REPORT ON GEOLOGICAL MAPPING
AND SCINTILLOMETER SURVEY ON
MISFIT LAKE PROPERTY IN THE
PATRICIA MINING DIVISION, ONT.
Concentrated Rare Earth Minerals Ltd.

By H. Dowhaluk,
Tamworth, Ont.,
Nov. 13, 1988
INTRODUCTION

Geological mapping and a scintillometer survey were carried out by the writer on the Misfit Lake property of Concentrated Rare Earth Minerals Ltd during the period of September 6 to October 16, 1988. Altogether, 7.3 miles of lines, previously cut, were surveyed. These lines are spaced 400 feet apart and scintillometer readings were taken every 100 feet for a total of 370 stations. The auditory feature of the scintillometer was used to check the lines between stations and to check outcrops in order to spot any significant deviation from the readings at the stations. The readings and the geological data were plotted on a map at a scale of 1 inch equals 200 feet.

PROPERTY, LOCATION, ACCESS

The nine claims covered by this report are owned by:

Concentrated Rare Earth Minerals Ltd.,
#404 - 20 Eglington Ave. W.,
Box 2038, Toronto, Ont., M4R 1K8

These claims are numbered 912891 to 912897 (7 claims) in the unsurveyed Kabik Lake Area and 910985 and 910986 in Pickerel Township, District of Kenora and Patricia Mining Division. These two claims are described further as:

910985 covers the SE ¼ of the S ¼ of Lot 1, Conc VI
910986 covers the NE ¼ of the S ¼ of Lot 1, Conc VI

These nine claims consist of about 40 acres each for a total of 360 acres, more or less.

The claims are situated about 20 kilometers southwest of the town of Sioux Lookout and straddle the old highway No. 72 where it passes to the south and east of Misfit Lake. These claims are shown on the MNR map G-2079, 'Kabik Lake and Pickerel Township'. The area is covered by the 1:50,000 NTS map, 52F/16, 'Sandybeach Lake'.

Access is by road; the old highway 72 forms a southerly loop off the new highway.

HARRY DOWHALUK
TOPOGRAPHY and VEGETATION

Misfit Lake is 1,198 feet above sea level. The communications tower hill and another hill east of the north end of Misfit Lake are both about 1,296 feet. Most of the terrain is rolling to flat with areas of hummocky outcrops. Wooded swamps are roughly parallel to the strike of the formations and probably reflect glacial grooving to some extent.

The entire property is forested except for the clearing around the communications tower and Misfit Lake. The claim-area has been logged in the past. Balsam fir is by far the most predominant tree on the property; other species are white and black spruce, white cedar, white pine, jack pine, aspen poplar and birch. Speckled alder is abundant in wet areas. The forest floor is covered by a layer of sphagnum moss.

PREVIOUS WORK

Prospecting, mapping and 1,014 feet of diamond drilling was carried out in 1960 by Batch River Gold Mines Ltd. The main showing was located on the south side of the old highway 72 on the present line 4-E. A quartz stockworks across a width of 15 feet strikes northeast. Diamond drill hole No. B-4 returned 0.10 oz/t gold over six feet. (Report by J.D. Williamson, 1960).

Line-cutting and a magnetometer survey were carried out by the present company in 1987.

SCINTILLOMETER SURVEY

The SRAT SPP-2-NF scintillometer used for the survey measures alpha, beta and gamma rays in counts per second. It has five scales - 150, 500, 1500, 5,000, 15,000 c/s.

The average reading in this survey was 31 c/s. The highest readings (55 c/s) were over deposits of gravelly till; the lowest readings were over deep swamp (10 c/s). Typical readings on outcrop were 20 c/s. There are no readings that reflect any significant radioactivity and the entire set of readings may be considered simply as 'background'.

