite is anhedral and varies in size from about 1 to 5 mm; grain boundaries are frequently blurred due to alteration. Uralite is a fibrous amphibole which replaces augite. Plagioclase occurs as subhedral to euhedral grains, varying in size from less than 1 mm to 3 mm. Saussurite is a very fine-grained mixture of clinozoisite and epidote (plus chlorite and sericite) which replaces plagioclase. Quartz occurs as rare anhedral, disseminated grains associated with plagioclase. Magnetite occurs as fine, anhedral grains in the augite or uralite. Biotite and chlorite are fine-grained alteration products associated with uralite. There is a gradational change from medium to coarse-grained in the thin section.

Alteration

The rock has been moderately altered by uralitization of the augite (accompanied by minor chlorite and biotite) plus saussuritization of plagioclase. The uralitization process is one favorable indicator for platinum group element (PGE) mineralization.

Classification: URALITIZED AUGITE GABBRO
X-RAY DIFFRACTION

METHOD

A small amount of each sample was ground to powder and spread evenly on a glass slide. Each slide was scanned from 5 to 65 degrees two-theta at 40 kV and 40 mA with nickel-filtered Cu K-alpha radiation on a Philips Model PW 1729 X-ray diffractometer under the following operating conditions:

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>RFS</td>
<td>Chart Scale</td>
</tr>
<tr>
<td>FTC</td>
<td>Time Constant</td>
</tr>
<tr>
<td>RSP</td>
<td>Recorder Speed</td>
</tr>
<tr>
<td>SPE</td>
<td>Scan Speed</td>
</tr>
<tr>
<td>INT</td>
<td>Sampling Interval</td>
</tr>
<tr>
<td>SPT</td>
<td>Step Size</td>
</tr>
<tr>
<td>MXN</td>
<td>Number of Measuring Points per Peak</td>
</tr>
<tr>
<td>MXS</td>
<td>Step Between Points</td>
</tr>
<tr>
<td>MXT</td>
<td>Measurement Time per Point</td>
</tr>
<tr>
<td>BGT</td>
<td>Background Measurement Time</td>
</tr>
<tr>
<td>BGM</td>
<td>Background Mode</td>
</tr>
<tr>
<td>BGA</td>
<td>Background Offset</td>
</tr>
<tr>
<td>WAV</td>
<td>Wavelength Constant</td>
</tr>
<tr>
<td>ZERO2T</td>
<td>Chart Speed</td>
</tr>
</tbody>
</table>

Values of 2-theta are in degrees. The D values are the interplanar spacing of the set of lattice planes which caused the diffraction and are in Angstrom units. The intensities (INT) for the diffractogram are relative peak intensities (not percentages) above background values, all of which are computer calculated during the X-ray run. High d-values (low 2-theta angles) are not as precise as low d-values (high 2-theta angles) due to the geometry of the X-ray system and the greater background scatter of X-rays at low angles. Peaks with intensities of less than 100 are generally considered to be background, unless several correspond to reflections for a known mineral.
Suppression of the peaks generally indicates presence of amorphous material which does not register on the X-ray pattern. Broader peaks generally are indicative of poorly crystalline material.

RESULTS

100N 125E

Clinopyroxene appears to be the most abundant mineral, followed by amphibole (anthophyllite?) and orthopyroxene (enstatite). Characteristic chlorite reflections at 7 and 14 Å do not occur, but one major reflection at 2.55 Å overlaps with enstatite and anthophyllite. Magnetite is only a trace mineral and all of its reflections overlap with other minerals.

BW-12

Amphibole (anthophyllite) is the most abundant mineral followed by orthopyroxene (enstatite), clinopyroxene (augite) and clinozoisite. Reflections for other minerals are not easily discerned, although two chlorite peaks may be present. The individual minerals are more difficult to distinguish in a complex rock type such as this due to overlapping reflections of the constituent minerals.
SAMPLE PREPARATION FOR GEOCHEMICAL SERVICES

Humus Samples
- drying and sieving to -10 mesh
- drying, sieving and milling to -150 mesh

Rock Samples
- primary and secondary cone crushing.
- representative riffing and pulverizing of subsequent half-pound (250 grams)
- sample to -150 mesh

ATOMIC ABSORPTION ANALYSIS

<table>
<thead>
<tr>
<th>Element</th>
<th>Detection Limit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Copper</td>
<td>1 ppm</td>
</tr>
<tr>
<td>Nickel**</td>
<td>2 ppm</td>
</tr>
</tbody>
</table>

PRECIOUS METALS
PRECONCENTRATION BY FIRE-ASSAY

Gold Analysis
- Fire Assay/Atomic Absorption 10 gm 5 ppb
- Platinum Group Elements, Rhenium & Gold
 - Platinum & Palladium (both)
 - Fire Assay/D.C. Plasma 20 gm 15 & 2 ppb

WILLIAM C. HOOD, P.Eng.
September 23, 1987

Dear Madam:

RE: Data for Assaying and Petrography submitted under Section 77(19) of the Mining Act R.S.O. 1980 on Mining Claims TB 886426, et al, in Lac Des Iles Area

The enclosed statement of assessment work credits for Assaying and petrography have been approved as of the above date.

Please inform the recorded holder of these mining claims and so indicate on your records.

Yours sincerely,

R.M. Charnesky (Mrs.)
Acting Manager
Mining Lands Section
Mineral Development and Lands Branch
Mines and Minerals Branch
Whitney Block, Room 6610
Queen's Park
Toronto, Ontario
M7A 1W3
Telephone: (416) 965-4888

Enclosure

cc: Cream Silver Mines Ltd. Mr. William C. Hood
 Suite 1900, Daon Bldg. Box 1722
 999 W. Hastings St. Beausejour
 Vancouver, B.C. Manitoba
 V6C 2W2 ROE OCO

Resident Geologist
Thunder Bay, Ontario
Recorded Holder: Cream Silver Mines Ltd.

