Assessment Report on the
Burchell Lake Property
Burchell Lake Township Area
Thunder Bay Mining Division

Prepared for MIN Corporation
210 Cedar Street, Suite 203
Sudbury, ON P3B 1M6
Tel: (705) 669-0300
Fax: (705) 669-0250

July 14, 2004

Prepared by:

Stephen Wetherup Geological Consulting
635 East 45th Avenue
Vancouver, BC V5W 1X6
Tel: (604) 617-5955
e-mail: wetherup@shaw.ca

&

Joel Scodnick
75 Forest Lake Road
Sudbury, ON P3G 1K8
Tel: (705) 522-4439
Fax: (705) 522-8694
e-mail: scodnick@lincsat.com
Table of Contents

1.0 Summary ..3

2.0 Introduction and Terms of Reference ...5
 2.1 Terminology and Unit Conversion...5

3.0 Disclaimer ..6

4.0 Property Description and Location ...6

5.0 Accessibility, Climate, Local Resources, Infrastructure and Physiography7

6.0 Work History ..11
 1953 – Great Lakes Copper Mines Ltd..13
 1956 and 1957 – Great Lakes Copper Mines Ltd..13
 1964 – Mining Corporation of Canada ...14
 1965 – Consolidated Mining and Smelting ..14
 1965 – Noranda Exploration ..14
 1971 and 1972 – Freeport Sulphur ...14
 1975 – McIntyre Mines Ltd...15
 1976 – Belore Mines Ltd ..15
 1977 – Río Tinto Canadian Exploration ...15
 1980 to 1982 – Gulf Minerals ...15
 1982 – Canadian Nickel Co. ...16
 1983 and 1984 – Tenajon Silver Corp. ...16
 1987 and 1988 – Newmont Exploration ...16
 1988 – JET Mining Exploration ...17
 1989 to 1991 – Noranda Exploration Ltd..17
 1992 – Art Wallace (OPAP) ..18

7.0 Geological Setting ..18

8.0 Deposit Types ..20

9.0 Mineralization ...23

10.0 Exploration ..23

11.0 Adjacent Properties ..25
 11.1 Moss Lake Property ..25
 11.2 Coldstream Property ..25
 11.3 Ardeen Property ...28

12.0 Interpretations and Conclusions ...28

13.0 Recommendations ...30

14.0 References ...31

Figures

Figure 1: Burchell Lake Property location map ..8
Figure 2: Highway map of the Thunder Bay area ...9
Figure 3: Burchell Lake Property claim map ...10
Figure 4: Summary and highlights from historical work ... 12
Figure 5: Regional geology map .. 19
Figure 6: Burchell Lake Property geology map ... 21
Figure 7: Claim map depicting adjacent properties .. 26
Figure 8: Sample Location and Prospecting Map ... 27

TABLES

Table 4-1: Summary of claims and claim data that comprise Aurmin’s Burchell Lake Property 6
Table 6-1: Highlights from Great Lakes Copper Mines drilling on Burchell Lake Property (Giblin, 1964) ... 13
Table 6-2: Highlights from Freeport Sulphur 1971 drilling (taken from Solonyka, 1982) 14
Table 6-3: Highlights from 1980-1981 drilling by Gulf Minerals .. 16

APPENDICES

Appendix I: Certificate and Consent of Author’s
Appendix II: Glossary of Terms
Appendix III: Photo Plates
Appendix IV: Certificate of Analysis
Appendix V: Sample Descriptions
1.0 SUMMARY

The Burchell Lake Property comprises 18 unpatented mining claims totalling 107 units and is located within the NTS Map Sheet 52 B/10, Thunder Bay Mining Division, Northwestern Ontario, Canada. It is located approximately 110 km west of the city of Thunder Bay, Ontario and is vehicle accessible by paved and all weather logging trunk roads. The area is forested and areas have been logged previously and new logging road construction suggests future logging activity.

Aurmin Corporation has entered into an option agreement with Mr. John Ternowesky, Eugene Belisle, Noel Belisle, and Mike Fogen to acquire 100% of the Burchell Lake Property through a series of stock and cash payments over 30 months as well as a $1,200,000 CAD work commitment.

A total of $17,780.90 of exploration expenditures have been incurred on the Burchell Lake Property between April 4 and July 14, 2004. On April 5th, 2004 the author’s and an assistant visited the Property and examined some of the outcrops. On July 8th and 9th, 2004 a prospecting and sampling program was conducted on claims TB 3001512, TB 3001513, TB 3001514, and TB 1064690, by Joel Scodnick and an assistant. This work consisted of a prospecting & sampling program of which the best sample returned a gold assay of 3.3 g/t in a highly altered and deformed felsic metavolcanic rock containing 5% pyrite as disseminations and stringers, subordinate chalcopyrite, bornite, galena and malachite. This sample was selected from an old trench in the northwest part of claim TB 1064690.

The Burchell Lake Property lies within the Shebandowan Greenstone Belt (SGB), which is part of the Wawa Subprovince of the Archean Superior Province in the Canadian Shield. Meta-volcanic rocks are the dominant rock type in the SGB with lesser amounts of intercalated coeval intrusive and meta-sedimentary rocks. Underlying the Burchell Lake Property are felsic to mafic meta-volcanic rocks, lesser chemical meta-sedimentary rocks (chert and iron formation) and concordant gabbro and diorite intrusive bodies. These rocks are complexly folded and deformed and are intruded by the syenitic Hermia Lake Stock (Osmani, 1997).

