GRAND OAKES RESOURCES CORP.

EXPLORATION PROGRAM ON
THE WEAVER TOWNSHIP PROPERTY
WEAVER TOWNSHIP
DISTRICT OF RAINY RIVER
ONTARIO

RECEIVED
JUL 18, 1989
MINING LANDS SECTION

Wayne E. Holmstead
E. Canova
R. J. Meikle
L. D. S. Winter

May 1989
INTRODUCTION

The Sawdo-Davidson Prospect property is owned by Grand Oakes Resources Corp. It consists of 15 contiguous unpatented mining claims northeast of Crooked Pine Lake, in Weaver Township, District of Rainy River, Ontario.

The following report describes the history, geology and mineralization of the Crooked Pine Lake property. The report also details an exploration program executed by Grand Oakes Resources Corp and recommends a further work program designed to test the mineral potential of the property.

The claims are 100% owned by Grand Oakes Resources Corp. and are recorded on the Weaver Township claim map (G-576). Pertinent information about the claims is listed in Table I.

The Sawdo-Davidson Prospect is located on the northeast side of Crooked Pine Lake in Weaver Township, about 50 km east of Atikokan, Ontario. The property, on NTS map sheet 52B/15SW, is located at latitude 48 deg 48'N and longitude 91deg W. Access is via highway 11 (30 km east of Atikokan), north on Hwy 633 up to Kawene and by gravel road up to and north of Crooked Pine Lake. Services are available at Atikokan and Thunder Bay.
HISTORY

The Sawdo-Davidson prospect was discovered by Phil Sawdo in 1983 by prospecting. The showing located on claim 1010545 is in an east-west shear zone (chlorite-sericite-carbonite schist) cutting through mafic meta-volcanics. The shear zone, just 1 km north of the Quetico Fault, contains two generations of quartz. Grab samples were collected which contained arsenopyrite, chalcopyrite and pyrite and assayed up to 0.15 oz/ton gold.

To keep the claims in good standing a HEM max-minII (Apex) survey was subcontracted to Phantom Exploration in 1983 and carried out on the claims 1010542 and 1010545. The survey was carried out with coil separations of 150 meters and readings were taken on two frequencies (444Hz and 1777Hz). Both frequencies on the Crooked Pine Lake Grid A (3.6km) outlined 3 conductors.

The property, between 1985 and 1988, had been visited and sampled by several companies. The sampling was done mainly on 4 claims, which are 975485, 1001195, 1010545 and 1011748. BP Resources visited the property in May 1985 and carried out sampling and made sketches of the showings. Fifteen samples were collected and assayed, and they ran up to 0.01 and 0.02 oz/ton Gold. Noranda in October 1987 and May 1988 collected 10 samples which assayed between 0.17 and 2.4 gm/ton Au. Inco visited the property in May 1988 and they located the 6 sites of interest, sketched each site and collected 13 samples. The better assays were 0.04 oz/ton gold (site 4), 0.06 oz/ton gold (site 5) and 0.11 oz/ton gold (site 5). Newmont also visited the property in May 1988 and collected 10 samples with their best assays coming from site 5: 0.034 and 0.056 oz/ton gold. Finally, George Patterson, formerly the MNR Resident Geologist for the District of Thunder Bay, visited and made sketches of the 6 showings on the 4 claims of the property.

Three km west of the Sawdo-Davidson prospect, there is the Pothole occurrence owned by Lozan Exploration and Development Ltd. from Thunder Bay, Ontario. It has had considerable work done since 1963 to 1983 by Noranda(1963), W. Moorehouse (1972), Pirie (1975), Lozan Exploration (1978), Lynx Canada (1980) and back to Lozan Exploration (1983). It is a gold, silver, and copper showing with assays up to 0.55 oz/ton gold, 0.67 oz/ton silver, and 3.48% copper. It also occurs along a minor east-west shear zone in which mineralized quartz veins may be present.
The Crooked Pine Lake Area straddles part of the Wabigoon and Quetico Subprovinces separated by the Quetico Fault in this area.

North of the Quetico Fault are Early Precambrian rocks of the Wabigoon Subprovince which include narrow east trending interfinguring mafic to intermediate metavolcanic to felsic metavolcanics intruded by melanogabbros, quartz diorites, trondhjemites, and quartz monzonites as sheets and small stocks. All of the rocks are deformed, folded and recrystallized to lower greenschist facies except near the contact with the Marmion Lake Batholith to the north the metamorphic grade increases to the amphibolite facies. The batholith is a layered trondhjemite, hornblende gneiss and amphibolite gneiss intruded by younger phases of quartz diorite and diorite.

The Quetico Fault forms a narrow, highly deformed and mylonitized zone along the northern shore of Crooked Pine Lake. South of the fault is a thick sequence of Early Precambrian turbidite, wacke and mudstone sequence.

These are metamorphosed from biotite phyllites and schists to biotite gneisses and gneiss migmatites with garnets, staurolite, sillimanite and muscovite. There are several mafic to ultramafics cutting the sediments near Kawene and Elbow Lakes. Some of these bodies have minor associated copper-nickel mineralization.
LOCAL GEOLOGY

The property is underlain by a series of mafic to felsic volcanics and tuffs. These rocks have been intruded by concordant to subcordant gabbros, diabase, and leucocratic quartz monzonite sills and dykes. There are also small plugs of amphibole quartz diorite and chlorite trondhjemites. The property is just 1 km north of the Quetico Fault and just south of the layered Marmion Lake Batholith.

