REPORT ON GEOPHYSICAL SURVEYS
HURONIAN MINES LIMITED
12-CLAIM GROUP, MOSS TOWNSHIP
THUNDER BAY MINING DIVISION
ONTARIO CANADA

RECEIVED
OCT 01 1984
MINING LANDS SECTION

September 25, 1984

- by -

A. S. Bayne, P.Eng. - Ontario

A. S. BAYNE & COMPANY, CONSULTING ENGINEERS, TORONTO, CANADA
Report on Geophysical Surveys
12-Claim Group - Moss Township

Huronian Mines Limited
September 25, 1984

Letter of Transmittal	Preface	(i)
Certificate	(ii)	
Mining Claims - Titles	1	
Location and Access	1	
Geology	1 - 2	
Lithology	1	
Structural Features	1 - 2	
Previous Exploration	2 - 4	
Geophysical Surveys 1983-84	5 - 10	
Area Surveyed	5	
Instruments and Procedure	5	
Magnetic Survey Results	6	
Electromagnetic Survey Results	6 - 10	
Interpretation - Observations	10 - 11	
Recommendations	12	
Estimate of Cost	12 - 13	
OMNR Technical Data Statement	Back of page 13	

MAPS (See pocket - back cover)

Plan No. 1, Magnetic Survey Data, scale 1" = 200'.

Plan No. 2, Electromagnetic Survey Data, scale 1" = 200'.

O.D.M. Map 2204, Geological, scale 1" = ½ mile.

Part of G.S.C. Map 1112G, Aeromagnetic, scale 1" = 1 mile.

Part of OMNR Plan No. G-676, Moss Township, scale 1" = ½ mile.
September 25, 1984

The President & Directors
Huronian Mines Limited
2180 Yonge Street
Suite 1800
Toronto, Ontario
M4S 2B9

Attention: Mr. Michael A. Eustace
Secretary

Gentlemen:

Re: Geophysical Surveys - Moss Township

Enclosed you will find my report of even date on the geophysical surveys of your 12-claim group in Moss Township.

Yours very truly,

[Signature]

A. S. Bayne, P.Eng.

A. S. BAYNE & COMPANY

ASB:TP
Enc.

cc - Mr. Donald E. Smith
President
CERTIFICATE

I, Arthur Stewart Bayne, do hereby certify that:-

1. I am a Consulting Engineer, residing at 45 Strathallan Boulevard, Toronto, Canada, with offices at 45 Richmond Street West, Toronto, Ontario, Canada.

2. I am a Bachelor of Science in Mining & Metallurgical Engineering (Queen's University, Kingston, Canada, 1935).

3. I am a member, in good standing, of the Association of Professional Engineers of the Province of Ontario and of the Province of British Columbia.

4. I have continuously practised my profession under the registered name and style of A. S. Bayne & Company, Consulting Engineers, since 1946.

5. This Certificate is part of the attached "Report on Geophysical Surveys, 12-Claim Group, Huronian Mines Limited, Moss Township, Thunder Bay Mining Division, Ontario, Canada", dated September 25, 1984.

6. I have no interest, direct, indirect or expected, in the properties or securities of Huronian Mines Limited.

7. This report is based on:-

i) My knowledge of the area from Moss Township to Shebandowan Lake, from inspection of the Ardeen mine in 1936, and examinations of properties along this mineralized belt in the 1950's, 1983-84.

 ii) Detailed review and study of the geological and exploration records and numerous files of the Ontario Geological Survey and corporate records and my personal files, as indicated in the list of selected references appended to this report.

 iii) My management and field supervision of the geophysical surveys reported herein.

 iv) My full cognizance of the facts.

SIGNED at Toronto, in the Municipality of Metropolitan Toronto, in the Province of Ontario, Canada, this 25th day of September, 1984.

A. S. Bayne
MINING CLAIMS - TITLES

Huronian Mines Limited is the recorded holder of the 12-claim group covered by the
gеophysical surveys reported following.

The claims are contiguous, comprising approximately 480 acres, and are numbered on
O.M.N.R. Plan No. G-676, Moss Township, Thunder Bay Mining Division, from TB-677468
to TB-677479, inclusive.

LOCATION AND ACCESS

The claims are located in the southwest quarter of Moss Township, 3½ miles southwest
of Moss Lake.

They occupy former patented mining locations 4H and 5H adjoining west of the old
Ardeen (Moss) mine which produced, during its last period of operation from April
1932 to December 31, 1936, 29,678 ounces of gold and 172,617 ounces of silver from
143,724 tons milled.

Ground access is via Highways 102 and 11, 64.6 miles west of the City of Thunder Bay
to the turn-off to Tip-Top spur, 1¼ miles west of Kashabowie on the Fort Frances
branch of the C.N.R., thence 6.8 miles by secondary road, thence about 20 miles
southwest to the west shore of Moss Lake, thence southwest by bush trail 2 miles
from Moss Lake.

Air transportation was used via Shebandowan Air Ltd. between Kashabowie and Moss Lake.

GEOLOGY

Lithology

No detailed geological mapping has been done on this property.

The last general mapping was included in a 1967 geological survey by the Ontario
Department of Mines. This is described by F. R. Harris, in O.D.M. Geological Report
No. 85, 1970. Accompanying Map 2204, Powell Lake Sheet, to the scale of ¼ mile to
1 inch, shows locations 4H and 5H located in the north part of the map, now occupied
by the Huronian claims.

Map 2204 shows the south two-thirds of the property predominantly underlain by early
pre-Cambrian metavolcanics, comprised of mafic and intermediate massive and foliated,
schist and chloritized lavas, tuff and agglomerate, with interfloows and intercalated
felsic volcanics comprised of massive rhyolitic tuff and breccia and sericite schist.

Structural Features

Foliation is shown striking northeasterly, inclined from 65°N to vertical.

There are very few strikes and dips of schistosity on the map. One occurrence, just
inside the N.E. corner of location 5H (Claim TB-677472 of the Huronian claims)
indicates chlorite schist, striking S.67°W. and dipping 75° N.W. The northeast
projection of this line of strike coincides with the strike of an outcrop of felsic
intrusive rock, 300 feet N-E, scaling about 50 feet wide over a length of 495 feet.
One of the most important geological horizon markers is a continuous zone of lean magnetic iron formation. This zone has been traced for 3 miles along from where it parallels the Ardeen mine gold deposit from 400 to 600 feet south of the mine workings, crossing the middle of the Huronian claims on a mean strike of about S.48°W.

