REPORT ON THE GEOLOGICAL MAPPING
OF THE
HOPKINS LAKE PROPERTY
DISTRICT OF KENORA, ONTARIO

NTS: 11.ON.52E.10

HOMESTAKE MINERAL DEVELOPMENT COMPANY

Reported by: M. A. O'Donnell
Homestake Mineral Development Company
P.O. Box 3370
Thunder Bay, Ontario
P7B 5J8
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Summary</td>
<td>1</td>
</tr>
<tr>
<td>2. Introduction</td>
<td>2</td>
</tr>
<tr>
<td>2.1 Location, Access, and Topography</td>
<td>2</td>
</tr>
<tr>
<td>2.2 Land Status</td>
<td>4</td>
</tr>
<tr>
<td>2.3 Previous Work</td>
<td>4</td>
</tr>
<tr>
<td>3. Regional Geology</td>
<td>8</td>
</tr>
<tr>
<td>4. Local Geology</td>
<td>9</td>
</tr>
<tr>
<td>4.1 Alteration</td>
<td>10</td>
</tr>
<tr>
<td>4.2 Structure</td>
<td>11</td>
</tr>
<tr>
<td>4.3 Mineralization</td>
<td>11</td>
</tr>
<tr>
<td>5. Conclusions and Recommendations</td>
<td>14</td>
</tr>
<tr>
<td>6. References</td>
<td>15</td>
</tr>
<tr>
<td>Appendix A : Statement of Qualifications</td>
<td>16</td>
</tr>
<tr>
<td>Appendix B : Technical Statement</td>
<td>18</td>
</tr>
<tr>
<td>Appendix C : Report of Work</td>
<td>23</td>
</tr>
</tbody>
</table>
LIST OF FIGURES

1. Property Location Map
 Scale 1:625,000.. 3

2. Claim Location Map
 Scale 1:20,000.. 5

3. Previous Diamond Drilling by Hudson Bay Exploration and Development and by Teck Corporation
 Scale 1:20,000.. 6

4. Bedrock Geology
 Scale 1:5,000.. 13
1.0 SUMMARY

Geological mapping was performed by Homestake Mineral Development Company on the Hopkins Lake property as part of a regional program investigating the gold potential of the Crowduck Lake - Rush Bay Lineament and related structures.

The property is underlain by intermediate to felsic flows, pyroclastic rocks, and debris flows with local metasedimentary rocks.

Two gossans were discovered overlying semi-massive pyrite. These may represent a mineralized zone with a strike length of 215 meters.

Elsewhere on the claims, exposed alteration, deformation, and visible mineralization are poorly developed, suggesting that these rocks have not been subject to a mineralizing event of economic interest.
2.0 INTRODUCTION

Six claims were staked in the Hopkins Lake area in 1984 in the course of Homestake Mineral Development Company's regional investigation of the gold potential of the Crowduck Lake - Rush Bay Lineament and related structures.

The Hopkins Lake area lies to the north of the Crowduck Lake - Rush Bay Lineament, where the locally unusual presence of metasedimentary rocks in a predominantly volcanic terrane indicated interesting structural and lithological complexity.

In mid July, 1985, Homestake Mineral Development Company undertook a surface mapping program to evaluate the Hopkins Lake property. Two geologists traversed the claims using air photos and a flagged, hip-chained grid of 100-meter-spaced north-south lines for control. Results are plotted on the Geology Map (figure 1) at a scale of 1:5,000.

2.1 Location, Access, and Topography

The Hopkins Lake property is centered at 49°41' north latitude, 94°56' west longitude (UTM 361 000E, 5505 000N) in Forgie Township in the Kenora Mining District of Northwestern Ontario, (figures 2 and 3). Good all-weather roads run through the property 6 kilometers south of the Trans Canada Highway (#17), 35 kilometers west of Kenora.

Relief on the property is low, ranging from 340 meters a.s.l. in swamps to 370 meters a.s.l. along ridges and on rounded hills. Nevertheless, fault-related cliffs on resistant felsic knobs introduce a subdued ruggedness to the area.
Outcrop forms approximately 15% of the property, emerging from overlying sand and boulder till as ridges and isolated knobs. Bedrock is also exposed locally along the main roadway and old logging roads.