Within the western SGB there are two previous producing mines the North Coldstream copper and Huronian/Ardeen gold mines and two developed prospects, the Snodgrass/Moss Lake gold prospect and the East Coldstream gold prospect. The East and North Coldstream
deposits are less than 5 km to the northeast of the Burchell Lake Property and the Huronian/Ardeen and Snodgrass/Moss Lake deposits are approximately 10 km and 5 km to the west-southwest, respectively.

The most significant mineralization identified on the Burchell Lake Property is south and east of Hermia Lake and consists of disseminated sulphides containing Cu-Au (trace Mo and Ag) hosted generally within felsic volcanic rocks, chert, and silicified amphibole-magnetite-chlorite schist (mafic schist). Disseminated low-grade gold mineralization has been encountered by Newmont drill holes within the Burchell Lake Property and low-grade gold deposits, East Coldstream and Snodgrass/Moss Lake, bookend the Property occurring roughly along strike ~5 km northeast and ~5 km east-southeast, respectively. Also, considering exploration on the Burchell Lake Property mainly focused upon copper mineralization, the potential for disseminated low-grade gold is good.

The Burchell Lake Property and surrounding area has been the focus of many phases of exploration from 1953 to 1992. Work done on the Burchell Lake Property included five airborne (VLF-EM and magnetic and one radiometric) geophysical surveys, four ground VLF-EM magnetic geophysical surveys, two induced polarization (IP) geophysical surveys, multiple prospecting and geological mapping programmes, and five diamond drilling programmes totalling 59 holes and more than 8,956 m. Even with all this work, the Burchell Lake Property is still in an early phase of exploration, mainly because only one work programme extended past two years and most only spanned one year. Follow-up testing of geophysical anomalies and positive drill results were rarely if ever completed.

In the Burchell Lake area, disseminated to semi-massive sulphide hosted copper-gold and disseminated low-grade gold mineralization appear to be the most prospective targets for exploration. Hence, future work programmes should mainly concentrate upon these types of targets, although VMS and Archean lode-gold deposit types should not be completely ignored. The Burchell Lake Property has a significant amount of exploration work conducted on it and as such an initial compilation and verification of this data needs to be completed.

Once the data compilation is done, the field programme can be devised in more detail. However, from the current data review, a first phase of field work should comprise surveying and line cutting, detailed geological mapping, geochemical sampling, and trenching. This phase is estimated to cost approximately $100,000 CAD of which $17,780.90 has already been incurred. A second phase of field work may include Induced Polarization (IP)-
resistivity geophysical surveying over the entire or part of the Burchell Lake Property, providing data obtained from previous workers (e.g. Noranda, 1989) is deemed to be of poor quality. Regardless, a small drill programme (~1000-2000 m) will be necessary in the second phase of work to test geophysical and geochemical anomalies. A total cost for the second phase would be approximately $350,000 CAD.

2.0 INTRODUCTION AND TERMS OF REFERENCE

Aurmin Corporation requested Stephen Wetherup, P.Geo, BSc., and Joel Scodnick, P.Geo., B.Sc., the “Authors” to write this report on their newly optioned Burchell Lake Property (the “Property”) located in Northwestern Ontario, Canada. The purpose of this report is to describe the geological setting, mineralization, and exploration history on the Burchell Lake Property, assess its mineral potential, and to describe the initial prospecting program to be applied for assessment credits with the Ministry of Northern Development and Mines. Data used during the writing of this report has come primarily from assessment reports provided by the Ontario Mines and Mineral Division and Ontario Geological Survey reports and has not been verified by the Author.

2.1 Terminology and Unit Conversion

Before ~1980 in Canada the Imperial system was the primary system of measure and length often expressed in feet and tenths of feet, volume is expressed as cubic feet, mass expressed as short tons, and nickel and copper grades are generally expressed as percent. The precious metals grades are generally expressed as ounce per ton but may also be in parts per billion or parts per million. Conversions from the Imperial system to the SI or metric system used in Canada are provided below and quoted where practical. Metals and minerals acronyms in this report conform to mineral industry accepted usage and are listed in Appendix 2. Dollars are expressed in Canadian currency (CAD) unless otherwise noted.

Conversion factors utilized in this report include: 1 troy ounces/ton = 34.29 gram/tonne; 0.029 troy ounces/ton = 1 gram/tonne; 1 troy ounces/ton = 31.10 gram/ton; 0.032 troy ounces/ton = 1 gram/ton; 1 gram = 0.0322 troy ounces; 1 troy ounce = 31.104 grams; 1 pound = 0.454 kilograms; 1 foot = 0.3048 metres; 1 mile = 1.609 kilometres; 1 acre = 0.405 hectares; and, 1 sq mile = 2.59 square kilometres. The term gram/tonne or g/t is expressed as “gram per tonne” where 1 gram/tonne = 1 ppm (part per million) = 1000 ppb (part per billion). Other abbreviations include ppb = parts per billion; ppm = parts per million; opt =
ounce per short ton; gpt = grams per tonne, Moz = million ounces; Mt = million tonne; t =
tonne (1000 kilograms); and, st = short ton (2000 pounds). A glossary of geological terms is
provided in Appendix 2.