Mafic to intermediate volcanics are fine grained homogeneous, foliated and from light medium green to dark green in more altered rocks. The lighter volcanics have actinolite and are carbonatized, and the darker volcanics are more chloritized. Accessory minerals are some quartz grains, some iron oxides and pyrite. The less mafic metavolcanics have up to 10% quartz present. Thin beds of tuff and lapilli-tuff occur within the predominantly felsic pyroclastic units. The tuffs are medium to dark green and have very thin alternating chlorite-rich and felsic layers. The lapilli-tuff is similar in color to the tuff and has fine grained, rounded, lithic fragments of intermediate composition set in the more mafic chlorite rich matrix.

The intermediate to felsic metavolcanics are almost entirely pyroclastic and weather to a very pale greenish-grey or a pale creamy buff color. These pyroclastic rocks are a mixture of lapillistone, lapilli-tuff, and tuff. The lapilli-stone, the more common rock type, has light coloured, thin, very fine grained, subangular, lense shaped, lithic, felsic fragments as much as 2 cm long and minor rounded quartz phenocrysts set in a darker coloured fine grained, and more chloritic matrix. The lapilli tuff is comprised of a granular aggregate of fine grained quartz and albite with sparse, pale green, chlorite knots, and a few albitic plagioclase phenocrysts which are dusted with fine grained epidote and chlorite. There are examples of bomb-size fragments of fine-grained intermediate metavolcanic material set in a fine grained shear tuff matrix.

These mafic to felsic metavolcanics are frequently intruded or penetrated by medium to coarse grained mafic rocks. These are fine grained diabase, porphyritic diabase and quartz diabase that are massive and magnetic. There are also coarse grained, black, massive, strongly magnetic gabbros.
The metavolcanics are intruded by small rounded plutons or plugs of intermediate composition. These plugs are medium to coarse grained quartz diorites with 15 to 25% quartz, and green actinolite amphiboles; and trondhjemites with >25% quartz, <15% mafics, and biotites which are altered to chlorite in places. There are also some minor leucocratic quartz monzonite plugs.

Quartz veins, which are of economic interest, occur along shear zones trending east-west in mafic metavolcanics invading fissile chlorite-sericite-carbonate schists. There are two generations of quartz-veining. The earlier quartz vein is deformed into lenses (1m wide and 10m long) parallel to the foliation and later cut by narrow quartz veins of 2-10 cm and mineralized with arsenopyrite, chalcopyrite and pyrite.

Structurally the area has been deformed by the Quetico Fault giving rise to strong foliations trending N70degE to N90degE and dipping 70deg to 90deg north. Shearing, parallel to the Quetico Fault, as well as shears splaying off from the Quetico Fault tend to be invaded by quartz veins. Metamorphism is of the greenschist facies and increases to the amphibolite facies as one approaches the Marmion Lake Batholith.
South of the Quetico Fault are minor copper-nickel mineralization which occurs in mafic to ultramafic intrusives cutting the metasediments. There are three occurrences, these are Kawene Copper Occurrence, Abiwin Occurrence and the Mud Lake Deposit.

The Kawene Occurrence just north of Kawene has minor sulfide mineralization in mafic to ultramafic bodies. Hanna Mining carried out geological surveys and uncovered chalcopyrite and pyrrhotite in coarse disseminations. Grab samples assayed 0.49% Cu, and 0.22% Ni. One diamond drillhole of 57 meters was drilled in 1970 by Canadian-Addicks Mining Corp. and the best intersection was between 5.2 and 7.6 m assaying 0.28% copper and 0.14% nickel.

The Abiwin Occurrence has several small zones of sulfide mineralization associated with small mafic to ultramafic intrusions near small lakes north of Nemo Lake. Pyrrhotite, pyrite and chalcopyrite occur as disseminations and narrow stringers in three small lenses. Grab samples of well mineralized material assayed 0.75% copper, 0.11% nickel, and trace palladium.

The third occurrence (Mud Lake Deposit) is mineralized in copper and was discovered on an island on Mud Lake. In 1971 880.3 m were drilled (8 holes) by Ardel Exploration Ltd. The best intersection was in hole 6 where 2.8 m assayed 0.60% copper and 0.53% nickel at 83.8 m, and 1.5 m of 0.62% copper and 0.69% nickel at 108.5 m and trace palladium, platinum, and gold. The best mineralization was associated with severe shearing and alteration of the hornblendite.

Gold occurrences, White Lily, Pothole and the Sawdo-Davidson Prospect, are all found north of the Quetico Fault in sheared metavolcanics (chlorite-sericite-carbonate schists).
The White Lily Occurrence, on the west side of Upham Lake north of Kawene, is a narrow quartz vein between quartz porphyry and green carbonate schists. In 1906 to 1907 a shaft was sunk down to 24 m and this was described by Jones in a Consulting Mining Engineer Report of the White Lily Mining Company; "At the bottom of an open cut sampling has been done across the quartz vein at a point where it is about 1.2 meters wide, consisting of blue quartz, schists and granite and a streak of talc on the east. The sampling showed by assay: gold 0.93 ounce per ton. The same formation continues on down and is visible in the shaft after passing down the timbers which is 10.7 meters and widens out at the bottom of the shaft to more than 2 meters in width."

"A sample from the bottom of the shaft was taken from the north in four sections representing first 7.6 centimeters of talcose slate on the east wall, showing by assay: gold 0.30 ounce per ton. Next adjoining this talc on the west occurs 23 centimeters of schist showing by assay: gold 0.01 ounce per ton. Adjoining the schist there is 91 centimeters of Protogene granite showing by assay: gold 0.34 ounces per ton. Adjoining the granite on the west there is 91 centimeters of blue quartz mixed with some Protogene granite and white quartz which shows by assay: gold 0.35 ounces per ton. A sample from the south end of the shaft about 6 meters from the bottom and representing about 1.2 meters of the blue quartz and Protogene granite mixed together, showed by assay: gold 0.55 ounces per ton." In 1933, 2 oz of gold and 4 oz of silver were produced from 65 tons of tailings from the mine dump.