Vegetation is dominated by immature stands of spruce and fir studded with aspen, birch, and ash. More open pine prevails in sandy flats and along rocky ridges. Much of the area has been logged and replanted, but old logging roads are now densely overgrown with young aspen, alder, and fir. The northern edge of the property is covered by swamp flanking Barehill Creek.

2.2 Land Status

This report covers geological mapping on six mineral claims wholly owned by Homestake Mineral Development Company of 201 - 856 Homer Street, Vancouver, British Columbia (figure 3):

<table>
<thead>
<tr>
<th>Claim Number</th>
<th>Recording Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>K824231</td>
<td>September 21, 1984</td>
</tr>
<tr>
<td>K824232</td>
<td>September 21, 1984</td>
</tr>
<tr>
<td>K824233</td>
<td>September 21, 1984</td>
</tr>
<tr>
<td>K824234</td>
<td>September 21, 1984</td>
</tr>
<tr>
<td>K824235</td>
<td>September 21, 1984</td>
</tr>
<tr>
<td>K824236</td>
<td>September 21, 1984</td>
</tr>
</tbody>
</table>

2.3 Previous Work

The Hopkins Lake area has been explored for both base and precious metals in the recent past. In 1975, Hudson Bay Exploration and Development Company placed at least two diamond drill holes and one Winkie hole in the area covered by this report in order to test conductors disclosed by their 1974 regional airborne magnetometer, EM, and radiometric surveys (figure 4). Results showed conductors to be due to semi-massive pyrite and pyrrhotite. Geochemical
SL75-1
75 to 135 ppb Au

SL75-8
trace Au

HL9-1
nil Au

To Rush Bay,
Lake of the Woods

Bare Hill Creek

Lake of the Woods

To Hwy 17

400 meters
Scale 1:20,000

PREVIOUS DIAMOND DRILLING BY
HUDSON BAY EXPLORATION
& TECK CORP.

HOMESTAKE
MINERAL DEVELOPMENT COMPANY
HOPKINS LAKE PROPERTY
Kenora Mining District, Ontario

Hudson Bay Exploration
drill hole

Teck
drill hole

claim line &
corner post

DRAWN
DB
07/85

DATE
FILE CODE
52E/10

FIGURE
4
analysis of the core indicated only minor zinc over short widths, but slightly elevated gold and silver values associated with a variety of sulphide-bearing lithologies over most of the two holes.

In 1981 and 1982, Teck Corporation examined the property, collaring at least one diamond drill hole (figure 4) also to test conductors. Conductors were due to semi-massive to massive pyrite and pyrrhotite, but the core yielded no anomalous values whatsoever in either base or precious metals.
3.0 REGIONAL GEOLOGY

The Hopkins Lake property lies in the Wabigoon greenstone belt, a complexly folded sequence of Archaean mafic to felsic volcanic rocks and metasedimentary rocks extending from the Manitoba border along the tops of Shoal Lake and Lake of the Woods to ten kilometers east of Kenora. Early Precambrian felsic stocks and dykes intrude at several points, most notably forming the High Lake Stock and the Canoe Lake Stock. Gold mineralization fringes both of these stocks.

Intense deformation zones run northeasterly up through Shoal Lake to merge with an east-west-trending deformation zone known as the Crowduck Lake - Rush Bay Lineament.
4.0 LOCAL GEOLOGY

The Hopkins Lake property is underlain by intermediate to felsic metavolcanic rocks of the Archaean Keewatin Group and similarly-aged metasedimentary rocks. For the purposes of this report, the geology has been divided into four map units: intermediate metavolcanic rocks (map unit 2), metasedimentary rocks (map unit 3), felsic intrusive rocks (map unit 4), and felsic volcanic rocks (map unit 5).

The intermediate volcanic rocks appear as fragmental to massive, dark green or paler grey-green chlorite schists or very fine grained chloritic rock. Coarsely fragmental units are not common on the Hopkins Lake property, but where they do occur, clasts are commonly darker green, chloritic, and elongate parallel to foliation with length-to-width ratios of about 3:1. Clasts seldom exceed 5 centimeters in length. In the southern portion of the claim group local feldspar porphyries occur.

More siliceous, quartz-porphyritic sericite schist and cherty siltstone are locally interbedded with the intermediate volcanic rocks.