3.0 DISCLAIMER

This Independent Technical Report was prepared for Aurmin Corporation by the Author's,
Stephen Wetherup, BSc. P.Geo., and Joel Scodnick, P.Geo., B.Sc. The information,
conclusions and recommendations contained herein are based on field observations and data
provided by the Ontario Geological Survey and Ontario Mines and Minerals Branch, and
appear to be of sound quality. The author's are unaware of significant technical data other
than that provided. The Author's have reviewed signed and un-signed copies of the option
agreement as provided by Aurmin Corporation. A review of the land titles to claims has been
completed by the Author's and a summary is listed in table 4-1 below.

The Author's are not responsible for any omissions in, and does not guarantee, and makes no
warranty as to the accuracy of, information received from outside sources. The Author's have
made all reasonable efforts to outline any land tenure or environmental issues relating to
Aurmin's project and disclaims all responsibility for missing or inaccurate property
information. Any use of, or reliance on, this report by any third party, without written
permission of the Author's is at the party's sole risk.

4.0 PROPERTY DESCRIPTION AND LOCATION

The Burchell Lake Property is located within the NTS Map Sheet 52 B/10, in the Burchell
Lake Area, Thunder Bay Mining Division, Northwestern Ontario, Canada (Figures 1 and 2).
It comprises 18 unpatented claims totalling 108 units (Figure 3). Table 4-1 is a list of the
claims and summary of the claims data that are included in the Burchell Lake Property.

<table>
<thead>
<tr>
<th>Claim Number</th>
<th>Units</th>
<th>Due Date</th>
<th>Owner</th>
<th>Optionee</th>
</tr>
</thead>
<tbody>
<tr>
<td>TB 3001512</td>
<td>2</td>
<td>July 15, 2004</td>
<td>John Ternowesky (100%)</td>
<td>Aurmin Corp.</td>
</tr>
<tr>
<td>TB 3001513</td>
<td>2</td>
<td>July 15, 2004</td>
<td>John Ternowesky (100%)</td>
<td>Aurmin Corp.</td>
</tr>
<tr>
<td>TB 3001514</td>
<td>2</td>
<td>July 15, 2004</td>
<td>John Ternowesky (100%)</td>
<td>Aurmin Corp.</td>
</tr>
<tr>
<td>TB 1187650</td>
<td>1</td>
<td>August 29, 2005</td>
<td>John Ternowesky (100%)</td>
<td>Aurmin Corp.</td>
</tr>
<tr>
<td>TB 3005100</td>
<td>12</td>
<td>Feb. 5, 2005</td>
<td>John Ternowesky (100%)</td>
<td>Aurmin Corp.</td>
</tr>
<tr>
<td>TB 3005101</td>
<td>12</td>
<td>Feb. 5, 2005</td>
<td>John Ternowesky (100%)</td>
<td>Aurmin Corp.</td>
</tr>
<tr>
<td>TB 3005095</td>
<td>16</td>
<td>Feb. 5, 2005</td>
<td>John Ternowesky (100%)</td>
<td>Aurmin Corp.</td>
</tr>
</tbody>
</table>
Most of the claims in the Burchell Lake Property are owned by a group comprised of John E. Ternowesky, Eugene Belisle, Noel Belisle, and Mike Fogen and have been acquired through an option agreement on March 4, 2004. In this option, Aurmin has agreed to pay the owners a total of $150,000 CAD and issue 1,000,000 common shares in stages during the first three phases of exploration and upon spending $1,200,000 CAD in exploration expenditures within 30 months of the commencement on the agreement, Aurmin will have earned 100% of the mineral rights to the Property.

At this point, the Burchell Lake Property has not been legally surveyed and is in an early phase of exploration. As such, the first few exploration programmes will not require the application for an “Advanced Exploration” permit from the Ontario Mines and Minerals Branch. Major environmental issues are not likely to arise due to exploration activity on the Property as most the area has been logged and new logging roads on the Property suggest that new logging is planned. Furthermore, there are several previous mining operations in the area around the Burchell Lake Property, the closest of which is the Ardeen/Moss Mine (~13 km west-southwest) and East Coldstream Mine (~3 km northeast).

5.0 ACCESSIBILITY, CLIMATE, LOCAL RESOURCES, INFRASTRUCTURE AND PHYSIOGRAPHY

The Burchell Lake Property is located approximately 110 km west of the city of Thunder Bay, Ontario. Vehicle access to the Property is afforded by paved highway 17 and 71 from Thunder Bay to the town of Kashabowie, Ontario, then south for 15 km along highway 802
Figure 1: Location of the Burchell Lake Property in Ontario, Canada.
Figure 2: Highway map of Thunder Bay area depicting the location of the Burchell Lake Property approximately 110 km west of Thunder Bay and 16 km southwest of Kashabowie, Ontario.
Figure 3: Burchell Lake Property claim map also showing local logging road network (May 5, 2004).
to the Camp 517 Road, a major logging road which traverses the east side of the Property (Figures 2 and 3).

Topography in the area is subdued with gently rolling hills covered by mixed pine, spruce and poplar boreal forest and shallow lakes and swamps, with elevations ranging from ~ 485 m to ~ 435 m above sea level. Precipitation averages 740 mm a year with average snowfall of 220 cm per year. Temperatures range greatly from -30° to +30° with approximately 153 frost free days a year, which translates to roughly 6 to 8 month field seasons, commonly May to November, without snow and in the late winter lakes and swamps will often freeze over allowing the set-up of drills. Bedrock exposure is limited in the area to approximately 1-5% except near Hermia Lake where uncharacteristically thick glacial sediments (up to 40 m) cover the area and reduce bedrock exposures to <1%.