HARRY DOWHALUK
TABLE OF FORMATIONS

CENOZOIC

- **RECENT** Swamp deposits, soil
- **PLEISTOCENE** Gravel, sand, clay

PRECAMBRIAN

- Basic Intrusives
 - 3. Pyroxenite
- Sediments, schist
 - 2c Sericite-carbonate schist, phyllite
 - 2b Chlorite-carbonate schist
 - 2a Mudstone, argillite
- Volcanics
 - 1f Tuff, lapilli tuff
 - 1e Fragmental lava
 - 1d Pillow lava
 - 1c Greenstone schist, schistose greenstone
 - 1b Andesite porphyry
 - 1a Massive andesite

GEOLOGY

The entire property is underlain by andesitic volcanics. Most of the rock consists of massive to schistose andesite. Pillow lava occurs in places but where observed, it was stretched out and difficult to recognize as such. Tops could not be made out. Layers of tuff are frequent and are well exposed just north of the communications tower.

The strike of the formations is about N 70°E and the dip varies from 70° to 85° to the northwest. There is a great deal of shearing in these rocks. On the north side of Misfit Lake at the west end, there are two sets of shearing which intersect at 25°.

ECONOMIC GEOLOGY

The showing on the south side of the highway is a stockworks

HARRY DOWHALUK
of small quartz veins some 15 feet wide with individual veinlets up to six inches wide. These are subparallel to the strike of the formations but dip in the opposite direction as much as 45° to the southeast. Two holes underneath this showing were drilled by Batch River Gold Mines. At a vertical depth of 65 feet (DDH B-1) only negligible gold values were returned while a deeper hole (B-4) returned 0.10 oz/t gold over six feet. A section on holes B-1 and B-4, shows the zone to dip 70° to the southeast. This zone was picked up in DDH B-2 100 feet to the southwest with low values (0.06 oz/t), but was not picked up in B-3 which was drilled another 100 feet to the southwest.

The present mapping picked up a shatter zone with ladder quartz just west of the communications tower and a three-inch quartz vein east of the tower. These are pretty well on strike with the showing discussed above. The shatter zone west of the tower is 1.5 to 3.0 feet wide with one-inch ladder rungs as well as some small gash veins. The alignment of these features suggest some kind of 'break' - a single-event type of shock that was sufficient to open up numerous fractures but not sufficient to create a continuous opening. The quartz is typically barren, white and irregular. Williamson, however, reports some pyrite and tourmaline in the main showing.

The writer gathered some quartz from the main showing which assayed nil gold. The old core was piled nearby but is presently badly jumbled. One box was found still intact which contained two split core quartz sections (each 1.2 ft long; separated by about 5 feet) which were sampled by the writer. These yielded trace and nil respectively.

There are trenches along the south boundary of claim 910985 but nothing of interest was seen here except for a tiny quartz lens. The rock to the west of the trenches is slightly magnetic as is the rock on the south shore of Misfit Lake at L-8-W. Very fine pyrrhotite is present. A sample from each place yielded nil gold.

CONCLUSIONS AND RECOMMENDATIONS

There is a great deal of outcrop on the property and the outcrops are heavily covered with moss. It is not likely that prospectors in the past have examined every outcrop. From a grassroots
prospecting viewpoint, there are still opportunities for finding mineralization, especially low grade disseminated types or veins. The property is very accessible and a backhoe could be used for stripping and trenching.

The main showing itself, despite the sporadic gold assay of interest, does not appear to have any real potential for a gold deposit. At this point it is still open northeastwards. However, on the basis of known assays and geology, it is unlikely that a low grade mineralized zone could be outlined that would be of sufficient size, continuity and grade to make an ore body.

There is some potential for gold and further work such as geochemistry, stripping and trenching could be done with some hope of success; however, any such endeavour would be basically grass roots prospecting and should be evaluated against other options that might be available to the company.

Respectfully submitted

Harry Dowhaluk, B.A., F.G.A.C.
Resident Geologist

Nov. 13, 1988
SCINTILLOMETRE Type SPP 2NF

Fiche de contrôle

Scintillemètre SPP 2. Série 12
No. 547

A. Contrôle électrique

- Néon tampon de fonctionnement
- Reglage plage acceptation piles 33V min.
- Reglage régulation M.T. 3V min.
- Contrôle consommation
 Voir courbe ci-contre
- Reglage de sensibilité - Precision ± 1%
 Gamme x 15000 - 12000 c/s pour 1500 c/s
 x 5000 - 4000 c/s
 x 1500 - 1200 c/s
 x 500 - 400 c/s
 x 160 - 120 c/s
- Reglage gain P.M. sur 137Cs +1.2V
- Contrôle prises : Casque, etc. assuré CEA
- Contrôle Gamme 150 c/s "Lent" X