A second important horizon marker is a fault following a deep (150') ravine just north of the gold-bearing quartz vein in the Ardeen mine. Map 2204 traces this lineament for about 4000 feet southwest of the mine and about 700 feet north of the iron formation, to where it is stopped at the east boundary of 4H, or of Claim TB-677468 (the northeasterly claim of the Huronian group).

This fault is shown as the contact zone between the volcanics and a 1000-foot-wide mafic intrusive to the north. This contact (and the mafic intrusive) is projected for a mile southwesterly across the north four claims of the Huronian property. It also follows the valley of an unnamed creek. This creek occupies the ravine at the Ardeen mine and continues through a swampy valley lying between a series of high ridges for 3/4 mile across the Huronian claims, thence flowing north into the Obadinaw River which crosses the northwest corner of the claim group.

The most northwesterly claims, TB-677476 and TB-677472 are mapped as underlain by metasediments, consisting of greywacke and biotite-quartz-feldspar paraschist, intercalated in part with the metavolcanics to the south. The contact is postulated striking S.51°W. from the middle of the north boundary of TB-677472 to the southwest corner of TB-677476.

PREVIOUS EXPLORATION

Locations 4H and 5H, now occupied by the Huronian 12-claim group, were first prospected and acquired by the Peter McKellar interests following the gold discovery on Location H1 (Ardeen mine) in 1871.

The ground was held under option by the successive mining companies working the Ardeen mine, i.e., the Jackfish Mining Co. and the Huronian Mining Co. to 1882, Moss Mines Ltd. to 1933 and Ardeen Mines Ltd. to 1936.

The records indicate that little work was done, except trenching and sampling of two quartz veins. One crosses Claims TB-677471 and TB-677469, lying up to 400 feet south of the main iron formation. (See "South Vein" on Plan No. 1 accompanying this report.)

The other straddles the N-S boundary between TB-677473 and TB-677471 about 700 feet north of the iron formation. (See "North Vein", Plan No. 1)

O.D.M. Map 2204 shows trenches corresponding to those on the North Vein. It shows none in the South Vein vicinity, but notes a 20-inch quartz vein about 300 feet south of the iron formation.

None of the early sampling records are available, but in 1933 E. J. Bolger, Mine Engineer at the Moss/Ardeen mine, described stripping and trenching in 1932 of showings mapped by Peter McKellar, crossing the boundary of 4H and 5H (North Vein). Mr. Bolger reported channel samples across quartz lenses associated with syenite porphyry intrusives, assaying from 3.30 oz./ton gold across 8 inches to 0.29 oz./ton gold across 7 feet.
Report on Geophysical Surveys
12-Claim Group, Moss Township

He strongly recommended more exploratory work but nothing further is recorded.

Following the liquidation of Ardeen Mines Ltd. in 1937, titles to 4H and 5H lapsed and the ground became open for staking.

In 1967, Harris (O.D.M. Report 85) found that Frank Minoletti held 16 claims including 12 claims occupying 4H and 5H. No work was recorded and titles lapsed.

Minoletti later restaked the claims. In 1973, they were optioned to a 50-50 joint venture by Lynx-Canada Explorations Ltd. and Fort Reliance Minerals Limited, who engaged Ross Kidd, P.Eng., to conduct a geophysical survey.

A magnetometer and VLF electromagnetic survey was completed on 6 of the claims now numbered TB-677468-71, inclusive, and TB-677473-74. Instrumentation was by a Ronka EM-16 unit using U.S. Naval transmitter NPG, Seattle, at 18.6 kHz.

During this 1973 period, the McKellar trenches on the North Vein were cleaned out and sampled across 12 intermittent sections over a strike length of 456 feet. The assays reported by Bond-Clegg & Co. Ltd., Ottawa, ranged from 0.02 oz./ton gold, 0.08 oz./ton silver, across 12 inches, to 0.72 oz./ton gold, 4.38 oz./ton silver, across 36 inches. The average width and assay over the 456-foot strike length was 22.8 inches, 0.196 oz./ton gold and 1.26 oz./ton silver. (See Table No. 1 on page 4)

Harris (O.D.M. Report 85, 1970, pp. 50-51) reported sampling some of the quartz veins in 1967 before the showings were cleaned up. Chip samples across 7 to 12 inches assayed 0.09 oz./ton gold, trace silver, to 0.21 oz./ton gold, 1.65 oz./ton silver. A sample across a 15-foot quartz vein, containing minor amounts of pyrite, assayed 0.01 oz./ton gold, trace silver. Harris described the quartz veins as containing up to 10% pyrite with minor amounts of galena and chalcopyrite. The host rock is described as sheared near the quartz vein, consisting of rhyolite and mafic volcanics, with a sill of dacite porphyry in contact with the vein in one trench.

The objective was to discover base metals sulphides, following the successful production by Coldstream Mines Ltd. from the old Tip Top mine at the east end of the Moss Lake - Shebandowan volcanic belt. No massive sulphides were indicated, but Kidd outlined four conductor systems indicating possible gold-bearing structures.

Further exploration for gold was recommended, but nothing was done and the options were dropped.

Minoletti then optioned the claims to Troilus Mines Ltd., who in the winter of 1975 engaged J. McAdam, B.Sc., Flanagan McAdam & Co. A magnetometer survey and an electromagnetic survey, using Sheridan-Kelk Magniphase H.E.M. instrumentation on a 2300 Hz frequency, with a 200-foot cable for primary induction, were completed.

Twelve conductive zones, classed from weak to medium conductivity, were outlined, reported to indicate possible gold-bearing structures. Stripping, trenching and core drilling were recommended to disclose the bedrock and cross-section the conductive zones to 350-foot depth. The recommendations were not implemented.