Metasedimentary rocks are exposed near a bend in the road on claim K824231. A moderately fissile grey-black argillite forms the southern roadside outcrop, while farther north, fine-grained arkosic sandstone is interbedded with greywacke and intermediate tuffs. A bed of cream-coloured dolomite is seen across the road hosted in chlorite schist of intermediate volcanic origin.

Further to the west, siliceous metasedimentary rocks become difficult to distinguish from felsic volcanic rocks, since both appear as cherty quartz-sericite schists.
Quartz porphyritic felsic intrusive rocks have only been tentatively identified on the property as sheared quartz porphyritic sericite schist. This identification remains uncertain, since felsic volcanic rocks without large clasts also appear as quartz porphyritic sericite schists, and cross-cutting field relations are not exposed.

Felsic volcanic rocks in the area range from dacitic to rhyolitic compositions. Characteristically, glossy clear to grey quartz megacrysts are contained in an aphanitic, cherty-looking matrix which forms a quartz sericite schist when sheared. Volcanic breccias and debris flows are common, in which clasts are composed of black cherty material, dark green chloritic rock, and pale green matrix material with and without quartz phenocrysts. Clasts are generally ellipsoidal in form, but in an outcrop near the eastern boundary of the property, angular black cherty clasts are preserved in a debris flow. Clasts are variable in size, ranging from millimeters to tens of centimeters in length. The felsic volcanic rocks are relatively resistant, and form all the outstanding knobs in the area.

4.1 Alteration

Weak Fe-carbonate alteration is common but not ubiquitous on the property, ranging from a pervasive Fe-carbonate component to discrete blebs and veinlets of Fe-carbonate (probably ankerite) and quartz. Such altered rock weathers to a distinctive red-brown colour. However, the more intense silicification, Fe-carbonate, and fuchsite alteration associated with known gold occurrences elsewhere in the region are absent from outcrop on the Hopkins Lake property.
4.2 Structure

A common foliation of 060° to 075° is locally overprinted with a foliation or fracture cleavage ranging from 087° to 115°, characteristic of shearing parallel to the Crowduck Lake - Rush Bay Lineament. However, truly intense deformation is not exposed in outcrop. Several east-west to northeast-erly trending faults have been inferred from topography, and probably post-date the main deformation event(s). The outcrop pattern suggest at least two phases of folding pre-dating shearing along the 110° axis. The first fold axis appears to have trended in a northeasterly direction, while the second appears to trend 060° to 070°, and is probably reflected in the dominant foliation in the area. Unfortunately, there is a lack of small folds in outcrop to support or contradict these interpretations.

4.3 Mineralization

Trace to less than 1% pyrite is disseminated throughout most rock types in the area, and is not directly related to economic mineralization.

Semi-massive to massive pyrite ± pyrrhotite forms two notable gossans of about 20 meters length each on claim K824231, separated by 215 meters at 110° (a regional shear orientation). The eastern zone is exposed in a roadside outcrop adjacent to weakly pyritic black argillite. A red ferricrete has formed in the overlying gneissic glacial till. The western gossan occurs in phyllitic chlorite-sericite to sericite-chlorite schists of possible mixed volcanic and sedimentary origins. This zone extends for 20 meters with widths of 1 to 5 meters. These conductors appear to be much like those drilled by Hudson Bay
Exploration and Development Company. Sulphides occur as fine euhedral disseminations, crystal aggregates, and dusty ovoid blebs, wisps, and seams. Black sphalerite and grey tetrahedrite have been tentatively identified in trace quantities along with trace amounts of chalcopryite.
5.0 CONCLUSIONS AND RECOMMENDATIONS

Two sulphide occurrences 215 meters apart at 110° have been located by surface mapping. These require lithogeochemical evaluation.

These may be strike extensions of one zone. Favourable lithogeochemical results would encourage an attempt to extend this zone beneath overburden, perhaps using I.P. and soil geochemistry.