Opposition to exploration or development permitting in the Burchell Lake Area is likely to be minimal for three reasons: (1) there are no ecologically sensitive zones in the area, (2) there is a history of mining in and around the area (Huronian/Ardeen, 1882-1937, North Coldstream, 1906-1967), and (3) most of the Burchell Lake Property has been logged and new logging roads have been built on the property in 2003/2004, suggesting further logging activity is imminent. In addition to the relative ease of permitting work on the Burchell Lake Property, the infrastructure in the area includes maintained paved and gravel roads onto the Property and within 14 km of the property are power transmission lines and a rail line, which connects to the Thunder Bay deep water port (westernmost port on the St. Lawrence Seaway).

6.0 WORK HISTORY

The area covered by the current Burchell Lake Property has changed ownership, names and been re-staked several times since the first recorded work, in 1956. Also, previous claim blocs often included areas beyond those that Aurmin currently holds mineral rights to and as such the list below includes some work done on adjacent ground as well as on what is now under option to Aurmin.

Below is a summary of the work programmes conducted on Aurmin’s Burchell Lake Property and drill collar locations are plotted in Figure 4. The information used to construct this work history has been from Ontario Mines Branch Assessment Reports and Ontario Geological Survey geological and mineral assessment reports; hence work that was not
Geological Units

Early Precambrian
- Mafic intrusive rocks: diabase and gabbroic dykes
- Late felsic to mafic intrusive rocks:
 - syenite, quartz syenite, hornblende syenite, hornblende granite, hornblende gneiss, mica-syenite
- Intermediate to felsic hypabyssal rocks:
 - feldspar porphyry, quartz feldspar porphyry
- Early intermediate to felsic intrusive rocks:
 - tuffstone, quartz tuffstone, quartz tuff
- Mafic and ultramafic intrusive rocks:
 - gabbro, olivine gabbro, dunite, amphibolite, anserine
- Chemical metamorphosed rocks:
 - chert-magnetite banded ironstone, chert, pyrite chert, silicate facies ironstone
- Felsic metasomatized rocks:
 - aphanitic flows, feldspar porphyritic flows, tuff, tuff breccia, quartz-sericite schist
- Intermediate metamorphosed rocks:
 - massive flows, sericite-chlorite schist, quartz tuff, tuff breccia, plagioclase-hornblende phylite flows, amphibolitic flows
- Mafic metasomatized rocks:
 - massive felsic to mafic flows, pillow flows, tuff breccia, hornblende tuff, enstatite-epidote-actinolite schist, amphibolite gneiss, amphibolite

Symbols
- Geological contact
- Fault zone
- Mineral occurrence
- Mines and prospects
 - DDSI collars
- Roads
- Claims
- Lakes
- Claim boundary
- Trace of copper mineralization
- Rock chip sample

Diamond Drill Holes Collar Locations
- 1953 Great Lakes Copper Mines
- 1955-56 Great Lakes Copper Mines
- 1985 Noranda
- 1976-77 Freeport Sulphur
- 1976-77 Before Mines
- 1980-81 Gulf Minerals
- 1984 Tenacan Silver Corp.
- 1985 Newmont Exploration

Great Lake Copper Mines 1955-56

<table>
<thead>
<tr>
<th>Hole</th>
<th>Depth (m)</th>
<th>Taper (m)</th>
<th>Length (m)</th>
<th>Cu %</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>48.6</td>
<td>0.29</td>
<td>0.5</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>69.6</td>
<td>0.46</td>
<td>0.5</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>68.6</td>
<td>0.56</td>
<td>0.5</td>
<td></td>
</tr>
<tr>
<td>M7</td>
<td>70.1</td>
<td>0.51</td>
<td>0.5</td>
<td></td>
</tr>
<tr>
<td>M7</td>
<td>70.1</td>
<td>0.51</td>
<td>0.5</td>
<td></td>
</tr>
<tr>
<td>M7</td>
<td>68.6</td>
<td>0.51</td>
<td>0.5</td>
<td></td>
</tr>
<tr>
<td>M7</td>
<td>92.1</td>
<td>0.51</td>
<td>0.5</td>
<td></td>
</tr>
<tr>
<td>M9</td>
<td>133.6</td>
<td>0.51</td>
<td>0.5</td>
<td></td>
</tr>
<tr>
<td>M9</td>
<td>98.6</td>
<td>0.51</td>
<td>0.5</td>
<td></td>
</tr>
<tr>
<td>M9</td>
<td>209.7</td>
<td>0.51</td>
<td>0.5</td>
<td></td>
</tr>
</tbody>
</table>

Freeport Sulphur Drilling Highlights

<table>
<thead>
<tr>
<th>Hole</th>
<th>Depth (m)</th>
<th>Taper (m)</th>
<th>Length (m)</th>
<th>Cu %</th>
</tr>
</thead>
<tbody>
<tr>
<td>RSU-1</td>
<td>104.2</td>
<td>0.29</td>
<td>0.5</td>
<td></td>
</tr>
<tr>
<td>RSU-2</td>
<td>225.9</td>
<td>0.46</td>
<td>0.5</td>
<td></td>
</tr>
<tr>
<td>RSU-3</td>
<td>122.4</td>
<td>0.46</td>
<td>0.5</td>
<td></td>
</tr>
</tbody>
</table>