By January 1983, titles lapsed and the claims were staked by James McNeil.
Report on Geophysical Surveys
12-Claim Group, Moss Township

TABLE No. 1 - NORTH VEIN

<table>
<thead>
<tr>
<th>ROCK TRENCH OR OUTCROP</th>
<th>No. OF SAMPLES</th>
<th>(L) LENGTH (feet)</th>
<th>(W) AVERAGE WIDTH (Inches)</th>
<th>LW</th>
<th>(A) AVERAGE ASSAY Au (oz/ton)</th>
<th>Ag (oz/ton)</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>1</td>
<td>25</td>
<td>14</td>
<td>350</td>
<td>0.32</td>
<td>2.06</td>
</tr>
<tr>
<td>5</td>
<td>2</td>
<td>52</td>
<td>16</td>
<td>832</td>
<td>.13</td>
<td>1.47</td>
</tr>
<tr>
<td>Outcrop</td>
<td>3</td>
<td>50</td>
<td>13.3</td>
<td>665</td>
<td>.22</td>
<td>1.36</td>
</tr>
<tr>
<td>6</td>
<td>1</td>
<td>39</td>
<td>12</td>
<td>468</td>
<td>.04</td>
<td>0.50</td>
</tr>
<tr>
<td>Outcrop</td>
<td>1</td>
<td>18</td>
<td>12</td>
<td>216</td>
<td>.02</td>
<td>0.08</td>
</tr>
<tr>
<td>7</td>
<td>3</td>
<td>28</td>
<td>24</td>
<td>672</td>
<td>.114</td>
<td>0.52</td>
</tr>
<tr>
<td>8</td>
<td>6</td>
<td>85</td>
<td>24.3</td>
<td>2,066</td>
<td>.12</td>
<td>0.95</td>
</tr>
<tr>
<td>9</td>
<td>1</td>
<td>65</td>
<td>10</td>
<td>650</td>
<td>.02</td>
<td>0.24</td>
</tr>
<tr>
<td>10</td>
<td>1</td>
<td>40</td>
<td>36</td>
<td>1,440</td>
<td>.72</td>
<td>4.38</td>
</tr>
<tr>
<td>Outcrop</td>
<td>1</td>
<td>18</td>
<td>48</td>
<td>864</td>
<td>.03</td>
<td>0.08</td>
</tr>
<tr>
<td>Outcrop</td>
<td>1</td>
<td>21</td>
<td>60</td>
<td>1,260</td>
<td>.11</td>
<td>0.50</td>
</tr>
<tr>
<td>Outcrop</td>
<td>1</td>
<td>15</td>
<td>60</td>
<td>900</td>
<td>.12</td>
<td>0.60</td>
</tr>
<tr>
<td>TOTAL</td>
<td>22</td>
<td>456</td>
<td>10,383</td>
<td></td>
<td>2,036.35</td>
<td>13,114.18</td>
</tr>
</tbody>
</table>

AVERAGE

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>22.8</td>
<td>0.196</td>
</tr>
</tbody>
</table>

*From OMNR assessment work files.
Sample plans of rock trenches and rock outcrops, scale 1" = 20', and Assay Certificates (Bondar-Clegg & Co. Ltd., Ottawa, Ont.) dated July 11 to September 14, 1973, to Lynx Canada Explorations Ltd.*
In August 1983, Huronian Mines Limited purchased a 90% interest from McNeil.

Studies were made of the records of all previous work on both the 12-claim group and the Ardeen locations which are held by Belore Mines Limited, an associate company of Huronian Mines Limited.

Area Surveyed

By October 1983, field reconnaissance of the 12-claim group indicated that although the 1975 grid lines run by Flanagan McAdam & Co. were mostly obliterated by undergrowth, sufficient traces of the base line remained to permit reasonably close duplication of the 1975 grid.

In November and December 1983, the new locational grid was cut and chained with pickets at 100-ft. intervals.

The base line ran, bearing S.450W., from the northeast corner of TB-677468 to near the southwest corner of TB-677479, a length of 1½ miles.

The grid lines were cut and chained with pickets at 100-foot intervals, running NW-SE across the base line at 200-foot intervals and extending to the outside perimeter of the claims group. The perimeter claim lines were also cut and chained to tie in the outside ends of the grid lines.

The total length of lines cut and chained was 26.96 miles.

Instruments and Procedure

A GeoMetrics Proton Magnetometer Serial #60688 was used for the magnetic survey.

Double gradient readings were not taken. Readings were taken at 100-foot intervals and some at 50-foot intervals along the grid lines. On Plan No. 1 the total field readings with diurnal corrections minus 59,000 gammas are plotted east of each station along the grid lines and north along the base line.

Isomagnetic contours are shown at -500, 0, 500, 1000, 2000, 3000 and 5000 gammas.

Readings were also taken at 100-foot and some at 50-foot intervals along 12 grid lines, totalling 3.84 miles, on the adjoining Locations H2 and 27B of Belore Mines Limited. These were taken with reference to the concurrent Base Control Stations to check with the Belore readings taken by the same instrument, to provide a common data base for interpreting the results on the two adjoining properties. In all, a total of 27.7 miles of proton magnetic survey was completed.

A Geonics VLF Model EM-16, Serial #13681, was used for the VLF electromagnetic survey, with operator facing northerly at 90° to the transmitter station NAA, Cutler, Maine, U.S.A., on a frequency of 24.0 kHz. All in-phase and out-of-phase (quadrature) readings were taken at 100-foot station intervals and some at 50-foot intervals and plotted on Plan No. 2 with profiles and conductor traces. The conductor traces are also plotted on Plan No. 1 to facilitate interpretation.
Magnetic Survey Results

1. The magnetic data on Plan No. 1 indicate the background of the felsic rocks and possibly the metasediments, as shown generally on O.D.M. Map 2204, is below the 1000-gamma range, while a background of 1000 to 2000 gammas appears to reflect the intermediate to mafic rocks.

Anomalous magnetics start between 2000 and 3000 gammas, covering elongated areas flanking and on strike of anomalies from 3000 to 5000 gammas and over.

2. An elongated area, striking southwesterly across the middle of the property, reads from 5000 to numerous highs of 8000 to 10,000 gammas, with some over 12,000 gammas. This undoubtedly reflects the major continuous band of iron formation shown on Map 2204 running southwest from just south of the Ardeen mine.

3. Another anomaly, reading from 3000 to over 11,000 gammas, strikes northeast across the southeast corner of the property (Claim TB-677475). This appears to be a N-E strike extension of the iron formation shown on Map 2204, in the north part of Location 6H, adjoining south of the Huronian claims.