Elsewhere on the property, surface alteration, deformation, and visible mineralization are only weakly developed compared to the intensity commonly associated with auriferous deposits in this region. No further work is warranted.
6.0 REFERENCES

Blockburn, C.E., Beard, R.C., Rivett, S.
1981: Map 2443, Kenora-Fort Frances
Geological

Davis, J.C.
1965: Geology of the High Lake - Rush Bay Area, District of Kenora, Ontario Department of Mines
Report 41 Map 2068 and 2069

Kenora Assessment Files, MNR Geology Division, Kenora, Ontario
APPENDIX A

Statement of Qualifications
STATEMENT OF QUALIFICATIONS

I, Megan A. O'Donnell of 223 Trelawn Avenue, Oakville, Ontario do hereby certify that:

1. I am currently employed as Senior Geological Assistant by Homestake Mineral Development Company with offices at 201 - 856 Homer Street, Vancouver, B.C.

2. I have worked in the field of mineral exploration since 1980.

3. I am a graduate of McGill University with a B.Sc. in Geology (1984).

4. This report is based on my personal work on the property and a review of all available pertinent data.

MEGAN A. O'DONNELL
ARCHAEOH

KEEWAUIN GROUP

ARCHAEOH VOLCANIC ROCKS: RHYOLITIC TO DACITIC TUFFS, FLOWS, AND AGGLOMERATE, OFTEN QUARTZ PORPHYRIC

FELSIC INTRUSIVES, QUARTZ EYE PORPHYRY

METASEDIMENTS: BLACK ARGILLITE, PHYLLITE, GREYWACKE TO ARKOSIC SANDSTONE, MINOR DOLOMITE INTERBEDDED WITH UNITS 2 \\
INTERMEDIATE VOLCANIC ROCKS: TUFFS, FLOWS, AGGLOMERATES, LOCAL FELDSPAR PORPHYRY

LIMIT OF OUTCROP (LARGE, SMALL)

GEOLOGICAL BOUNDARY

FAULT

FOLIATION (VERTICAL, INCLINED)

FRACTURE CLEAVAGE (VERT., INCL.)

PYR CLEAVAGE

SAND \\
GRAVEL \\
PIT

BASELINE OHOO

TO RUSH BAY

CARB. ALT. FE-CARBONATE ALTERATION

CORNER POST AND CLAIM LINE

ROAD

SWAMP

HOMESTAKE MINERAL DEVELOPMENT COMPANY

HOPKINS LAKE PROPERTY
Kenora Mining District, Ontario

BEDROCK GEOLOGY

DRAWN KMC: DATE FILE CODE FIGURE 1
09/85 52E/10 1:5,000 300metres
Mining Lands Section

Control Sheet

File No 28506

TYPE OF SURVEY

- GEOPHYSICAL
- GEOLOGICAL
- GEOCHEMICAL
- EXPENDITURE

MINING LANDS COMMENTS:

__

__

__

__

__

__

Signature of Assessor

D. Herst

Date

Oct 22/82
Ministry of Natural Resources

Report of Work
(Geophysical, Geological, Geochemical and Expenditures)

Instructions:
- Please type or print.
- If number of mining claims traversed exceed space on this form, attach a list.
- Only days credits calculated in the "Expenditures" section may be entered in the "Expend. Days Cr." column.
- Do not use shaded area, below.

Ontario

Mining Act

Geophysical, Geological, Geochemical and Expenditures

GEOLICAL

Claim Holder(s):
HOMESTAKE MINERAL DEVELOPMENT COMPANY

Address:
201-856 HOMER ST, VANCOUVER, B.C.

Survey Company Name and Address of Author (of Geo Technical report)
AMERICAN HOMESTAKE MIN. DEV. CO., 70 BOX 3370 THUNDER BAY, ONT.

Type of Survey(s)
- Electromagnetic
- Magnetometer
- Radiometric
- Other

Man Days
- Geophysical
- Geological
- Geochemical

For each additional survey:
- Enter 40 days (This includes line cutting)
- Enter 20 days (for each)

Complete reverse side and enter totals here

Geophysical
- Days per Claim
- Electro magnetic
- Magnetometer
- Radiometric
- Other

Geological
- Days per Claim
- Other

Geochemical
- Days per Claim
- Other

Expenditures (excludes power stripping)

Type of Work Performed

Performance on Claim(s)

Calculation of Expenditure Days Credits

Total Expenditures: $803,751

Total Expenditure Days Credits: 6

Expenditure Claims Covered by this Report of Work:
P78 558

Name and Address of Person Certifying
MEGAN O'DONNELL, HOMESTAKE MIN. DEV. CO., P.O. BOX 3370 THUNDER BAY, ONT.