Before Mines Ltd

<table>
<thead>
<tr>
<th>Hole</th>
<th>Depth (m)</th>
<th>Taper (m)</th>
<th>Length (m)</th>
<th>Cu %</th>
</tr>
</thead>
<tbody>
<tr>
<td>7S-2</td>
<td>74.7</td>
<td>0.35</td>
<td>0.5</td>
<td></td>
</tr>
<tr>
<td>7R-2</td>
<td>213.0</td>
<td>0.35</td>
<td>0.5</td>
<td></td>
</tr>
</tbody>
</table>

Figure 4: Geology in the Burchell Lake area and historical drill hole collar locations on the Burchell Lake Property (after Ontario Geological Survey Map No. 2622).
submitted for assessment credits may not be included below. The Author has not compiled nor verified data provided by the reports used in compiling the work history.

1953 – Great Lakes Copper Mines Ltd

No assessment reports were found for this work, but it is mentioned in several assessment reports and in the 1964 OGS Burchell Lake Geology report and appears to be the first exploration activity of merit in the area. This programme consisted of geological mapping, prospecting and 10 short drill holes (Giblin, 1964). 1954 – Newkirk Mining Corp.

Newkirk apparently optioned the ground from Great Lakes Copper Mines and completed a resistivity survey before returning the property back to Great Lakes Copper.

1956 and 1957 – Great Lakes Copper Mines Ltd.

Some of this work appears to be recorded in the assessment files for the area, but the record is somewhat incomplete. According to Giblin (1964) company reports by Great Lakes Copper Mines document a total of 15 holes (5477 feet or 1669 m) were drilled including electro-magnetic geophysical surveying. Also, at this time 12 different copper showings were apparently identified of which drill testing of #3 and #12 yielded encouraging results and are listed in table 6.1. Most of the showings and drilling occur near Hermia Lake (Figure 4). Of note, an assessment report by Gulf Minerals in 1982 states that the hole T2-8 was drilled by the Mining Corp. of Canada but the results and expenditures are in Great Lake Copper Mines assessment report.

Copper mineralisation at occurrence #3 (SE of Fountain Lake; figure 4) is hosted by “...chert, which locally grades to cherty rhyolite.” (Giblin, 1964) that is within a mafic meta-volcanic assemblage. Another drilled occurrence #12 (E of Hermia Lake; Figure 4) is described as striking easterly and was traced for at least 1300 feet (~400 m) along strike. At occurrence #12, copper mineralisation is disseminated and occurs as stringers within felsic meta-volcanic rocks, which are locally brecciated. Glacial cover in the occurrence 12 area is reported to be as much as 150 feet (~45 m) thick.

Table 6-1: Highlights from Great Lakes Copper Mines drilling on Burchell Lake Property (Giblin, 1964).

<table>
<thead>
<tr>
<th>Hole #</th>
<th>From (m)</th>
<th>To (m)</th>
<th>Length (m)</th>
<th>Rock Type</th>
<th>Cu %</th>
<th>Au opt</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>Depth of sample 20.7 m; occurrence #3</td>
<td>1.98</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>Depth of sample 5.8 m; occurrence #3</td>
<td>0.46</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>Depth of sample 27.4 m; occurrence #3</td>
<td>5.08</td>
<td></td>
</tr>
<tr>
<td>M7</td>
<td>70.1</td>
<td>74.4</td>
<td>4.3</td>
<td>Chert/rhyolite bx; siliceous matrix; occ. #12</td>
<td>0.80</td>
<td></td>
</tr>
</tbody>
</table>
1964 – Mining Corporation of Canada

This work was comprised of 16 line km’s of ground magnetic and electro-magnetic geophysical survey, over an area approximately 1 km east of Hermia Lake. A few conductive zones were delineated by the survey, which coincide with the Hermia Lake stock contact with the surrounding meta-volcanic assemblages.

1965 – Consolidated Mining and Smelting

Consolidated Mining and Smelting conducted a large airborne electro-magnetic and magnetic (EM-Mag) geophysical survey over much of the Moss Township and part of the Burchell Lake area. Most of this work occurred southwest of the current Aurmin, Burchell Lake Property but it extends onto the Property and is a very good regional guide to structures that may continue from the old Ardeen/Huronian mine or Snodgrass/Moss Lake advanced prospect, to the southwest.

1965 – Noranda Exploration

The only evidence for this work programme is from a 1983 compilation map by Belore Mines Ltd and Falconbridge Copper. Location of three drill hole collars is presented in Figure 4 as plotted by the Belore/Falconbridge map.

1971 and 1972 – Freeport Sulphur

No assessment report for this work was found during the author’s search but a 1982 Gulf Minerals assessment report (Solonyka, 1982) on the property notes that Freeport Sulphur drilled 9545.5 feet (~2909 m) in 16 holes on the property in 1971 and 1972. Positive results from the holes are reported in the Gulf Minerals assessment report are listed in table 6-2. These holes apparently were drilled in the same area as Gulf’s holes in 1982, and a compilation map produced by Belore Mining in 1983 confirms this (Figure 4).