The Pothole Occurrence 2.6 km west of the Sawdo-Davidson Prospect, has two quartz veins mineralized with gold. A system of quartz-carbonate veining traced for 75 m and 1 m wide is hosted in a shear zone striking 80deg and dipping vertically. The shear zone cuts metavolcanics and there are two associated quartz veins with gold mineralization. One is a glassy, milky to reddish quartz vein with some carbonate, hematite and possibly some tourmaline and mineralized with abundant pyrite, chalcopyrite, malachite and azurite. The second vein occurs as narrow white, sugary quartz stringers up to a few centimeters wide with some sericite and epidote, and mineralized with massive pyrite and arsenopyrite. In 1963 one channel sample assayed 0.3 oz/ton gold across 2.7 m. In 1972 grab samples by Moorehouse assayed 0.4 oz/ton gold and 1.46 oz/ton silver. In 1975 grab samples by Pirie assayed 0.11 oz/ton gold, 0.25 oz/ton silver and 0.73% copper. In 1980 and 1981 more grab samples were collected by the MNR, these assayed 0.05 to 0.55 oz/ton gold, 0.26 to 0.67 oz/ton silver and 2.78 to 3.48% copper.
The Sawdo-Davidson Prospect also has quartz veins mineralized with gold. The property has 2 showings found on claims 975485, 1001195, 1010545 and 1010545. One is an east-west shear zone (chlorite-sericite-carbonate schist) in a mafic volcanic. There are two generations of quartz veining, the earlier one is deformed and lense like; 1m wide and 10 meters long, and parallel to the foliation. It is cut by later narrow quartz veins (2 to 10 cm) mineralized with arsenopyrite, chalcopyrite and pyrite. The second showing is in a carbonate rich shear zone exposed on an island and grab samples assayed 0.15 oz/ton gold (M. Andrews, prospector 1987). Several companies have sampled and assayed these showings and they obtained assays up to 0.11 oz/ton gold.
LINE-CUTTING

A total of 25.3 kilometers of line were cut on the Weaver Township property. The base line was cut in an east-west direction along the north boundary of claims 1001193 to 1001198 with tie lines at 7+25N and 12+50N. Cross lines were cut in a north-south direction at 100 meter intervals and stations were chained on the lines at 25 meter intervals.
Total field magnetic measurements were made with a Scintrex MP-2 magnetometer at 25 meter intervals on the grid lines. Diurnal variation was determined by base station readings made along the base line about every hour. The MP-2 is accurate to +/-1 gamma. The results of the survey are contoured on the accompanying map.

The interpretation of the magnetic survey was taken from a report by Winter dated February 13, 1989. The magnetic survey shows an east-west trend to the underlying lithological units. The general background is 59,500 gammas. In the northern part of the property, there are a few isolated magnetic highs generally parallel to the general strike of the lithological units in the area. These are considered to represent a concentration of magnetite or pyrrhotite within mafic flows. The southern part of the property shows a somewhat higher magnetic relief and a generally increased background level. A number of small, elongated, east-west magnetic anomalies with values up to 2,200 gammas above background are present. This area of higher magnetics in the southern part of the property is interpreted to correspond to an area of mafic metavolcanics. The area of lower values to the north correlates with the area of intermediate to felsic metavolcanics.
THE VLF-EM ELECTROMAGNETIC SURVEY

The in-phase and out of phase component of the local electromagnetic field generated by low frequency radio transmissions from Cutler, Maine were measured at 25 meter intervals using a Geonics VLF-EM.

The interpretation of the electromagnetic survey was taken from a report by Winter dated February 13, 1989. The electromagnetic survey shows conductors with three trends; east-west, northeast and northwest. In the northern and extreme southern part of the property there are four conductors with strike lengths varying from 100 to 400 meters that are trending northeasterly. These are considered to be representing possible fault structures that occur as splays from the main Wabigoon-Quetico boundary fault just south of the claim block. In the southern part of the property, three east-west conductors of 200 to 500 meters in length are present and conform to the trend of the volcanic stratigraphy and the Quetico Fault zone. In the south-central part of the property, a weak northwest trending conductor was detected that may represent a fault structure with this trend. This anomaly appears to terminate one of the northeast trending anomalies in the extreme southern part of the property.
THE INDUCED POLARIZATION SURVEY

The results of the Induced Polarization survey may be found in Appendix A.
CONCLUSIONS AND RECOMMENDATIONS

The geophysical surveys have detected many anomalies that warrant further investigation. The property should be geologically mapped to determine the connection between the anomalies and the bedrock geology and mineralization.

Mineral showings and anomalies that appear to warrant further investigation should be mechanically stripped on surface if possible and eventually diamond drilled if warranted. A total of 750 meters of diamond drilling is recommended for the first phase.
CERTIFICATE

I, Wayne E. Holmstead, of the City of Kingston in the Province of Ontario, DO HEREBY CERTIFY THAT:

1. I am a Consulting Geologist with address at 1074 Dillingham Street, Kingston, Ontario, Canada.

2. I graduated from the University of Toronto with a Bachelor of Science in Geology in 1976 and have been practicing my profession since.

3. I am a fellow in good standing of the Geological Association of Canada.

4. It may be construed that I have an interest in Grand Oakes Resources Corp as I am a director of the company and hold 1 common share of the company.

5. This report is based upon all available information on the property and a work program on the property that I personally supervised.

6. I permit Grand Oakes Resources Corp. to use this report or portions of this report in the prospectus or other documents of the company.

Dated at Kingston, Ontario, this 15th day of May, 1989.