B. Contrôle nucléaire

- Reglage du seuil d'électronique 50mV
- Mesure du mouvement propre ambiant M.P. = 5, 24 c/s
- Mesure avec Source etalon CTU 25 c/s
- Comptage = 239 + 50 c/s - M.P. = 204 ± 20 c/s
 Precision du reglage %
- Recouplement des Gammes
 Gamme 150 = 150 c/s
 Gamme 500 = 500 c/s
 Gamme 1500 = 1500 c/s

C. Autres contrôles

- Étanchéité: Pistolet X - Boîtier X
- Maniabilité

Accessoires

<table>
<thead>
<tr>
<th>Nature</th>
<th>Qte.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ceinturon</td>
<td>1</td>
</tr>
<tr>
<td>Bretelle</td>
<td>1</td>
</tr>
<tr>
<td>Casque</td>
<td>1</td>
</tr>
<tr>
<td>Source</td>
<td>1</td>
</tr>
<tr>
<td>Saccoche</td>
<td>1</td>
</tr>
<tr>
<td>Caisse</td>
<td>1</td>
</tr>
<tr>
<td>Piles</td>
<td>1</td>
</tr>
<tr>
<td>Notice</td>
<td>1</td>
</tr>
</tbody>
</table>

Materiel vérifié par le CEA

SRAT 41 rue Emoricu PARIS xv. Vau.7933 CTU le 10/35

Designated for γ radiation detection
Geophysical-Geological-Geochemical Technical Data Statement

TO BE ATTACHED AS AN APPENDIX TO TECHNICAL REPORT

FACTS SHOWN HERE NEED NOT BE REPEATED IN REPORT

TECHNICAL REPORT MUST CONTAIN INTERPRETATION, CONCLUSIONS ETC.

Type of Survey(s)
Geological, radiometric

Township or Area
Kabik Lake & Pickerel Twsp

Claim Holder(s)
Concentrated Rare Earth Minerals Ltd

Survey Company
Harry Dowhaluk

Author of Report
Harry Dowhaluk

Address of Author
Box 118, Tamworth, Ont. KOK3G0

Covering Dates of Survey
Sept. 6 - Nov. 13, 1988

Total Miles of Line Cut
7.3 mi.

SPECIAL PROVISIONS CREDITS REQUESTED

<table>
<thead>
<tr>
<th>Geophysical</th>
<th>Days per claim</th>
</tr>
</thead>
<tbody>
<tr>
<td>Electromagnetic</td>
<td></td>
</tr>
<tr>
<td>Magnetometer</td>
<td></td>
</tr>
<tr>
<td>Radiometric</td>
<td>20</td>
</tr>
<tr>
<td>Other</td>
<td>20</td>
</tr>
<tr>
<td>Geological</td>
<td></td>
</tr>
<tr>
<td>Geochemical</td>
<td></td>
</tr>
</tbody>
</table>

AIRBORNE CREDITS (Special provision credits do not apply to airborne surveys)

<table>
<thead>
<tr>
<th>Magnemeter</th>
<th>Electromagnetic</th>
<th>Radiometric</th>
</tr>
</thead>
<tbody>
<tr>
<td>(enter days per claim)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

DATE
Nov. 13/88

SIGNATURE
Author of Report or Agent

RES. GEOL. Qualifications

Previous Surveys

<table>
<thead>
<tr>
<th>File No.</th>
<th>Type</th>
<th>Date</th>
<th>Claim Holder</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

TOTAL CLAIMS
9
Geophysical Technical Data

Ground Surveys — If more than one survey, specify data for each type of survey

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of Stations</td>
<td>370</td>
</tr>
<tr>
<td>Station interval</td>
<td>100 ft.</td>
</tr>
<tr>
<td>Profile scale</td>
<td></td>
</tr>
<tr>
<td>Contour interval</td>
<td></td>
</tr>
<tr>
<td>Number of Readings</td>
<td>370</td>
</tr>
<tr>
<td>Line spacing</td>
<td>400 ft</td>
</tr>
</tbody>
</table>