Table 6-2: Highlights from Freeport Sulphur 1971 drilling (taken from Solonyka, 1982)

<table>
<thead>
<tr>
<th>Hole #</th>
<th>Length (m)</th>
<th>Cu %</th>
</tr>
</thead>
<tbody>
<tr>
<td>13</td>
<td>48.8</td>
<td>0.28</td>
</tr>
<tr>
<td>13</td>
<td>15.2</td>
<td>0.26</td>
</tr>
<tr>
<td>16</td>
<td>22.9</td>
<td>0.30</td>
</tr>
</tbody>
</table>
Aurmin Corporation

1975 – McIntyre Mines Ltd.

According to the Belore Mines assessment report (1976) McIntyre Mines completed an induce-polarization survey over the area east of Hermia Lake where Belore Mines conducted their 1976 drilling programme. No report for the McIntyre Mines work has been located.

1976 – Belore Mines Ltd.

Belore Mines drilled three holes east of Hermia Lake, totalling 1543 feet (~470m). These holes were a few hundred metres east of previous drilling in the area to follow-up on the IP survey by McIntyre Mines the previous year. One of the three holes was sampled extensively with the other two holes intersecting several disseminated and semi-massive pyrite zones without visible chalcopyrite. Most of the second hole was assayed as it intersected two zones of wide low-grade visible copper mineralization, which returned 96 m of 0.232% Cu and 9.1 m of 0.292% Cu (Figure 4). Drill logs also reported several zones of pyrite, chalcopyrite, molybdenite, hematite, and/or magnetite which were not analyzed.

1977 – Rio Tinto Canadian Exploration

Rio Tinto conducted a total of 585 line miles (~941.5 m) of airborne magnetic geophysical survey over three areas in the Shebandowan belt including the area covering Aurmin’s Burchell Lake Property. Conclusions reached from this survey were limited except that the Hermia Lake stock is unusually magnetic and the data appears to delineate gabbro bodies south of the Property.

1980 to 1982 – Gulf Minerals

Gulf Minerals completed approximately 26 line miles (~41.8 km) of ground EM and magnetic geophysical surveying at 400-foot (~121.9 m) line spacing and stations spaced at 100-foot (~30.5 m) intervals. They also drilled six holes totalling 6028 feet (~1837 m) on the property (Figure 4). Most of the holes have not been assayed and some of the better drill intercepts are presented in table 6-3. Furthermore, large zones (10’s to >100 m) of low-grade copper (0.1 to 0.2%) were encountered within the first three holes with only sparse copper mineralisation within the rest of the holes.
Table 6-3: Highlights from 1980-1981 drilling by Gulf Minerals.

<table>
<thead>
<tr>
<th>Hole #</th>
<th>From (m)</th>
<th>To (m)</th>
<th>Length (m)</th>
<th>Rock Type</th>
<th>Cu %</th>
<th>Au opt</th>
<th>Ag opt</th>
</tr>
</thead>
<tbody>
<tr>
<td>BU-1</td>
<td>104.2</td>
<td>146.8</td>
<td>42.5</td>
<td>Cherty rhyolite and magnetite bx</td>
<td>0.29</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>incl</td>
<td></td>
<td>8.4</td>
<td></td>
<td>0.41</td>
<td>-</td>
<td>0.05</td>
</tr>
<tr>
<td>BU-2</td>
<td>211.9</td>
<td>213.4</td>
<td>1.5</td>
<td>Dacitic tuff (pyritic)</td>
<td>1.09</td>
<td>-</td>
<td>0.11</td>
</tr>
<tr>
<td>BU-3</td>
<td>122.4</td>
<td>124.4</td>
<td>2.0</td>
<td>Massive sulphide zone</td>
<td>0.68</td>
<td>0.02</td>
<td>0.18</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>40.5</td>
<td>* comp from Noranda 1990 report</td>
<td>0.22</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

1982 – Canadian Nickel Co.

At this time the Canadian Nickel Company (INCO) held a property at the southwest end of Burchell Lake and west of Hermia Lake, which encompassed the northwestern portion of Aurmin’s current claim holdings. INCO performed a 2252 line km airborne electro-magnetic and radiometric survey over their claims and most of the surrounding area including the entire Aurmin Burchell Lake Property. The survey was flown north-south at a line spacing of ~200 m. Data presented in the 1982 assessment report is minimal including only a few maps and acquiring the entire data set is definitely recommended before embarking on any field programmes in the Burchell Lake area.

1983 and 1984 – Tenajon Silver Corp.

The area that Tenajon worked on is to the northeast and a small portion covered the northeast claim, on the Burchell Lake Property. They conducted a ground very low frequency electro-magnetic (VLF-EM) geophysical survey and multi-element geochemical soil survey over their claims, followed up by one drill hole collared on the eastern portion of the Burchell Lake Property, totalling 221.9 m. Several EM anomalies were delineated in which one was the target of the two drill holes just south of Burchell Lake and off Aurmin’s current claims. Neither the drilling nor the geochemical survey proved to be successful. A conclusion by the author of the Tenajon reports (J. McLeod) was that the EM anomalies on the south portion of their claims and on Aurmin’s Burchell Lake Property were still prospective targets since they are in a different rock assemblage.

1987 and 1988 – Newmont Exploration

Newmont held claims that covered the entire southwest end of Burchell Lake and a small portion of the south and west shore. Their ground encompassed the northwest claim bloc of the Burchell Lake Property (TB 3010479) and skirted the northern Property boundary.