Wayne E. Holmstead, B.Sc., F.G.A.C.
INTERPRETATION REPORT
ON AN
INDUCED POLARIZATION GRADIENT ARRAY SURVEY
ON THE
WEAVER TOWNSHIP PROPERTY

Prepared by:
R. J. Meikle
Exsics Exploration Ltd.
February, 1989
Introduction

A "Gradient Array" Induced Polarization survey was conducted on a group of 14 contiguous claims in the Atikokan Area, Thunder Bay Mining Division, Ontario.

The survey was performed by Exsics Exploration Limited under contract to Geocom Geological Consulting Services. The I.P. survey was carried out over most of the property covering 15 km of grid lines. The purpose of the survey was to investigate the entire property for the possibility of disseminated sulphides which would not necessarily have been picked up by previous Magnetometer and VLF - EM surveys.

This report deals with the results of the I.P. survey only. It is the understanding of the author that a detailed compilation of the Geological Mapping, Magnetometer Survey, VLF - EM survey and current I.P. survey will form the main report encompassing this I.P. interpretation.

Survey Parameters

A "Gradient Array" I.P. survey was chosen to get optimum coverage of the entire property.

This array provides a good reconnaissance coverage with good horizontal resolution. Because of the relatively shallow overburden it is felt that the gradient results can be drilled as is. Certain anomalies may warrant closer spaced lines and some "dipole-dipole" array follow-up.
A description of the "Gradient Array" and procedures is as follows:

Gradient Survey:

The gradient array method involves placing two infinite or remote electrodes (A-B) a fixed distance apart, three times the length of and parallel to the lines to be surveyed.

A potential is applied across A-B using a motor generator powered transmitter capable of producing in this case 2500 watts maximum output. This potential is applied continuously using a 2 second on, 2 second off, square wave direct current. The middle one-third of A-B surveyed from this set-up as well as parallel lines either side until the signal decreases at which time another A-B set-up is required further along the geological strike. A single receiving dipole (P1-P2) consisting of two porous pots a fixed distance of 25 m apart, was moved along the survey lines. A single reading was recorded every 25 m with the reading plotting between P1-P2. The following two parameters were recorded at each station:

Chargeability - The potential across P1-P2 was recorded during the two second off cycle. The potential was an integration over a selected window width (time in milliseconds), a fixed delay time after the current shut off. This reading is usually expressed in millivolts per volt of milliseconds.
Primary Voltage - The potential across P1-P2 was recorded during the 2 second on time. This potential is a direct result of the AB output current (amperes), the distance of the P1-P2 dipole from AB, and the true resistivity of the measured medium which is a combination of the geological rock units within the influence of the measuring P1-P2 dipole as well as the overburden. Thus "ohms's law" is used to compute the apparent resistivity of the measured medium beneath P1-P2 with a constant or 'K' factor applied. The 'K' factor is used to compensate for the Geometric Factor which is the relative positions between AB and P1-P2. The resultant value is called "Apparent Resistivity" as it is not the true resistivity of the bedrock but rather a combination of the overburden as well.

The following parameters were used:

- Electrode Array - Gradient
- Dipole Spacing - 25 meters
- Method - Time Domain
- Receiver - EDA IP-2
- Transmitter - Huntac 2.5 kva
- Pulse Time - 2 second on 2 second off, square wave
- Delay Time - 500 milliseconds
- Integration Time - 420 milliseconds

Parameters Measured A: Chargeability (millivolts per volt or milliseconds) presented in plan contoured form, 1:2500. B: Apparent Resistivity (ohm-meters) presented in plan contoured form, 1:2500.
Survey Results

The I.P. survey showed the area to have a relatively high chargeability background over most of the property. There are numerous, erratic chargeability highs throughout the grid. Most of them do not seem to have much line to line correlation.

The resistivities are relatively high over the SW part of the grid and are considerably lower on the NE section. O.G.S. Map 2065 - Atikokan - Lakehead Sheet shows the southern boundary of the property to be on the north flank of a fault contact between mafic intermediate volcanics on the north and metasediments to the south. This does not correlate with the resistivity map which suggests a NW contact running through the center of the property with a lower resistivity unit on the NE side.

The following is an attempt to isolate and discuss some of the numerous chargeability highs encountered.

1. L24W/025S - L13W/025S - This is a chargeability high approximately 2 X background, coincident with a resistivity high. It may be a disseminated sulphide source in a silicous setting. However the I.P. is not conclusive enough to support this.
2. This is a similar zone to #1 running parallel to and approximately 200m south of it. For both #1 and #2 the high chargeability is directly coincident with high resistivities.

3. L4W/062S - This is a one line response of 30 ms on the south flank of a resistivity high. Even though it is only on one line it should be investigated as a sulphide source.

4. L2W/162S - L1W/162S - This is a chargeability high in an area of moderate resistivity. It should be a priority target.

5. L8W/725N and 825N - There are two chargeability highs with moderate resistivity. They could extend westward off the property.

6. There are numerous other chargeability highs, most notably in the NE corner of the property. For the most part they have moderate resistivities.
Conclusions and Recommendations

The l.P. survey depicted a rather erratic chargeability pattern. With the background being so variable and on the high side it is difficult to determine if the various chargeability highs are related to sulphides or rather a rock type change. As discussed under results, the survey showed two types of anomalies; chargeable - resistive (SW corner) and chargeable - moderately resistive (ENE corner).

A detailed compilation of former work and a recent VLF/Magnetometer/geological mapping program should be interpreted with the l.P. survey to prioritize the anomalies. At that time, more "fill-in" gradient array l.P. and or "Dipole-Dipole" array l.P. may be warranted.