4. An anomalous zone reading from 3000 to 6770 gammas from 100 to 400 feet north of the North Vein. It strikes southwesterly for 1200 feet from 250 feet N-E of the common corner of TB-677470 and 677473 extending for 950 feet across 677473.

Map No. 2204 shows this area as the contact zone between a lense of mafic rocks which includes ultramafic components such as peridotite and gabbro.

Plan No. 1 shows a sharp magnetic depression contiguous to the 6770-gamma reading. This indicates a possible "break" or shear zone and may be related to a geological contact zone.

In considering the presence of ultramafic rocks from the 3000- to 6770-gamma readings, it should be borne in mind that the "highs" are comparable to many of the readings over the known band of iron formation.

More detailed geological mapping is required to resolve the lithology of this specific zone.

Electromagnetic Survey Results

1. The VLF-EM data and profiles of in-and-out-of-phase readings are shown on Plan No. 2 accompanying this report.

Twelve zones of weak to moderately good conductors, generally striking SW-NE, are also traced on Plan No. 2.

The conductor traces are also plotted on Plan No. 1 to show the correlation of the magnetic anomalies and EM conductors.

Table No. 2 on page 7 details the grid locations and estimated approximate depths of the conductive zones.
The VLF-EM conductor zones are numbered and located on Plans Nos. 1 and 2 accompanying this report, as tabulated below.

<table>
<thead>
<tr>
<th>Zone No.</th>
<th>From</th>
<th>To</th>
<th>Length (feet)</th>
<th>Approx. Depth (feet)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>L42W, 3350N</td>
<td>L32W, 3200N</td>
<td>1000</td>
<td>50</td>
</tr>
<tr>
<td>2</td>
<td>L48W, 3050N</td>
<td>L44W, 2800N</td>
<td>300</td>
<td>50</td>
</tr>
<tr>
<td>3</td>
<td>L50W, 2675N</td>
<td>L42W, 2675N</td>
<td>700</td>
<td>50</td>
</tr>
<tr>
<td>4</td>
<td>L40W, 2600N</td>
<td>L24W, 2450N</td>
<td>1550</td>
<td>50</td>
</tr>
<tr>
<td>5</td>
<td>L36W, 2075N</td>
<td>Single line</td>
<td></td>
<td>50</td>
</tr>
<tr>
<td>6</td>
<td>L50W, 2270N</td>
<td>L44W, 2175N</td>
<td>500</td>
<td>50</td>
</tr>
<tr>
<td>7</td>
<td>L42W, 1940N</td>
<td>L2W, 100S</td>
<td>4770</td>
<td>150 - 250</td>
</tr>
<tr>
<td>8</td>
<td>L58W, 1880N</td>
<td>L50W, 1880N</td>
<td>850</td>
<td>50 - 100</td>
</tr>
<tr>
<td></td>
<td>L48W, 1650N</td>
<td>L46W, 1470N</td>
<td>300</td>
<td>100</td>
</tr>
<tr>
<td>9</td>
<td>L46W, 1700N</td>
<td>L36W, 1270N</td>
<td>1050</td>
<td>50 - 100</td>
</tr>
<tr>
<td></td>
<td>L28W, 1065N</td>
<td>Single line</td>
<td></td>
<td>50</td>
</tr>
<tr>
<td>10</td>
<td>L60W, 1050N</td>
<td>L54W, 1070N</td>
<td>550</td>
<td>50</td>
</tr>
<tr>
<td></td>
<td>L52W, 750N</td>
<td>L50W, 750N</td>
<td>220</td>
<td>50 - 100</td>
</tr>
<tr>
<td></td>
<td>L48W, 570N</td>
<td>L6W, 550S</td>
<td>4370</td>
<td>50 - 100</td>
</tr>
<tr>
<td>11</td>
<td>L72W, 560N</td>
<td>Single line</td>
<td></td>
<td>50</td>
</tr>
<tr>
<td></td>
<td>L68W, 380N</td>
<td>L66W, 420N</td>
<td>250</td>
<td>50</td>
</tr>
<tr>
<td></td>
<td>L74W, 250N</td>
<td>L64W, 50N</td>
<td>1040</td>
<td>50 - 100</td>
</tr>
<tr>
<td></td>
<td>L58W, 250S</td>
<td>Single line</td>
<td></td>
<td>50</td>
</tr>
<tr>
<td>12</td>
<td>L66W, 1000S</td>
<td>L52W, 1280S</td>
<td>1540</td>
<td>100 - 250</td>
</tr>
<tr>
<td></td>
<td>L62W, 1350S</td>
<td>L60W, 1450S</td>
<td>200</td>
<td>50</td>
</tr>
<tr>
<td></td>
<td>L54W, 1575S</td>
<td>L50W, 1575S</td>
<td>250</td>
<td>50</td>
</tr>
</tbody>
</table>
Electromagnetic Survey Results - cont'd

2. All the EM conductor indications, except three single-line readings in Zones 5, 9 and 11, show persistent continuity across the grid lines over lengths of 200 to 4770 feet, along the general southwesterly strike of the known rock formations as shown on O.D.M. Map 2204.

The conductor depths indicated by the in-phase reversals are estimated from 50 to 250 feet below surface. Most topographic features noted concurrently during the survey show the conductors coincident to or closely flanking high relief indicating probable outcrop areas under less than 50 feet of overburden. From this and the persistency of strike continuity, it may be reasonably assumed that most of the readings indicate bedrock conductors.

This is well illustrated by the long conductor traces in Zones 7, 10 and 12.

3. Zone 7 conductor running 4770 feet from L42W, 1940N to L2W, 100S, recorded high in-phase readings from estimated depths of 175 to 250 feet.

Moderately high conductivity, allowing for topographic effects, is recorded throughout its length.

From L34W to 16W it lies 200 feet north of the magnetic anomaly flanking the North Vein along the same northeasterly strike.

It is possible that this represents a conductive shear related to the lithological contact shown on Map 2204 crossing the northeasterly three claims.

4. Zones 5 and 6 conductors at the southwest end of Zone 7 appear to be strike displacements through cross-faulting. Zone 5, a single line conductor, lies between two magnetic "low" anomalies (340 to 380 gammas) immediately north of a 1000- to 1860-gamma area probably reflecting the mafic volcanics.