Date Certified
JULY 26, 1985

Certification Verifying Report of Work

I hereby certify that I have a personal and intimate knowledge of the facts set forth in the Report of Work annexed hereto, having performed the work or witnessed same during and/or after its completion and the annexed report is true.

Name and Postal Address of Person Certifying
MEGAN O'DONNELL, HOMESTAKE MIN. DEV. CO., P.O. BOX 3370 THUNDER BAY, ONT.

Date Certified
JULY 26, 1985

Certified by (Signature)
Type of Survey(s): Geophysical

Township or Area: 18G11E

Claim Holder(s): Homestake Mineral Development Co.

Survey Company: Homestake Mineral Development Co.

Author of Report: Megan O'Donnell

Address of Author: P.O. Box 3370, Thunder Bay Ont.

Covering Dates of Survey: July 13, 1985 to July 18, July 25 - July 28

(linecutting to office)

Total Miles of Line Cut:

<table>
<thead>
<tr>
<th>SPECIAL PROVISIONS</th>
</tr>
</thead>
<tbody>
<tr>
<td>CREDITS REQUESTED</td>
</tr>
<tr>
<td>Geophysical:</td>
</tr>
<tr>
<td>---Electromagnetic:</td>
</tr>
<tr>
<td>---Magnetometer:</td>
</tr>
<tr>
<td>---Radiometric:</td>
</tr>
<tr>
<td>---Other:</td>
</tr>
<tr>
<td>Geophysical:</td>
</tr>
<tr>
<td>---Electromagnetic:</td>
</tr>
<tr>
<td>---Magnetometer:</td>
</tr>
<tr>
<td>---Radiometric:</td>
</tr>
<tr>
<td>---Other:</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>AIRBORNE CREDITS (Special provision credits do not apply to airborne surveys)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Magnetometer:</td>
</tr>
<tr>
<td>---</td>
</tr>
</tbody>
</table>

DATE: 7/26/85
SIGNATURE: Megan O'Donnell
Author of Report or Agent

Res. Geol.:

Qualifications: 28381

Previous Surveys

<table>
<thead>
<tr>
<th>File No.</th>
<th>Type</th>
<th>Date</th>
<th>Claim Holder</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

TOTAL CLAIMS: 6
Geophysical Technical Data

Ground Surveys – If more than one survey, specify data for each type of survey

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of Stations</td>
<td></td>
</tr>
<tr>
<td>Number of Readings</td>
<td></td>
</tr>
<tr>
<td>Station interval</td>
<td></td>
</tr>
<tr>
<td>Line spacing</td>
<td></td>
</tr>
<tr>
<td>Profile scale</td>
<td></td>
</tr>
<tr>
<td>Contour interval</td>
<td></td>
</tr>
</tbody>
</table>

Magnetic

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Instrument</td>
<td></td>
</tr>
<tr>
<td>Accuracy – Scale constant</td>
<td></td>
</tr>
<tr>
<td>Diurnal correction method</td>
<td></td>
</tr>
<tr>
<td>Base Station check-in interval (hours)</td>
<td></td>
</tr>
<tr>
<td>Base Station location and value</td>
<td></td>
</tr>
</tbody>
</table>

Electromagnetic

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Instrument</td>
<td></td>
</tr>
<tr>
<td>Coil configuration</td>
<td></td>
</tr>
<tr>
<td>Coil separation</td>
<td></td>
</tr>
<tr>
<td>Accuracy</td>
<td></td>
</tr>
<tr>
<td>Method: Fixed transmitter</td>
<td></td>
</tr>
<tr>
<td>Shoot back</td>
<td></td>
</tr>
<tr>
<td>In line</td>
<td></td>
</tr>
<tr>
<td>Parallel line</td>
<td></td>
</tr>
<tr>
<td>Frequency</td>
<td></td>
</tr>
<tr>
<td>(specify V.L.F. station)</td>
<td></td>
</tr>
<tr>
<td>Parameters measured</td>
<td></td>
</tr>
</tbody>
</table>