Respectfully submitted,

R. J. Meikle
Exsics Exploration Ltd.
CERTIFICATION

I, Raymond Meikle of Timmins, Ontario hereby certify that:

1. I hold a three year Technologist Diploma from the Haileybury School of Mines, Haileybury, Ontario obtained in 1975.

2. I have been practising my profession since 1973 in Ontario, Quebec, NWT, Manitoba, New Brunswick, Nova Scotia for Teck Exploration Ltd., Metallgesellschaft Canada Ltd., Rayan Exploration., Sabina Industries Ltd., and most recently Exsics Exploration Ltd.

3. I have based conclusions and recommendations contained in this report on knowledge of the area, my previous experience, and on the results of the field work conducted on the property which was carried out under my overall supervision.

4. I hold no interest, directly or indirectly in this property other than professional fees, nor do I expect to receive any interest in the WEAVER TOWNSHIP PROPERTY for GEOCOM or any of its subsidiary companies.

Dated this 20th day of Feb, 1989
at Timmins, Ontario

R.J. Meikle
Exsics Exploration Ltd.
MAJOR BENEFITS

* TWO DIPOLES SIMULTANEOUSLY MEASURED
* SOLID STATE MEMORY
* AUTOMATIC PRIMARY VOLTAGE (Vp) RANGING
* AUTOMATICALLY CALCULATES APPARENT RESISTIVITY

COMPATIBLE
Specifications

<table>
<thead>
<tr>
<th>Feature</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dipoles</td>
<td>Two simultaneous input dipoles.</td>
</tr>
<tr>
<td>Input Voltage (Vp) Range</td>
<td>40 microvolts to 4 volts, with automatic ranging and overvoltage protection.</td>
</tr>
<tr>
<td>Vp Resolution</td>
<td>10 microvolts.</td>
</tr>
<tr>
<td>Vp Accuracy</td>
<td>0.3% typical; maximum 1% over temperature range.</td>
</tr>
<tr>
<td>Chargeability Resolution</td>
<td>1 %</td>
</tr>
<tr>
<td>Chargeability Accuracy</td>
<td>0.3% typical; maximum 1% over temperature range for Vp > 10 mV.</td>
</tr>
<tr>
<td>Automatic SP Compensation</td>
<td>± 1 V with linear drift correction up to 1 mV/s.</td>
</tr>
<tr>
<td>Input Impedance</td>
<td>1 Megohm.</td>
</tr>
<tr>
<td>Sample Rate</td>
<td>10 milliseconds.</td>
</tr>
<tr>
<td>Automatic Stacking</td>
<td>3 to 99 cycles.</td>
</tr>
<tr>
<td>Synchronization</td>
<td>Minimum primary voltage level of 40 microvolts.</td>
</tr>
<tr>
<td>Rejection Filters</td>
<td>50 and 60 Hz power line rejection greater than 100 dB.</td>
</tr>
<tr>
<td>Grounding Resistance Check</td>
<td>100 ohm to 128 kilo-ohm.</td>
</tr>
<tr>
<td>Compatible Transmitters</td>
<td>Any time domain waveform transmitter with a pulse duration of 1 or 2 seconds and a crystal timing stability of 100 ppm.</td>
</tr>
<tr>
<td>Programmable Parameters</td>
<td>Geometric parameters, time parameter, intensity of current, type of array and station number.</td>
</tr>
<tr>
<td>Display</td>
<td>Two line, 32 character alphanumeric liquid crystal display protected by an internal heater for low temperature conditions.</td>
</tr>
<tr>
<td>Memory Capacity</td>
<td>600 sets of readings.</td>
</tr>
<tr>
<td>RS-232C Serial I/O Interface</td>
<td>1200 baud, 8 data bits, 1 stop bit, no parity.</td>
</tr>
<tr>
<td>Console Power Supply</td>
<td>Six 1.5V “D” cell disposable batteries with a maximum supply current of 70 mA and auto power save.</td>
</tr>
<tr>
<td>Operating Environmental Range</td>
<td>-25°C to +55°C; 0–100% relative humidity; weatherproof.</td>
</tr>
<tr>
<td>Storage Temperature Range</td>
<td>-40°C to +60°C.</td>
</tr>
<tr>
<td>Weight and Dimensions</td>
<td>5.5 kg, 310x230x210 mm.</td>
</tr>
<tr>
<td>Standard System Complement</td>
<td>Instrument console with carrying strap, batteries and operations manual.</td>
</tr>
<tr>
<td>Available Options</td>
<td>Stainless steel transmitting electrodes, copper sulphate receiving electrodes, alligator clips, bridge leads, wire spools, interface cables, rechargeable batteries, charger and software programs.</td>
</tr>
</tbody>
</table>
Ministry of Northern Affairs and Mines

Report of Work
(geophysical, geological, geochemical and expenditures)

DOCUMENT NO. W8904545

Type of Survey(s)
- Geophysical

Claim Holder
- MIKE ANDREWS

Survey Company
- HOLMSTEAD AND ASSOCIATES

Name and Address of Author (for technical report)
- W. HOLMSTEAD, 1071 DILLINGHAM, ST. KINGTON, ONT K7P 2P4

Credits Requested per Each Claim in Columns at Right

Special Provisions
- For first survey:
 - Enter 40 days. (This includes line cutting)
 - Enter 20 days (for each)

- For each additional survey using the same grid:
 - Enter 20 days (for each)

Man Days
- Complete reverse side and enter total(s) here

Airborne Credits
- Note: Special provisions credits do not apply to Airborne Surveys.