5. Zone 10 conductor is continuous throughout its 4370 length northeast of L48W, with two 200- to 300-foot strike displacements to the N-W in its 770-foot S-W extension to L60W, which again reflects cross faulting.

The conductor traces coincide with the magnetic "highs" over the main zone of iron formation striking S-W from near the Ardeen mine.

It passes 200 to 400 feet north of the South Vein over which the electromagnetic response was poor.

The shallow depth of conductor (50 to 100 feet) is accountable by the light overburden on the plateau of high ground underlain by the iron formation.

(See Plan No. 2)

The high in-phase profiles, up to 79%, suggest the moderate conductivity of disseminated sulphides usually contained in this lean iron formation. It is interesting to note that the ground magnetic survey indicates widths of iron
Electromagnetic Survey Results - cont'd

formation averaging well over 100 feet and up to 400 feet on the northeasterly two claims. Frequent magnetic "lows" and magnetic depressions contiguous to the north and south flanks of the "highs" support the existence of conductive shear zones in the iron formation.

6. Zone 9 conductor strikes northeasterly from L46W to L38W into the middle of the magnetic anomaly crossing the N-E corner of TB-677473. A single-line conductor 800 feet N-E along strike flanks a magnetic "high" of 5880 gammas. The vague in-phase and out-of-phase readings on the intervening three lines L34W to L30W may be accountable by the sharp changes noted in topographic relief.

7. Zone 8 conductor is a S-W strike extension of Zone 9 from L50W to L60W. The gap on L48W appears to be the result of a strike fault. This is supported by a weak but deep (100-foot) conductor on L48W and L46W 100 to 150 feet south of the adjacent ends of Zones 8 and 9.

It should be noted here that, if Zones 8 and 9 conductors are assumed to be an extension of the possible mafic-ultramafic contact shown on May 2204, possibly supported by the 3000- to 6770-gamma magnetic anomaly to the north-east, Zone 9 traverses a magnetic area of only 1000 to 2000 gammas, while Zone 8 is in an area generally well under 1000 gammas.

8. Zone 11 conductors, generally shallow (50 to 100 feet), lie in a swampy valley between two ridges, and register weak to moderate conductivity. They lie in a magnetic low area of 500 to 1000 gammas, but are flanked by magnetic lows and depressions indicating "breaks" in the underlying rock. This rock is indicated by Map 2204 to be felsic volcanics (rhyolite) with intercalated mafic to intermediate (andesite to dacite) volcanics.

9. Zone 12 shows three conductors. One, striking 1540 feet northeasterly from L66W to L52W, shows good conductivity at depths of 100 to 250 feet along the north edge of a swampy zone lying 100 to 300 feet southeast of a series of ridges.

It traverses magnetic high anomalies (2000 to 3190 gammas) over the S-W 500 feet of strike, passing through a "background" area of 610 to 1000 gammas to the N-E end. A magnetic "low" (20 gammas) and magnetic depression (-130 gammas) flank the S-W and N-E ends of this conductor.

Two more shallow conductors (50 feet) are contiguous to the N-W flank of the magnetic "high" anomaly indicating iron formation in the S-E corner of TB-677475. The in-phase readings indicate weak to moderate conductivity.

10. Zone 3 conductor in the northwest part of the claim group strikes northeasterly for 700 feet from L50W to L42W along the north side of high ground relief.
Electromagnetic Survey Results - cont'd

Zone 4 conductor, continuing N-E along the same strike, runs 1550 feet from L40W to L24W.

A single line conductor on L40W lies 100 feet S-E of the adjacent ends of Zones 3 and 4. This indicates that Zones 3 and 4 are a single continuous conductor interrupted by a strike fault.

They traverse a magnetic area reflecting a background from 500 to 1000 gammas. An elongated magnetic "low" anomaly (290 to 300 gammas) parallels Zone 4 for 450 feet about 150 feet to the southeast.

Reference to Map 2204 indicates these conductors may represent a conductive shear related to the volcanics and a large area to the northwest underlain by metasedimentary rocks (greywacke and biotite-quartz-feldspar paraschist).

11. Zone 2 is shown as two single-line conductors on L48W and L44W on a northeasterly strike. They lie from 300 to 400 feet northwest of Zone 3 conductor and probably reflect the cross-faulting between the adjacent ends of Zones 3 and 4.

These conductors lie in an area of background magnetics (690 to 740 gammas) in the area shown underlain by metasedimentary rocks on Map 2204.

12. Zone 1 conductor is, like Zone 2, in a magnetic area of only background intensity. The indicated conductivity is weak. The response characteristics are affected, to some extent, by the local topography. It, nevertheless, appears continuous beyond the surveyed area along a NE-SW strike generally paralleling Zones 2, 3 and 4 which lie from 300 to 600 feet south.

INTERPRETATION - OBSERVATIONS

1. More conclusive geological interpretation than summarized in the foregoing description of the results can only be done by a detailed geological prospecting and mapping survey over the same location grid used for the geophysical surveys.

This should be assisted by stripping, trenching and sampling across the conductor zones, particularly on Zone No. 7, including the South Vein, and on Zones 8 and 9 striking toward the north flank of the North Vein.

2. The deep conductors indicated in Zones 7 and 12 can only be satisfactorily tested by core drilling.

3. However, it would facilitate efficient locations of drill holes to supplement the detail geological survey by geochemical surveys by surface soil sampling and possibly overburden drilling, the latter particularly over the Zone 7 and Zone 12 conductors.

With regard to the overburden sampling, it is noteworthy that Milne (O.D.M.
Report 85, 1970), during his 1967 geological survey, found only 15 glacial striations in the 250 square miles traversed. Eleven of these were from 7 to 10 miles north of the Huronian claims and only 4 were found south of Moss Lake.

The directions of movement were from S.15°W to S.56°W. and averaged S.34°W. Projection of the bearing of a striation at Laughren Lake to the north strikes S.31°W., passing 3 miles west of the Huronian claims. Another, 5 miles south, bears S.22°W. from Snodgrass Lake 3 miles east of the claims, and another, at Clay Lake to the southwest, projects S.49°W. from the middle of the Huronian claims.

Lacking more specific evidence of down-ice movement on or closer to the claims, these bearings, averaging S.31°W., can guide the initial overburden sampling pattern.