Area: Lac Des Iles

<table>
<thead>
<tr>
<th>Type of survey and number of Assessment days credit per claim</th>
<th>Mining Claims Assessed</th>
</tr>
</thead>
<tbody>
<tr>
<td>Geophysical</td>
<td>$2,056.00 SPENT ON ANALYSES OF SAMPLES AND PETROGRAPHY TAKEN FROM MINING CLAIMS:</td>
</tr>
<tr>
<td>Electromagnetic</td>
<td>TB - 886426-27</td>
</tr>
<tr>
<td>Magnetometer</td>
<td>886429</td>
</tr>
<tr>
<td>Radiometric</td>
<td>886431 to 33 inclusive</td>
</tr>
<tr>
<td>Induced polarization</td>
<td>886435</td>
</tr>
<tr>
<td>Other</td>
<td>886437 to 43 inclusive</td>
</tr>
<tr>
<td>Section 77 (19) See “Mining Claims Assessed” column</td>
<td>886449</td>
</tr>
<tr>
<td>Geological</td>
<td>886451-52</td>
</tr>
<tr>
<td>Geochmical</td>
<td>886463</td>
</tr>
<tr>
<td>Man days</td>
<td>926131 to 35 inclusive</td>
</tr>
</tbody>
</table>

137 ASSESSMENT WORK DAYS ARE ALLOWED WHICH MAY BE GROUPED IN ACCORDANCE WITH SECTION 76(6) OF THE MINING ACT.

Special credits under section 77 (16) for the following mining claims

No credits have been allowed for the following mining claims

The Mining Recorder may reduce the above credits if necessary in order that the total number of approved assessment days recorded on each claim does not exceed the maximum allowed as follows: Geophysical - 80; Geological - 40; Geochemical - 40; Section 77(19) - 60.
Report of Work

Type of Survey

Claim Holder(s)

Address

Survey Company

Name and Address of Author (of Geo-Tecrmical report)

Special Provisions

Geophysical

Days per Claim

For first survey:

Enter 40 days. (This includes line cutting)

For each additional survey:

using the same grid:

Enter 20 days (for each)

Man Days

Complete reverse side and enter total(s) here

Geophysical

Days per Claim

Expenditures (excludes power stripping)

Calculation of Expenditure Days Credits

Total Expenditures

Total Days Credits

Instructions

Total Days Credits may be apportioned at the claim holder's choice. Enter number of days credits per claim selected in columns at right.

Instructions

Date

Recorded Holder or Agent (Signature)

For Office Use Only

Date Approved as Recorded

Branch Director (Signature)

I hereby certify that I have a personal and intimate knowledge of the facts set forth in the Report of Work annexed hereto, having performed the work expressed same during and/or after its completion and that the work reported is true.

William C. Hood, Box 1722, Beausejour, Manitoba R0E 0CO

Date Certified

WILLIAM C. HOOD

Date

Recording Holder or Agent (Signature)

Date Recorded

MAY 25, 1987

M 37

MAY 31, 1987

MINING DIVISION

THUNDER BAY

MINING LANDS SECTION

RECEIVED

JUN - 1, 1987

RECEIVED

MAY 25, 1987

7
Report of Work
(Geological, Geological, Geophysical and Expenditures)

Type of Survey:

GEOPHYSICAL MAPPING

Claim Holder(s):

CREAM SILVER MINES LTD.

Address:

STE 1900, DAON BLDG, 999 W. HASTINGS ST, VANCOUVER, B.C.

Survey Company:

W.C. HOOD GEOLOGICAL CONSULTING

Name and Address of Author (of this Technical Report):

WILLIAM C. HOOD, BOX 1722, BEAUSEJOUR, MAN. ROE OCO

Mine Rights:

Type of Work Performed:

Calculation of Expenditure Days

Total Days Credits

Expenditures (excludes power or transportation):

Total

Expenditures

Calculation of Expenditure Days

Total

Expenditures

Total Days Credits

Note: Special provisions credited may not apply to mining lands section.

Received:

MAR 23 1947

For Office Use Only

Total Days Cr. Date Recorded

Received

Total number of mining claims covered by this report of work:

52

Date:

March 12/37

Cautions: 1. Check that this form is the correct form for the Report of Work annex. 2. Have the author performed the work.

William C. Hood

Date:

March 12/37

Cautions: 1. Check that this form is the correct form for the Report of Work annex. 2. Have the author performed the work.

William C. Hood
Claims worked on:

Samples Assayed:

886426 - 27
886429
886431 - 32 - 33
8864281
886449
886451 - 52
886463
31 - 32 - 926133 - 34 - 35

- Need receipts.
CLAIM BLOCK D

LIST OF SYMBOLS

- Outcrop
- Geologic contact (defined, assumed)
- Igneous layering, Foliation
- Claim post, Claim line
- Lake, Creek
- Swampy area
- Coniferous forest, Spruce bog
- Deciduous forest (poplar)
- Boulder till, Gravel
- Trench
- Sublimes
- Harbour
- Drainage

LITHOLOGIC UNITS

1. Pyroxenite: Fine- to medium-grained
2. Pyroxenite: Fine- to medium-grained
3a. Gabbro: Fine- to medium-grained
3b. Gabbro: Leucogabbro, Anorthositic
3c. Gabbro: Pegmatitic
3d. Gabbro: Melagabbro

SCALE 1:2500

CREAM SILVER MINES

GEOLOGY

MAP 2 APR. 87 WH, BT