Expenditures (excludes power stripping)

<table>
<thead>
<tr>
<th>Geophysical</th>
<th>Days per Claim</th>
</tr>
</thead>
<tbody>
<tr>
<td>Electromagnetic</td>
<td>20</td>
</tr>
<tr>
<td>Magnetometer</td>
<td>40</td>
</tr>
<tr>
<td>Radiometric</td>
<td>40</td>
</tr>
<tr>
<td>Other</td>
<td>20</td>
</tr>
</tbody>
</table>

Expenditure Days Credit

<table>
<thead>
<tr>
<th>Mining Claim</th>
<th>Expended Days Cr</th>
</tr>
</thead>
<tbody>
<tr>
<td>TB 975485</td>
<td>975486</td>
</tr>
<tr>
<td>1010545</td>
<td>1011749</td>
</tr>
<tr>
<td>1011750</td>
<td></td>
</tr>
</tbody>
</table>

Mineral Claims Traversed (List in numerical sequence)

<table>
<thead>
<tr>
<th>Claim Prefix</th>
<th>Number</th>
<th>Mining Claim</th>
</tr>
</thead>
<tbody>
<tr>
<td>V;</td>
<td>00</td>
<td>86</td>
</tr>
</tbody>
</table>

Certification Verifying Report of Work

I hereby certify that I have a personal and intimate knowledge of the facts set forth in the Report of Work annexed hereto, having performed the work or witnessed same during and/or after its completion and the annexed report is true.

Name and Postal Address of Person Certifying
- W. HOLMSTEAD, AS ABOVE

For Office Use Only
- Date Approved as Recorded: MAY 18, 1989
- Branch Code: 640 MINING LANDS SECTION
- Total number of mining claims covered by this report of work: 8
Geophysical Survey

<table>
<thead>
<tr>
<th>Type of Survey</th>
<th>Mining Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>Geophysical</td>
<td></td>
</tr>
<tr>
<td>Claim Hold.</td>
<td>CLIFF HICKS 2.12613</td>
</tr>
<tr>
<td>Township or Area</td>
<td>WEAV TRP G576</td>
</tr>
<tr>
<td>Survey Company</td>
<td>HOLMSTEAD AND ASSOCIATES</td>
</tr>
<tr>
<td>Date of Survey</td>
<td>01/08/38</td>
</tr>
<tr>
<td>Total Miles of line Cut</td>
<td>25.3 km</td>
</tr>
</tbody>
</table>

Special Provisions

- **For first survey:** Enter 40 days. (This includes line cutting)
- **For each additional survey: using the same grid:** Enter 20 days (for each)

Man Days

<table>
<thead>
<tr>
<th>Geophysical</th>
<th>Days per Claim</th>
</tr>
</thead>
<tbody>
<tr>
<td>Electromagnetic</td>
<td>20</td>
</tr>
<tr>
<td>Magnetometer</td>
<td>40</td>
</tr>
<tr>
<td>Radiometric</td>
<td>20</td>
</tr>
<tr>
<td>Other</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Geological</th>
<th>Days per Claim</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Geochemical</th>
<th>Days per Claim</th>
</tr>
</thead>
</table>

Airborne Credits

- Electromagnetic
- Magnetometer
- Radiometric
- Other

Expenditures (excludes power stripping)

<table>
<thead>
<tr>
<th>Mining Claim</th>
<th>Exp. Days Cr.</th>
</tr>
</thead>
<tbody>
<tr>
<td>TB 1001193</td>
<td>43</td>
</tr>
<tr>
<td>TB 1001194</td>
<td>1001195</td>
</tr>
<tr>
<td>TB 1001196</td>
<td>1001197</td>
</tr>
<tr>
<td>TB 1001198</td>
<td></td>
</tr>
</tbody>
</table>

Certification Verifying Report of Work

I hereby certify that I have a personal and intimate knowledge of the facts set forth in the Report of Work annexed hereto, having performed the work or witnessed same during and/or after its completion and the annexed report is true.

Name and Postal Address of Person Certifying

W. HOLMSTEAD - AS ABOVE
Type of Survey(s)

Geophysical

Claim Holder(s)

CLIFF HICKS

Prospector's Licence No.

D 18739

Date Survey (from to)

01/10/89 to 11/28/89

Total Miles of line Cut

25.3 km

Address

333 WELLINGTON ST E, Sault Ste Marie, ON P6A 2L8

Survey Company

HOLMSTEAD AND ASSOCIATES

Name and Address of Author (for geo-technical report)

W. HOLMSTEAD, 1074 BILLINGHAM ST, KINGSTON, ONT K7P 2P4

Geophysical

- Electromagnetic
- Magnetometer
- Radiometric
- Other IP

Geological

Geochemical

Special Provisions

For first survey:

Enter 40 days. (This includes line cutting)

For each additional survey:

Using the same grid:

Enter 20 days (for each)

Man Days

Complete reverse side and enter total(s) here

<table>
<thead>
<tr>
<th>Mining Claim</th>
<th>Expanding Days Cr.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prefix Number</td>
<td>Number of Mining Claims Traversed (List in numerical sequence)</td>
</tr>
<tr>
<td>-------------------</td>
<td>--------------------</td>
</tr>
<tr>
<td>1001193</td>
<td>14</td>
</tr>
<tr>
<td>1001194</td>
<td></td>
</tr>
<tr>
<td>1001195</td>
<td></td>
</tr>
<tr>
<td>1001196</td>
<td></td>
</tr>
<tr>
<td>1001197</td>
<td></td>
</tr>
<tr>
<td>1001198</td>
<td></td>
</tr>
</tbody>
</table>

Expenditures (excludes power stripping)

Total Expenditure Days Cr.

$ + 15 =

Total Days Credits

Instructions

Total Days Credits may be apportioned at the claim holder's choice. Enter number of days credits per claim selected in columns at right.

Date

MAY 10, 1989

Certification Verifying Report of Work

I hereby certify that I have a personal and intimate knowledge of the facts set forth in the Report of Work annexed hereto, having performed the work or witnessed same during and/or after its completion and the annexed report is true.