4. The geophysical surveys have indicated excellent targets for the discovery and delineation of gold-bearing structures. The weak to only moderately good conductors are typical of zones of disseminated ferrous sulphide minerals most often associated with gold deposits.

5. The iron formation is an important structural feature and has been the source of several profitable gold orebodies in the Little Long Lac and Pickle Lake areas.

This was neglected by the early miners who concentrated on "quartz veins" and "porphyry".

In 1971-73, the late Harold Hauf, President of Belore Mines Limited, drilled two holes under old pits in a showing within and contiguous to iron formation about 2500 feet N-E along strike of the Huronian claims.

One hole cored an average of 1.205 oz./ton gold over 12-foot core length (about 8½ feet horizontal width).

The second hole, 100 feet along strike, cut 0.157 oz./ton gold over 15 feet.

Hole 69-2 drilled by Dome Mines about 500 feet south of the old Ardeen mine workings cored 0.08 oz./ton gold over 13 feet. This included 0.135 oz./ton over 3 feet of "siliceous" (altered rhyolite) together with a contiguous 10-foot band of silicified, pyritized, magnetic iron formation assaying 0.065 oz./ton gold.

Hole 69-4 cut 0.22 oz./ton gold over 4.7 feet in silicified, pyritized iron formation.
RECOMMENDATIONS

The exploratory program outlined following is recommended.

Phase I - Surface Prospecting

1. Complete a detailed geological survey over the entire line grid.
2. Complete a geochemical survey based on gold analyses of soil samples taken concurrently with the geological survey.
 Collect samples using a 5-foot auger drill, with holes every 100 feet over the geophysical conductor zones.
3. Strip, trench and sample the North and South Veins, strip and trench across the conductor zones where outcrops or shallow overburden occur.

This work will take about 8 weeks and should be completed before winter freeze-up.

Phase II - Preliminary Drilling

Provide for at least 4500 feet of core drilling using BQ (1.4") drill stem equipment.

Cross-section the North and South Veins and related geophysical anomalies, with collar locations as follows:-

<table>
<thead>
<tr>
<th>Hole No.</th>
<th>Collar Location</th>
<th>Bearing</th>
<th>Dip</th>
<th>Length (feet)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>L28W, 1200N</td>
<td>S-E</td>
<td>-45°</td>
<td>700</td>
</tr>
<tr>
<td>2</td>
<td>L28W, 2000N</td>
<td>S-E</td>
<td>-45°</td>
<td>800</td>
</tr>
<tr>
<td>3</td>
<td>L28W, 300N</td>
<td>S-E</td>
<td>-45°</td>
<td>1000</td>
</tr>
<tr>
<td>4</td>
<td>L10W, Baseline</td>
<td>S-E</td>
<td>-45°</td>
<td>1000</td>
</tr>
<tr>
<td>5</td>
<td>L60W, 800S</td>
<td>S-E</td>
<td>-45°</td>
<td>1000</td>
</tr>
</tbody>
</table>

ESTIMATE OF COST

Following is the estimate of cost of implementing the foregoing recommendations.
Phase I - Surface Prospecting

Detailed geological survey, including mapping of surface lithology and structural interpretation with reference to observed outcrops and geophysical data
- 22.65 miles @ $300/mile - $6,795

Geochemical survey, collecting soil samples with 5-foot auger drill, with samples at 50- to 100-foot intervals across selected geophysical and geological anomalies (estimated 1000 samples)
- soil sampling, 15 days @ $200/day - $3,000
- sample bags, shipping, sample preparation and assays for Au and Cu (or Zn) - 1000 samples @ cost plus 10% (estimated) - $12,000 15,000

Provision for stripping and trenching - $20,000
Contingency @ 15% - $6,269
Total Phase I (2 months) - $48,064

Phase II - Preliminary Core Drilling

Core drilling, BQ (1.4") core - 4500 feet @ $20/foot - $90,000
Core sampling and assaying - $9,000
Contingency @ 15% - $14,850
Supervision, geological analysis and engineering - $20,000
Total Phase II (4 months) - $133,850

TOTAL PHASES I and II - $188,914

The foregoing budget schedule is the minimum required to test conclusively the favourable indications of gold mineralization on this property.

The speculative capital requirement is well warranted, providing the field expenditure is efficiently budgeted concurrently with the field conditions encountered and results obtained by the successive stages of the work schedule.

Respectfully submitted,

A. S. Bayne, B.Sc., P.Eng.
The following material (2 plan maps) has been placed on file from OMEP submittal ON 83-4-JV-23-7. The following material was not included in the assessment submittal but has been placed on file due to its significance to this report.
MAP 1112G

HURONIAN
RAINY RIVER and THUNDER BAY DISTRICTS
ONTARIO

Scale: One Inch to One Mile = \frac{1}{63,360}

Air photographs covering this map-area may be obtained through the National Air Photographic Library, Topographical Survey, Ottawa, Ontario.

Airborne Magnetic Survey, May to October, 1961, by Spartan Air Services Ltd.

No correction has been made for regional variation.

The planimetry for this map was obtained from topographical map sheets published by the Department of Mines and Technical Surveys and the Ontario Department of Lands and Forests.
Report of Work

Type of Survey(s): Magnetometer & VLF-Electromagnetic

Claim Holder(s): Huronian Mines Limited

Address: 2160 Yonge Street, Suite 1800, Toronto, Ontario, M4S 2B9

Survey Company: A.S. Bayne & Company, Consulting Engineers

Date of Survey (from & to): 15 November 1983 to 28 July 1984

Total Miles of line Cut: 26.96

Special Provisions

- **For first survey:** Enter 40 days. (This includes line cutting)
- **For each additional survey:** Enter 20 days (for each)

<table>
<thead>
<tr>
<th>Geophysical</th>
<th>Days per Claim</th>
</tr>
</thead>
<tbody>
<tr>
<td>Electromagnetic</td>
<td>40</td>
</tr>
<tr>
<td>Magnetometer</td>
<td>20</td>
</tr>
<tr>
<td>Radiometric</td>
<td></td>
</tr>
<tr>
<td>Other</td>
<td></td>
</tr>
<tr>
<td>Geological</td>
<td></td>
</tr>
<tr>
<td>Geochemical</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Man Days</th>
</tr>
</thead>
<tbody>
<tr>
<td>Complete reverse side and enter totals here</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Geophysical</th>
<th>Days per Claim</th>
</tr>
</thead>
<tbody>
<tr>
<td>Electromagnetic</td>
<td></td>
</tr>
<tr>
<td>Magnetometer</td>
<td></td>
</tr>
<tr>
<td>Radiometric</td>
<td></td>
</tr>
<tr>
<td>Other</td>
<td></td>
</tr>
<tr>
<td>Geological</td>
<td></td>
</tr>
<tr>
<td>Geochemical</td>
<td></td>
</tr>
</tbody>
</table>