Gravity

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Instrument</td>
<td></td>
</tr>
<tr>
<td>Scale constant</td>
<td></td>
</tr>
<tr>
<td>Corrections made</td>
<td></td>
</tr>
<tr>
<td>Base station value and location</td>
<td></td>
</tr>
<tr>
<td>Elevation accuracy</td>
<td></td>
</tr>
</tbody>
</table>

Induced Polarization Resistivity

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Method: Time Domain</td>
<td></td>
</tr>
<tr>
<td>Frequency Domain</td>
<td></td>
</tr>
<tr>
<td>Parameters – On time</td>
<td></td>
</tr>
<tr>
<td>– Off time</td>
<td></td>
</tr>
<tr>
<td>– Delay time</td>
<td></td>
</tr>
<tr>
<td>– Integration time</td>
<td></td>
</tr>
<tr>
<td>Frequency</td>
<td></td>
</tr>
<tr>
<td>Range</td>
<td></td>
</tr>
<tr>
<td>Power</td>
<td></td>
</tr>
<tr>
<td>Electrode array</td>
<td></td>
</tr>
<tr>
<td>Electrode spacing</td>
<td></td>
</tr>
<tr>
<td>Type of electrode</td>
<td></td>
</tr>
</tbody>
</table>
SELF POTENTIAL

Instrument ______________________________ Range __________________

Survey Method ______________________________

Corrections made ______________________________

RADIOMETRIC

Instrument ______________________________

Values measured ______________________________

Energy windows (levels) ______________________________

Height of instrument ______________________________ Background Count ______________________________

Size of detector ______________________________

Overburden ______________________________ (type, depth – include outcrop map)

OTHERS (SEISMIC, DRILL WELL LOGGING ETC.)

Type of survey ______________________________

Instrument ______________________________

Accuracy ______________________________

Parameters measured ______________________________

Additional information (for understanding results) ______________________________

AIRBORNE SURVEYS

Type of survey(s) ______________________________

Instrument(s) ______________________________ (specify for each type of survey)

Accuracy ______________________________ (specify for each type of survey)

Aircraft used ______________________________

Sensor altitude ______________________________

Navigation and flight path recovery method ______________________________

Aircraft altitude ______________________________ Line Spacing ______________________________

Miles flown over total area ______________________________ Over claims only ______________________________
GEOCHEMICAL SURVEY – PROCEDURE RECORD

Numbers of claims from which samples taken

<table>
<thead>
<tr>
<th>Total Number of Samples</th>
<th>Type of Sample (Nature of Material)</th>
<th>Average Sample Weight</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Method of Collection</th>
</tr>
</thead>
</table>

Soil Horizon Sampled

Horizon Development

Sample Depth

Terrain

Drainage Development

Estimated Range of Overburden Thickness

SAMPLE PREPARATION
(Includes drying, screening, crushing, ashing)

Mesh size of fraction used for analysis

<table>
<thead>
<tr>
<th>ANALYTICAL METHODS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Values expressed in:</td>
</tr>
</tbody>
</table>

| Cu, Pb, Zn, Ni, Co, Ag, Mo, As, (circle) |
| Others |

Field Analysis (tests)

Extraction Method

Analytical Method

Reagents Used

Field Laboratory Analysis

No. (tests)

Extraction Method

Analytical Method

Reagents Used

Commercial Laboratory (tests)

Name of Laboratory

Extraction Method

Analytical Method

Reagents Used

General
Dear Sirs:

RE: Mining Claims K 824231 to 36 Inclusive in Forgie Township

I have not received the reports and maps (in duplicate) for the Geological Survey on the above-mentioned claims.

As the assessment "Report of Work" was recorded by the Mining Recorder on August 8, 1985 the 60 day period allowed by Section 77 of the Mining Act for the submission of the technical reports and maps to this office will expire on October 7, 1985.

If the material is not submitted to this office by October 7, 1985 I will have no alternative but to instruct the Mining Recorder to delete the work credits from the claim record sheets.

For further information, please contact Mr. Arthur Barr at (416)965-4888.

Yours sincerely,

S. E. Yundt
Director
Land Management Branch

Whitney Block, Room 6643
Queen's Park
Toronto, Ontario
M7A 1W3
Phone: (416)965-4888

AB/mc

cc: Mining Recorder
 Kenora, Ontario

Encl.