During 1987 and 1988 Newmont conducted 76.4 line km of VLF-EM geophysical surveying followed by drilling of 8 drill holes totalling 1850 m to test geophysical anomalies. The
drilling reports also reference an IP survey but this does not appear to have been submitted for assessment. All of the drilling was conducted on the Burchell Lake Property on what is now claim TB 3010479 (Figure 4).

Gold was the focus of this drilling and except for a few Cu assays the only element analyzed for was gold. Many narrow gold mineralized zones (~1-4 gpt over 0.1 to 0.7 m) were encountered by the drilling including some broader anomalous gold zones (~100-200 ppb over several meters). Two of the better intersections are 1.05 gpt over 3.36 m from hole 88-07, hosted in a sericite-pyrite felsic crystal tuff, and 0.8 gpt over 6.8 m (including 1.8 gpt over 1.65 m) from hole 88-04 within a sheared sericitic and pyritic rhyodacite.

1988 – JET Mining Exploration

Terraquest performed an airborne magnetic VLF-EM geophysical survey for JET Mining Exploration (John Ternowesky’s company) over the east side of the Aurmin’s Burchell Lake Property and continuing east and southeast of the Property. A total of 155 line km were flown and surveyed at 100 m line spacing in a NW-SE orientation. Several northeast trending VLF-EM and magnetic linear features were identified by this survey many of which are on and continue onto the Burchell Lake Property.

1989 to 1991 – Noranda Exploration Ltd.

In 1989 Noranda Exploration flew a huge airborne DigHem III survey over the entire western and of the Shebandowan Greenstone Belt. It comprised 2622 line km of surveying at a 200 m line separation. This data has not all been included in assessment reports but the data may be available from Noranda.

Noranda held three separate claim blocs (East, Central and West) during 1989 to 1991 of which the East claim bloc covers an area nearly identical to Aurmin’s present claims that comprise the Burchell Lake Property. On the East bloc, Noranda completed geological mapping, geochemical rock sampling, re-analysis of two 1981 Gulf Minerals drill holes (103 samples analyzed for gold from BU-1 and 2) and 22 line km’s of IP-resistivity geophysical surveying.

Results from the geochemical rock sampling found “magnetite rich volcanic rocks” that returned assays of 0.27% and 0.65% Cu and trace Au, carbonitized boulders with 10% pyrite and 0.038 opt Au and several other areas of anomalous gold and/or copper. Notably the
sampling and mapping programme did not find any significant mineralized zones on the two Noranda claim blocs west of the Burchell Lake Property.

The IP-resistivity survey delineated many NE trending anomalies that were not drill tested.

1992 – Art Wallace (OPAP)

The claims held by Art Wallace at this time occur over Aurmin’s southern claim bloc TB1064690 as well as to the east of the current Aurmin Burchell Lake Property. Work performed during the 1992 field season included geological mapping, geochemical rock and chip sampling, trenching and the re-analysis of part of a 1991 drill hole, which was collared east of Aurmin’s claims.

Most of the mapping and sampling took place on the Burchell Lake Property and produced numerous anomalous multi-element assay (Cu, Zn, Au, Ag) results. The most significant results from geochemical sampling are from chip sampling across a vein structure and include 2.9 gpt Au over 0.30 m, 0.97 Au gpt over 0.91 m, 3.4 gpt Au over 0.30 m, 19.3 gpt Au over 0.61 m, and 42.2 gpt Au over 0.61 m. These chip samples are from the same vein at different points for ~34 m along strike.

7.0 GEOLOGICAL SETTING

The Burchell Lake Property lies within the western extension of the Shebandowan Greenstone Belt (SGB), which is part of the Wawa Subprovince of the Archean Superior Province in the Canadian Shield (Figure 5a). The Wawa Subprovince is an east-northeast trending belt of rocks that continues under the Proterozoic cover in the Superior Basin and below Lake Superior and re-emerges on the east side of Lake Superior. Bounding the SGB to the north are high-grade metamorphic sedimentary rocks of the Quetico Subprovince and to the south by Proterozoic sedimentary and intrusive cover rocks (Chorlton, 1987; Figure 5).

Meta-volcanic rocks are the dominant rock type in the SGB with lesser amounts of intercalated coeval intrusive and meta-sedimentary rocks. These rocks of two different ages the older dominated by meta-volcanic rocks (>2700 Ma) and a younger meta-sedimentary dominated assemblage that unconformably overlies the older meta-volcanic assemblage (Chorlton, 1987; figure 6). Intruding the meta-volcanic and meta-sedimentary assemblages are feldspar- and quartz-feldspar porphyritic quartz diorite, as well as younger granite and quartz-syenite, hornblende lamprophyre dykes, and composite ultramafic to felsic intrusions.
Figure 5 (a): Sub-Province map of Northwestern Ontario showing the location of the Burchell Lake Property within the Wawa Sub-Province. The Wawa Sub-Province encompasses the Shebandowan, Schreiber-Hemlo, and Manitouwadge Greenstone Belts and several gold and VMS camps.