For Office Use Only

Total Days Cr. of Work Recorded MAY 18/89

Date Approved as Recorded

MAY 12, 1989

Branch Div. No.

980
Ministry of Northern Affairs and Mines

Report of Work
(Geophysical, Geological, Geochemical and Expenditures)

Mineral Lands

Mineral Act

Type of Survey:

Geophysical

Minister's Licence No.

S. R. A. 13, LAKESHIRE DRIVE, THUNDER BAY, ON.

Prospector's Licence No.

HOLMSTEAD AND ASSOCIATES

Date of Survey: 81' 10° 50' 11' 1.88

Claim Holders: MIKE ANDREWS

Total Miles of Line Cut

25.3 KM

Name and Address of Author of Geo-Technical Report:

J. HOLMSTEAD, 10.74 DILLINGHAM ST., KINGSTON, ON. K7P 2P4

Credits Requested per Each Claim in Columns at Right

<table>
<thead>
<tr>
<th>Mining Claim</th>
<th>Prefix</th>
<th>Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>TB 975 484</td>
<td>V2</td>
<td></td>
</tr>
<tr>
<td>975 485</td>
<td></td>
<td></td>
</tr>
<tr>
<td>975 486</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1010 512</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1005 451</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1011 749</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1011 750</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Man Days

Geophysical

- Electromagnetic
- Magnetometer
- Radiometric
- Other

Days per Claim

- 20
- 40
- 20

Total Days Credits

RECEIVED

MAY 25 1989

MINING LANDS SECTION

EXPOSED BY

MINING ACT

For Office Use Only

Total number of mining claims covered by this report of work.

8

RECEIVED

MAY 18 1989

Mineral Act

Date Approved as Recorded

MAY 18 1989

Name and Postal Address of Person Certifying

J. HOLMSTEAD AS ABOVE

Date Certified

MAY 18 1989

Certification Verifying Report of Work

I hereby certify that I have a personal and intimate knowledge of the facts set forth in the Report of Work annexed hereto, having performed the work or witnessed same during and/or after its completion and the annexed report is true.

Name and Postal Address of Person Certifying

J. HOLMSTEAD AS ABOVE

Date Certified

MAY 18 1989

Instructions:

- Please type or print.
- If number of mining claims traversed exceeds space on this form, attach a list.
- Only days credits calculated in the "Expenditures" section may be entered in the "Expend. Days Cr." columns.
- Do not use shaded areas below.

Airborne Credits

- Electromagnetic
- Magnetometer
- Radiometric

Days per Claim

- 1
- 1

Expenditures (excludes power stripping)

<table>
<thead>
<tr>
<th>Expenditure Days Credits</th>
<th>Total Days Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>$ 4000</td>
<td>15</td>
</tr>
</tbody>
</table>

Total $ 4000 + $ 15

$ 4015

Instructions:

Total Days' Credits may be apportioned at the claim holder's choice. Enter number of days credits per claim selected in columns at right.

Date

MAY 10, 1989

Recorded Holder or Agent (Signature)
\[\frac{40 \times 14}{14 + 94} = 34.45 \]
\[\div 34 \]

\[\frac{20 \times 14}{14 + 94} = 17.23 \]
\[\div 17 \]

\[\frac{20 \times 14}{14 + \frac{24}{4}} = 14.0 \]
\[\div 14 \]
Ontario

Ministry of Northern Development and Mines

Ministère du Développement du Nord et des Mines

September 18, 1989

Dear Sir:

Re: Amendment to approval dated September 15, 1989 for Geophysical (Electromagnetic, Magnetometer and Induced Polarization) Survey submitted on Mining Claims TB 975484 et al in Weaver Township.

The assessment work credits, as listed with the attached amended Notice of Intent, have been approved as of the above date.

Please inform the recorded holder of these mining claims and so indicate on your records. This approval replaces the one dated September 15, 1989.

Yours sincerely,

W.R. Cowan
Provincial Manager, Mining Lands Mines & Minerals Division

cc: Mr. G.H. Ferguson
 Mining and Lands Commissioner
 Toronto, Ontario

 Mike Andrews
 Thunder Bay, Ontario

 Wayne Holmstead
 Kingston, Ontario

 Cliff Hicks
 Sault Ste. Marie, Ontario

Resident Geologist
Thunder Bay, Ontario
Ministry of Northern Development and Mines

Technical Assessment Work Credits

AMENDED

Date: Sept. 18, 1989
File: 2.12613
Mining Recorder's Report of Work No. W8904-246

Recorded Holder: CLIFF HICKS
Township or Area: WEAVER TOWNSHIP

<table>
<thead>
<tr>
<th>Type of survey and number of Assessment days credit per claim</th>
<th>Mining Claims Assessed</th>
</tr>
</thead>
<tbody>
<tr>
<td>Geophysical</td>
<td></td>
</tr>
<tr>
<td>Electromagnetic</td>
<td>17 days</td>
</tr>
<tr>
<td>Magnetometer</td>
<td>34 days</td>
</tr>
<tr>
<td>Radiometric</td>
<td></td>
</tr>
<tr>
<td>Induced polarization</td>
<td>17 days</td>
</tr>
<tr>
<td>Other</td>
<td></td>
</tr>
</tbody>
</table>

Section 77 (19) See "Mining Claims Assessed" column

Geological | days |
Geochemical | days |

Section 77(19) Credits have been reduced because of partial coverage of claims.
Credits have been reduced because of corrections to work dates and figures of applicant.