Magnetic

Instrument	
Accuracy	Scale constant
Diurnal correction method	
Base Station check-in interval	(hours)
Location and value	

Electromagnetic

Instrument	
Coil configuration	
Coil separation	
Accuracy	
Method	Fixed transmitter
Complex frequency	(specify V.L.F. station)

Gravity

Instrument	
Scale constant	
Corrections made	
Base station value and location	

Elevation accuracy

Instrument	
Method	Time Domain
Parameters	On time
	Off time
	Delay time
	Integration time
Frequency	
Range	

Induced Polarization

Power	
Electrode array	
Electrode spacing	
Type of electrode	
SELF POTENTIAL
Instrument_________________________Range__________________________

Survey Method ___

Corrections made___

RADIOMETRIC
Instrument SRAT SPP-2-NF
Values measured Alpha, beta, gamma rays (total count) in counts per second
Energy windows (levels) 150, 500, 1500, 5000, 15,000 c/s
Height of instrument Ground level Background Count 31 c/s
Size of detector ___
Overburden to 30 ft (type, depth – include outcrop map)

OTHERS (SEISMIC, DRILL WELL LOGGING ETC.)
Type of survey__________________________
Instrument ___
Accuracy _________________________________
Parameters measured_____________________
Additional information (for understanding results)________________________

AIRBORNE SURVEYS
Type of survey(s)___
Instrument(s) (specify for each type of survey)
Accuracy (specify for each type of survey)
Aircraft used___
Sensor altitude___
Navigation and flight path recovery method _____________________________

Aircraft altitude___
Miles flown over total area___
Line Spacing___
Over claims only___

January 12, 1989

Dear Madam:

Re: Notice of Intent dated December 28, 1988
Geophysical (Radiometric) and Geological Survey submitted on
Mining Claims PA 910985 et al in Kabik Lake and Pickerel Township

The assessment work credits, as listed with the above-mentioned Notice of Intent, have been approved as of the above date.

Please inform the recorded holder of these mining claims and so indicate on your records.

Yours sincerely,

W.R. Cowan
Provincial Manager, Mining Lands
Mines & Minerals Division

cc: Mr. G.H. Ferguson
Mining and Lands Commissioner
Toronto, Ontario

Concentrated Rare Earth Minerals Ltd.
Suite 404
20 Eglinton Ave. W.
Box 2038
Toronto, Ontario
M4R 1K8

Mr. Harry Dowhaluk
Box 118
Tamworth, Ontario
KOK 3GO
Ministry of
Northern Development
and Mines

Ontario

Technical Assessment
Work Credits

Date
December 28, 1988

File
2.11852

Mining Recorder’s Report of
Work No.
W8803-279

Recorded Holder
Concentrated Rare Earth Minerals Ltd.

Township or Area
Kabik Lake and Pickerel Township

<table>
<thead>
<tr>
<th>Type of survey and number of Assessment days credit per claim</th>
<th>Mining Claims Assessed</th>
</tr>
</thead>
</table>
| Geophysical
 Electromagnetic ___ days |
| Magnetometer __ days |
| Radiometric 16.75 days |
| Induced polarization ______________________________________ days |
| Other ___ days |
| Section 77 (19) See “Mining Claims Assessed” column |
| Geological 16.75 days |
| Geochemical ___ days |

 Man days □ Airborne □

 Special provision □ Ground □

 □ Credits have been reduced because of partial coverage of claims.
 □ Credits have been reduced because of corrections to work dates and figures of applicant.

PA 910985-986
912391 to 397 inclusive

Special credits under section 77 (16) for the following mining claims

No credits have been allowed for the following mining claims

□ not sufficiently covered by the survey □ insufficient technical data filed

The Mining Recorder may reduce the above credits if necessary in order that the total number of approved assessment days recorded on each claim does not exceed the maximum allowed as follows: Geophysical - 80; Geological - 40; Geochemical - 40; Section 77(19) - 60.
Ministry of Northern Development and Mines
Ontario
Report of Work
(Geophysical, Geological, Geochemical and Expenditure)

Geological, Radiometric

Concentrated Rare Earth Minerals Ltd.