Expenditures (excludes power stripping)

Total Expenditures

Expenditure Days Credits

Total Days Credits: 12

Calculation of Expenditure Days Credits

Type of Work Performed

Performed on Claim(s):

Calculation of Expenditure Days Credits

<table>
<thead>
<tr>
<th>Total Expenditures</th>
<th>Total Days Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>$</td>
<td>15</td>
</tr>
</tbody>
</table>

Instructions

Total Days Credits may be apportioned at the claim holder's choice. Enter number of days credits per claim selected in columns at right.

Certification Verifying Report of Work

I hereby certify that I have a personal and intimate knowledge of the facts set forth in the Report of Work annexed hereto, having performed the work or witnessed same during and/or after its completion and the annexed report is true.

Name and Postal Address of Person Certifying:

Arthur S. Bayne, 45 Richmond St. West, Suite 1101, Toronto, Ontario, M5H 1Z2

Date Certified: July 28, 1984
Geophysical - Geological - Geochemical Technical Data Statement

To be attached as an appendix to technical report. Facts shown here need not be repeated in report. Technical report must contain interpretation, conclusions etc.

<table>
<thead>
<tr>
<th>Type of Survey(s)</th>
<th>Magnetic and Electromagnetic</th>
</tr>
</thead>
<tbody>
<tr>
<td>Township or Area</td>
<td>Moss Township</td>
</tr>
<tr>
<td>Claim Holder(s)</td>
<td>Huronian Mines Limited</td>
</tr>
<tr>
<td>Survey Company</td>
<td>A. S. Bayne & Company</td>
</tr>
<tr>
<td>Author of Report</td>
<td>A. S. Bayne, B. Sc., P. Eng.</td>
</tr>
<tr>
<td>Address of Author</td>
<td>45 Richmond St. W., Toronto M5H 1Z2</td>
</tr>
<tr>
<td>Covering Dates of Survey</td>
<td>15/11/83 - 28/7/84</td>
</tr>
<tr>
<td>Total Miles of Line Cut</td>
<td>26.96 miles</td>
</tr>
</tbody>
</table>

Special Provisions Credits Requested

<table>
<thead>
<tr>
<th>Special Provisions</th>
<th>Geophysical</th>
<th>Days per claim</th>
</tr>
</thead>
<tbody>
<tr>
<td>ELECTROMAGNETIC</td>
<td>40</td>
<td></td>
</tr>
<tr>
<td>MAGNETOMETER</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>RADIOMETRIC</td>
<td></td>
<td></td>
</tr>
<tr>
<td>OTHER</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Airborne Credits (Special provision credits do not apply to airborne surveys)

<table>
<thead>
<tr>
<th>Instrument</th>
<th>Type</th>
<th>Days per claim</th>
</tr>
</thead>
<tbody>
<tr>
<td>MAGNETOMETER</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ELECTROMAGNETIC</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RADIOMETRIC</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Date: Sept. 27, 1984 **Signature:** Author of Report or Agent

Res. Geol. Qualifications: 384

Previous Surveys

<table>
<thead>
<tr>
<th>File No.</th>
<th>Type</th>
<th>Date</th>
<th>Claim Holder</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Total Claims: 12
Geophysical Technical Data

Ground Surveys — If more than one survey, specify data for each type of survey

<table>
<thead>
<tr>
<th>Number of Stations</th>
<th>1275</th>
</tr>
</thead>
<tbody>
<tr>
<td>Station interval</td>
<td>100 feet, some 50 feet</td>
</tr>
<tr>
<td>Profile scale</td>
<td>VLF-EM 1(^\circ) = 60%</td>
</tr>
<tr>
<td>Contour interval</td>
<td>0, 500, 1000, 2000, 3000, 5000</td>
</tr>
</tbody>
</table>

Magnetic

<table>
<thead>
<tr>
<th>Instrument</th>
<th>GeoMetricals Proton Magnetometer, S.N. 60688</th>
</tr>
</thead>
<tbody>
<tr>
<td>Accuracy</td>
<td>Scale constant 1 gamma</td>
</tr>
<tr>
<td>Diurnal correction method</td>
<td>30 control stations at 200-foot intervals on baseline</td>
</tr>
<tr>
<td>Base Station check-in interval (hours)</td>
<td>1 hour</td>
</tr>
<tr>
<td>Base Station location and value</td>
<td>BCS at B.L., L18+00W, 60,480 gammas</td>
</tr>
</tbody>
</table>

Electromagnetic

<table>
<thead>
<tr>
<th>Instrument</th>
<th>Geonics VLF Model EM-16, S.N. 13681</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coil configuration</td>
<td></td>
</tr>
<tr>
<td>Coil separation</td>
<td></td>
</tr>
<tr>
<td>Accuracy</td>
<td>±1%</td>
</tr>
<tr>
<td>Method</td>
<td>X Fixed transmitter</td>
</tr>
<tr>
<td>Frequency</td>
<td>NAA (24.0 kHz) N.E.A., Maine, U.S.A. (specify V.L.F. station)</td>
</tr>
<tr>
<td>Parameters measured</td>
<td></td>
</tr>
</tbody>
</table>

Gravity

<table>
<thead>
<tr>
<th>Instrument</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Scale constant</td>
<td></td>
</tr>
<tr>
<td>Corrections made</td>
<td></td>
</tr>
<tr>
<td>Base station value and location</td>
<td></td>
</tr>
<tr>
<td>Elevation accuracy</td>
<td></td>
</tr>
</tbody>
</table>