Special credits under section 77 (16) for the following mining claims

No credits have been allowed for the following mining claims

☐ not sufficiently covered by the survey ☐ insufficient technical data filed

The Mining Recorder may reduce the above credits if necessary in order that the total number of approved assessment days recorded on each claim does not exceed the maximum allowed as follows: Geophysical - 80; Geologic - 40; Geochemical - 40; Section 77(19) - 60.
Account No. 2.12613

Ministry of Northern Development and Mines

Technical Assessment Work Credits

AMENDED

Sept. 18, 1989

Recorded Holder

MIKE ANDREWS

Township or Area

WEAVER TOWNSHIP

Type of survey and number of assessment days credit per claim

<table>
<thead>
<tr>
<th>Type of survey</th>
<th>Number</th>
<th>Days</th>
</tr>
</thead>
<tbody>
<tr>
<td>Electromagnetic</td>
<td>17</td>
<td></td>
</tr>
<tr>
<td>Magnetometer</td>
<td>34</td>
<td></td>
</tr>
<tr>
<td>Radiometric</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Induced polarization</td>
<td>17</td>
<td></td>
</tr>
<tr>
<td>Other</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Special provision

<table>
<thead>
<tr>
<th>Man days</th>
<th>Airborne</th>
<th>Ground</th>
</tr>
</thead>
<tbody>
<tr>
<td>□</td>
<td>□</td>
<td>✅</td>
</tr>
</tbody>
</table>

Section 77 (19) See "Mining Claims Assessed" column

Geological

<table>
<thead>
<tr>
<th>Days</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

Geochemical

<table>
<thead>
<tr>
<th>Days</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

Mining Claims Assessed

- TB 975484 to 486 incl.
- 1010542
- 1010545
- 1010748 to 750 incl.

Special credits under section 77 (16) for the following mining claims

No credits have been allowed for the following mining claims

- □ not sufficiently covered by the survey
- □ insufficient technical data filed

The Mining Recorder may reduce the above credits if necessary in order that the total number of approved assessment days recorded on each claim does not exceed the maximum allowed as follows: Geophysical - 80; Geological - 40; Geochemical - 40; Section 77(19) - 60.
Ontario

Ministry of
Northern Development
and Mines

Ministère du
Développement du Nord
et des Mines

September 15, 1989

Dear Sir:

Re: Notice of Intent dated August 15, 1989 for Geophysical (Electromagnetic, Magnetometer and Induced Polarization) Survey submitted on Mining Claims TB 975484 et al in Weaver Township.

The assessment work credits, as listed with the above-mentioned Notice of Intent, have been approved as of the above date.

Please inform the recorded holder of these mining claims and so indicate on your records.

Yours sincerely,

W.R. Cowan
Provincial Manager, Mining Lands
Mines & Minerals Division

LJS:eb
Enclosure

cc: Mr. G.H. Ferguson
Ministry of Northern Development and Mines
435 James Street South
P.O. Box 5000
Thunder Bay, Ontario
P7C 5G6

Wayne Holmstead
1074 Dillingham Street
Kingston, Ontario
K7P 2P4

Mining Recorder
Ministry of Northern Development and Mines
435 James Street South
P.O. Box 5000
Thunder Bay, Ontario
P7C 5G6

Ontario Geological Survey
Assessment Files Office
SEP 15 1989
RECEIVED

Mining Lands Section
880 Bay Street, 3rd Floor
Toronto, Ontario
M5S 1Z8

Telephone: (416) 965-4888
Your File: W8904-245,246
Our File: 2.12613
Technical Assessment

Work Credits

Recorded Holder

MIKE ANDREWS

Township or Area

WEAVER TOWNSHIP.

<table>
<thead>
<tr>
<th>Type of survey and number of Assessment days credit per claim</th>
<th>Mining Claims Assessed</th>
</tr>
</thead>
<tbody>
<tr>
<td>Geophysical</td>
<td></td>
</tr>
<tr>
<td>Electromagnetic</td>
<td>17 days</td>
</tr>
<tr>
<td>Magnetometer</td>
<td>34 days</td>
</tr>
<tr>
<td>Radiometric</td>
<td>17 days</td>
</tr>
<tr>
<td>Induced polarization</td>
<td></td>
</tr>
<tr>
<td>Other</td>
<td></td>
</tr>
</tbody>
</table>

Mining Claims Assessed

TB 975484 to 486 incl.

1010542

1010545

1011748 to 750 incl.

1001193 to 198 incl.

Section 77 (19) See “Mining Claims Assessed” column

Geological

days

Geochemical

days

Special provision

Airborne

Ground

Special credits under section 77 (16) for the following mining claims

No credits have been allowed for the following mining claims

☐ not sufficiently covered by the survey

☐ insufficient technical data filed

The Mining Recorder may reduce the above credits if necessary in order that the total number of approved assessment days recorded on each claim does not exceed the maximum allowed as follows: Geophysical - 80; Geological - 40; Geochemical - 40; Section 77(19) - 60.
GRAND OAKES EXPLORATION
E.M. Survey Profiles
V.L.F. - N.A.A.
WEAVER TOWNSHIP PTY.

Compilation by:
Interpretation by:
Drafting by:

DATE
Drawing N*.

2.12613
METHOD: TIME DOMAIN
ELECTRODE ARRAY: GRADIENT
PULSE Duration: 4 sec-on/2 sec-off
DELAY TIME: 15 sec
RECEIVER: Tektronix 248
UNITs: chargeability in microvolts

ELECTRODE ARRAY: Grid

EXSICS EXPLORATION LTD,
P.O. Box 1880, P4N 1X1
Suite 13, Hollinger Bldg, Timmins Ontario
Telephone: 705-892-5575

GEOCOM CONSULTANT SERVICES
PROPERTY: WEAVER TWP. PROPERTY
TITLE: CONTOURED IP CHARGEABILITY

Drawn: PE/19
Scale: 1:5000
NTS:
Job No: P-203