Address: #404 - 20 Eglington Ave.W., Box 2038, Toronto, Ont., M4R 1K8

Survey Company: H. Dowhaluk, Geologist

Name and Address of Author of Geo-technical report: H. Dowhaluk, Box 118, Tamworth, Ont., KOK 3G0

Date of Survey: 6.9.88

Total Miles of Line Cut: 7.3 mi.

Credits Requested per Each Claim in Columns at right

Special Provisions
For first survey:
Enter 40 days. (This includes line cutting)

For each additional survey:
using the same grid:
Enter 20 days (for each)

Man Days
Complete reverse side and enter total(s)

EXPE\N\MERIT (excludes power stripping) Type of Work Performed
Performed on Claim(s)

Calculation of Expenditure Days Credits
Total Expenditures: $415

Total Days Credits: 13

Instructions
Total Days Credits may be apportioned at the claim holder's choice. Enter number of days credits per claim selected in columns at right.

For Office Use Only

Total number of mining claims covered by this report of work: 9

Accountant
360
December 6, 1988

Certification Verifying Report of Work

I hereby certify that I have a personal and intimate knowledge of the facts set forth in the Report of Work annexed hereto, having performed the work or witnessed same during and/or after its completion and the annexed report is true.

Name and Postal Address of Person Certifying: H. Dowhaluk, Box 118, Tamworth, Ont., KOK 3G0

Date Certified: November 19, 1988

Certified by: H. Dowhaluk

Instructions:
- Please type or print.
- If number of mining claims traversed exceeds space on this form, attach a list.
- Only days credits calculated in the "Expenditures" section may be entered in the "Expend. Days Cr." columns.
- Do not use shaded areas below.
Type of Survey(s) Geological, radiometric
Township or Area Kabik Lake & Pickerel Twsp
Claim Holder(s) Concentrated Rare Earth Minerals Ltd
Survey Company Harry Dowhaluk
Author of Report Harry Dowhaluk
Address of Author Box 118, Tamworth, Ont., KOK3G0
Covering Dates of Survey Sept. 6 - November 13, 1988
Total Miles of Line Cut 7.3 mi.

MINING CLAIMS TRAVERSED
List numerically

<table>
<thead>
<tr>
<th>Prefix</th>
<th>Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>PA</td>
<td>910985</td>
</tr>
<tr>
<td>PA</td>
<td>910986</td>
</tr>
<tr>
<td>PA</td>
<td>912391</td>
</tr>
<tr>
<td>PA</td>
<td>912392</td>
</tr>
<tr>
<td>PA</td>
<td>912393</td>
</tr>
<tr>
<td>PA</td>
<td>912394</td>
</tr>
<tr>
<td>PA</td>
<td>912395</td>
</tr>
<tr>
<td>PA</td>
<td>912396</td>
</tr>
<tr>
<td>PA</td>
<td>912397</td>
</tr>
</tbody>
</table>

SPECIAL PROVISIONS
CREDITS REQUESTED
Geophysical
--Electromagnetic
--Magnetometer
--Radiometric 20
--Other 20
Geological
Geochemical

AIRBORNE CREDITS (Special provision credits do not apply to airborne surveys)
Magnetometer Electromagnetic Radiometric
(enter days per claim)

DATE: Nov.13, 1988 SIGNATURE: Harry Dowhaluk
Author of Report or Agent

Res. Geol. Qualifications

Previous Surveys
<table>
<thead>
<tr>
<th>File No.</th>
<th>Type</th>
<th>Date</th>
<th>Claim Holder</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