Induced Polarization

<table>
<thead>
<tr>
<th>Instrument</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Method</td>
<td>Time Domain</td>
</tr>
<tr>
<td>Parameters</td>
<td>On time</td>
</tr>
<tr>
<td></td>
<td>Off time</td>
</tr>
<tr>
<td></td>
<td>Delay time</td>
</tr>
<tr>
<td></td>
<td>Integration time</td>
</tr>
<tr>
<td>Frequency Domain</td>
<td></td>
</tr>
<tr>
<td>Parameters</td>
<td>Frequency</td>
</tr>
<tr>
<td></td>
<td>Range</td>
</tr>
<tr>
<td>Power</td>
<td></td>
</tr>
<tr>
<td>Electrode array</td>
<td></td>
</tr>
<tr>
<td>Electrode spacing</td>
<td></td>
</tr>
<tr>
<td>Type of electrode</td>
<td></td>
</tr>
</tbody>
</table>
SELF POTENTIAL
Instrument _____________________________ Range __________________
Survey Method ____________________________
__
Corrections made __________________________
__

RADIOMETRIC
Instrument ____________________________
Values measured __________________________
Energy windows (levels) ___________________
Height of instrument _____________________ Background Count ____________
Size of detector __________________________
Overburden ________________________________
__
(type, depth – include outcrop map)

OTHERS (SEISMIC, DRILL WELL LOGGING ETC.)
Type of survey __________________________
Instrument ______________________________
Accuracy _________________________________
Parameters measured ______________________
__
Additional information (for understanding results)
__

AIRBORNE SURVEYS
Type of survey(s) _________________________
Instrument(s) ____________________________
(specify for each type of survey)
Accuracy _________________________________
(specify for each type of survey)
Aircraft used _____________________________
Sensor altitude ___________________________
Navigation and flight path recovery method ___________________________
Aircraft altitude ___________________________ Line Spacing __________________
Miles flown over total area ___________________ Over claims only __________________
GEOCHEMICAL SURVEY – PROCEDURE RECORD

Numbers of claims from which samples taken

<table>
<thead>
<tr>
<th>Total Number of Samples</th>
<th>Type of Sample (Nature of Material)</th>
<th>Average Sample Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Method of Collection</th>
<th>Soil Horizon Sampled</th>
<th>Horizon Development</th>
<th>Sample Depth</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Terrain</th>
<th>Drainage Development</th>
<th>Estimated Range of Overburden Thickness</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

ANALYTICAL METHODS

Values expressed in: per cent ☐
p. p. m. ☐
p. p. b. ☐

Cu, Pb, Zn, Ni, Co, Ag, Mo, As, (circle)

Others

Field Analysis (tests)

Field Laboratory Analysis

Commercial Laboratory (tests)

SAMPLE PREPARATION

(Includes drying, screening, crushing, ashing)

Mesh size of fraction used for analysis

General

Reagents Used

Analytical Method

Extraction Method

Name of Laboratory

Commercial Laboratory

General

Extraction Method

Analytical Method

Reagents Used
Mining Lands Section
Control Sheet

File No 7246

TYPE OF SURVEY

- [] GEOPHYSICAL
- [] GEOLOGICAL
- [] GEOCHEMICAL
- [] EXPENDITURE

MINING LANDS COMMENTS:

__
__
__
__
__

Signature of Assessor

8/10/05

Date
September 28, 1984

VIA REGISTERED MAIL

Mr. Fred W. Matthews
Administrator, Projects Unit
Mining Lands Section
Ontario Ministry of Natural Resources
6450 Whitney Block
99 Wellesley Street West
Toronto, Ontario M7A 1W3

Dear Sir:

Re: The Mining Act Report of Work
Special Provisions - Sect. 77(10)
Claims TB-677468-79, Moss Township

On July 28, 1984, we filed 60-days work per claim on the captioned 12-claim group. The work was recorded on July 30, 1984. In accordance with your requirement, you will find enclosed herewith, in duplicate, "Report on Geophysical Surveys, Huronian Mines Limited, 12-Claim Group, Moss Township..." dated September 25, 1984, as follows:-

Original copy with coloured Magnetic Map
Duplicate copy with uncoloured Magnetic Map

The Technical Data Statement is back of page 13 of the Report.

Yours sincerely,

A. S. BAYNE & COMPANY

ASB:TP

Encs.

cc - Huronian Mines Limited:
Mr. Donald E. Smith, President
Mr. Michael A. Eustace, Secretary
Picket line cut and chained with total field magnetic reading ± 59,000 gammas plotted N-E of each 100° and 50° station. A proton magnetometer was used for the survey.

Magnetometer Control Station
LOCATION 27B
TRANSMITTER 5000 gammas
- 5000 gammas
- 3000 gammas
- 2000 gammas
- 1000 gammas
- 500 gammas
- 100 gammas
- 50 gammas

VLF - EM Conductor and potential conductor (See Map No. 2)
Approximate location of old trencher recorded
Gold - bearing
Old trench observed
Claim points and boundaries
Claim line
Pond or lake shore
Creek or river
Swampy area

MAGNETIC SURVEY DATA
ISOMAGNETIC CONTOURS
AIM - GROUP - 480 ACRE MINING
HURONIAN MINES LIMITED
A. S. Bayne & Co., Consulting Engineers
Toronto, Canada
August 1944
per A. S. Bayne, B. Sc., P. Eng.
LOCATION H2

9-LOCATION GROUP
BELORE MINES LTD.

12-CLAIM GROUP
HURONIAN MINES LTD.

KEY PLAN
QUEBEC

LEGEND
SURVEY SYMBOLS AND DATA
Cut and chained picket lines.
ln-phase readings shown southwest of each station.
Out-of-phase readings shown northeast of each station.

Instrumentation: Geonics E.M.-I6, V.L.F. used, with
operator facing north.

Transmitter: N.A.A., Cutler, Maine, 24-0 kHz.
V.L.F. Electromagnetics conductor, potential conductor.

TOPOGRAPHIC SYMBOLS
Hill, high ground
Steep hill
Cliff
Swampy area
River or creek
Outcrop or outcrop area
Trench
Boundary claim post and claim line
Assumed claim boundary
Approximate location of trenched areas on recorded
gold-bearing veins

PLAN No.

ELECTROMAGNETIC SURVEY DATA
12-CLAIM GROUP - 480 ACRES
MOSS TOWNSHIP - THUNDER BAY MINING DIVISION
HURONIAN MINES LIMITED

Scale 1" = 2000'

Toronto, Canada
August 1984
A. S. Bayne & Company Consulting Engineers
per A. S. Bayne, B. Eng.