TOTAL CLAIMS 9
GEOPHYSICAL TECHNICAL DATA

GROUND SURVEYS — If more than one survey, specify data for each type of survey

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Data</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of Stations</td>
<td>370</td>
</tr>
<tr>
<td>Station interval</td>
<td>100 ft</td>
</tr>
<tr>
<td>Number of Readings</td>
<td>370</td>
</tr>
<tr>
<td>Line spacing</td>
<td>400 ft</td>
</tr>
<tr>
<td>Profile scale</td>
<td></td>
</tr>
<tr>
<td>Contour interval</td>
<td></td>
</tr>
<tr>
<td>Instrument</td>
<td></td>
</tr>
<tr>
<td>Accuracy — Scale constant</td>
<td></td>
</tr>
<tr>
<td>Diurnal correction method</td>
<td></td>
</tr>
<tr>
<td>Base Station check-in interval (hours)</td>
<td></td>
</tr>
<tr>
<td>Base Station location and value</td>
<td></td>
</tr>
</tbody>
</table>

MAGNETIC

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Data</th>
</tr>
</thead>
<tbody>
<tr>
<td>Instrument</td>
<td></td>
</tr>
<tr>
<td>Coil configuration</td>
<td></td>
</tr>
<tr>
<td>Coil separation</td>
<td></td>
</tr>
<tr>
<td>Accuracy</td>
<td></td>
</tr>
<tr>
<td>Method</td>
<td></td>
</tr>
<tr>
<td>Fixed transmitter</td>
<td></td>
</tr>
<tr>
<td>Shoot back</td>
<td></td>
</tr>
<tr>
<td>In line</td>
<td></td>
</tr>
<tr>
<td>Parallel line</td>
<td></td>
</tr>
<tr>
<td>Frequency (specify V.L.F. station)</td>
<td></td>
</tr>
<tr>
<td>Parameters measured</td>
<td></td>
</tr>
</tbody>
</table>

ELECTROMAGNETIC

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Data</th>
</tr>
</thead>
<tbody>
<tr>
<td>Instrument</td>
<td></td>
</tr>
<tr>
<td>Scale constant</td>
<td></td>
</tr>
<tr>
<td>Corrections made</td>
<td></td>
</tr>
<tr>
<td>Base station value and location</td>
<td></td>
</tr>
<tr>
<td>Elevation accuracy</td>
<td></td>
</tr>
</tbody>
</table>

GRAVITY

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Data</th>
</tr>
</thead>
<tbody>
<tr>
<td>Instrument</td>
<td></td>
</tr>
<tr>
<td>Scale constant</td>
<td></td>
</tr>
<tr>
<td>Corrections made</td>
<td></td>
</tr>
<tr>
<td>Base station value and location</td>
<td></td>
</tr>
<tr>
<td>Elevation accuracy</td>
<td></td>
</tr>
</tbody>
</table>

INDUCED POLARIZATION

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Data</th>
</tr>
</thead>
<tbody>
<tr>
<td>Method</td>
<td></td>
</tr>
<tr>
<td>Time Domain</td>
<td></td>
</tr>
<tr>
<td>Frequency Domain</td>
<td></td>
</tr>
<tr>
<td>Parameters — On time</td>
<td></td>
</tr>
<tr>
<td>Off time</td>
<td></td>
</tr>
<tr>
<td>Delay time</td>
<td></td>
</tr>
<tr>
<td>Integration time</td>
<td></td>
</tr>
<tr>
<td>Frequency</td>
<td></td>
</tr>
<tr>
<td>Range</td>
<td></td>
</tr>
<tr>
<td>Power</td>
<td></td>
</tr>
<tr>
<td>Electrode array</td>
<td></td>
</tr>
<tr>
<td>Electrode spacing</td>
<td></td>
</tr>
<tr>
<td>Type of electrode</td>
<td></td>
</tr>
</tbody>
</table>
SELF POTENTIAL
Instrument_______________________________________ Range __________________________
Survey Method__
__
Corrections made__
__

RADIOMETRIC
Instrument ___ Value measured
SRAT SPP-2-NF Alpha, beta, gamma rays (total count) in counts per second
Values measured__
Energy windows (levels) 150, 500, 1500, 5000, 15,000
Height of instrument Ground level Background Count 31 c/s
__
Size of detector to 30 ft.
__
Overburden __________________________ (type, depth - include outcrop map)
__

OTHERS (SEISMIC, DRILL WELL LOGGING ETC.)
Type of survey__
Instrument __
__
Accuracy __
__
Parameters measured________________________________
__
Additional information (for understanding results)
__

AIRBORNE SURVEYS
Type of survey(s)____________________________________
Instrument(s) __
__
Accuracy __
__
Aircraft used __
__
Sensor altitude ______________________________________
__
Navigation and flight path recovery method ____________
__
Aircraft altitude ___________________________ Line Spacing
Miles flown over total area __________________________ Over claims only
GEOCHEMICAL SURVEY – PROCEDURE RECORD

Numbers of claims from which samples taken

<table>
<thead>
<tr>
<th>Total Number of Samples</th>
<th>Type of Sample</th>
<th>Average Sample Weight</th>
<th>Method of Collection</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Soil Horizon Sampled</th>
<th>Horizon Development</th>
<th>Sample Depth</th>
<th>Terrain</th>
<th>Drainage Development</th>
<th>Estimated Range of Overburden Thickness</th>
</tr>
</thead>
</table>

SAMPLE PREPARATION
(Includes drying, screening, crushing, ashing)

<table>
<thead>
<tr>
<th>Mesh size of fraction used for analysis</th>
<th>General</th>
</tr>
</thead>
</table>

ANALYTICAL METHODS

Values expressed in:
- per cent
- p. p. m.
- p. p. b.

Cu, Pb, Zn, Ni, Co, Ag, Mo, As-(circle)
Others

Field Analysis (tests)
- Extraction Method
- Analytical Method
- Reagents Used

Field Laboratory Analysis
- No. (tests)
- Extraction Method
- Analytical Method
- Reagents Used

Commercial Laboratory (tests)
- Name of Laboratory
- Extraction Method
- Analytical Method
- Reagents Used

General
FILE NUMBER: 211852

NTS

TOWNSHIP/AREA (S)

52F
KABIK LAKE

NUMBER OF POLYGONS

1
SCHISTOSITY, inclined, vertical

GEOLOGICAL BOUNDARY, SLOPE

CONCENTRATED RARE EARTH MINERALS LTD

MISSFIT LAKE PROPERTY

KABIK LAKE AREA & PICKEREL TWP

DISTRICT OF KENORA, ONTARIO

SCALE: 1 IN = 200 FT.

DATE: NOVEMBER, 1988

LEGEND

SYMBOLS

SRAT SCINTILLOMETER SP-2-NF

Instrument

Readings in counts per second

CENOZOIC

PLEISTOCENE: Gravel, sand, clay

PRECAMBRIAN

Porphyry

Sericite-carbonate schist, phyllite

Mudstone, argillite

Tuff

Fragmiental tuff

Pillow tuff

Banded iron, actinolite amphibole

Andesite porphyry, massive diorite

CONCENTRATED RARE EARTH MINERALS LTD

MISSFIT LAKE PROPERTY

KABIK LAKE AREA & PICKEREL TWP

DISTRICT OF KENORA, ONTARIO

SCALE: 1 IN = 200 FT.

DATE: NOVEMBER, 1988

LEGEND

SYMBOLS

SRAT SCINTILLOMETER SP-2-NF

Instrument

Readings in counts per second

CENOZOIC

PLEISTOCENE: Gravel, sand, clay

PRECAMBRIAN

Porphyry

Sericite-carbonate schist, phyllite

Mudstone, argillite

Tuff

Fragmiental tuff

Pillow tuff

Banded iron, actinolite amphibole

Andesite porphyry, massive diorite

CONCENTRATED RARE EARTH MINERALS LTD

MISSFIT LAKE PROPERTY

KABIK LAKE AREA & PICKEREL TWP

DISTRICT OF KENORA, ONTARIO

SCALE: 1 IN = 200 FT.

DATE: NOVEMBER, 1988

LEGEND

SYMBOLS

SRAT SCINTILLOMETER SP-2-NF

Instrument

Readings in counts per second

CENOZOIC

PLEISTOCENE: Gravel, sand, clay

PRECAMBRIAN

Porphyry

Sericite-carbonate schist, phyllite

Mudstone, argillite

Tuff

Fragmiental tuff

Pillow tuff

Banded iron, actinolite amphibole

Andesite porphyry, massive diorite