Figure 5 (b): Map of the western portion of the Shebandowan Greenstone Belt and the location of the Burchell Lake Property. The locations of significant mineral deposits and inactive mines in the area are also plotted.
Metamorphic grade in the western SGB is greenschist facies and has been subjected to three phases of deformation that are represented by: (1) isoclinal nappes, D₁, (2) steep east trending folds, D₂, and (3) gentle north trending folds, D₃. Northeast trending faults/shear zones are interpreted to cut through the area including the Knife Lake Fault (Chorlton, 1987) also named the North Coldstream Shear Zone (Osmani, 1993) (Figure 6). According to Osmani (1993) the trace of this structure cuts through North Coldstream deposit area and through Hermia Lake and the Burchell Lake Property. These structures were not mapped or observed by previous workers (i.e. Giblin, 1964) probably because they are inferred mainly from aero-magnetic data and as such some may or may not be real geological features.

Underlying the Burchell Lake Property are felsic to mafic meta-volcanic rocks, lesser chemical meta-sedimentary rocks (chert and iron formation) and concordant gabbro and diorite intrusive bodies. These rocks are complexly folded and deformed and are intruded by the syenitic Hermia Lake Stock (Osmani, 1997).

More recent Pleistocene glaciation has scoured the entire area usually depositing thin unconsolidated sediments (1-3 m), except in the Hermia Lake area where glacial deposits are up to 40 m thick in what is interpreted as a north-south deep pre-glacial valley (Giblin, 1964).

8.0 DEPOSIT TYPES

Within the western SGB there are two previous producing mines the North Coldstream copper mine and Ardeen (a.k.a Huronian) gold mine and two developed prospects the Moss Lake (a.k.a Snodgrass Lake) gold prospect and the East Coldstream gold prospect. The East and North Coldstream deposits are less than 5 km to the northeast of the Burchell Lake Property and the Ardeen and Moss Lake deposits are approximately 10 km and 5 km to the west-southwest respectively.

The Ardeen Mine represents the most common type of gold deposit in Archean greenstone terranes, the “Shear Zone Hosted Gold” or “Archean Greenstone Hosted Lode Gold” deposit type. These deposits generally are contained dilational zones in and around shear or fault structures and are associated with quartz-sulphide veins, iron-carbonate alteration and silicification of the host rocks. On the Burchell Lake Property several quartz vein occurrences with accompanying iron-carbonate alteration have been observed and sampled yielding anomalous to highly anomalous gold assays with up to 42.2 gpt Au over 0.61 m (Art
Geological Units

Late Precambrian

- **Mafic intrusive rocks:** diabase and gabbroic dykes

Early Precambrian

- **Mafic intrusive rocks:**
 - syenite, quartz-syenite, hornblende syenite, biotite granite, hornblende granite, mafic syenite

- **Intermediate to felsic hypabyssal rocks:**
 - feldspar porphyry, quartz-feldspar porphyry

- **Early intermediate to felsic intrusive rocks:**
 - tonalite, granite, granodiorite, quartz diorite

- **Mafic and ultramafic intrusive rocks:**
 - gabbrro, lomogabbro, doric, amphibolite, anorthosite

- **Chemical metasedimentary rocks:**
 - chert-magnetite banded ironstone, chert, pyritic chert, silicate facies ironstone

- **Felsic metavolcanic rocks:**
 - aphthitite flows, feldspar porphyritic flows, lapilli tuff, tuff breccia, quartz-sericite schist

- **Intermediate metavolcanic rocks:**
 - massive flows, sericite-chlorite schist, tuff, tuff breccia, plagioclase/hornblende phytic flows, amygdaloidal flows

- **Mafic metavolcanic rocks:**
 - massive Ig to mg flows, pillow flows, tuff breccia, lapilli tuff, chlorite-epidote-aegite schist, amphibolite gneiss, amphibolite

Figure 6: Geology in the Barchell Lake area and on the Barchell Lake Property (after Ontario Geological Survey Map No. 2622).
Wallace, 1992). These showings are not common, but most exploration thus far has focussed on copper and this may explain the paucity of showings. Also, several shear zones are interpreted to traverse the property by recent government mapping, which certainly enhances the possibility of finding shear zone hosted gold mineralization.

Moss Lake and East Coldstream prospects are a less traditional gold target, as they are disseminated low-grade gold deposits. Both, of these deposits appear to be associated with a series of small shear zones perhaps in a large diffuse deformation zone that contains many smaller shears as opposed to a single discrete fault. The potential to find similar disseminated gold mineralization on the Burchell Lake Property is quite good as: (1) it is along strike from Moss Lake, (2) Newmont drilling in 1988 encountered similar anomalous and mineralized gold zones on the north end of the Property, and (3) the claims contains several similar geophysical anomalies and similar geology to the area drilled by Newmont.

The North Coldstream mine is a massive to disseminated sulphide (VMS) copper deposit with minor gold and silver, hosted in chert and/or rhyolite (Giblin, 1964). East of Hermia Lake disseminated sulphides in felsic volcanic rocks, cherty rhyolite and/or chert, host copper with minor gold and molybdenum. At least fifteen drill holes have tested this area and many intersected significant copper mineralization. Mineralization has been traced for approximately 400 m along strike (Figure 4). Copper mineralization has also been intersected by three drill holes (Gulf Minerals, 1980; BU-1, BU-2, and BU-3) 400 m along strike to the northeast of the original showing and suggests that the strike of the copper mineralization may extend for 800 m and is open to the northeast (Figure 4). Following the copper mineralization in the Hermia Lake area is probably the most attractive and immediate target on the Burchell Lake Property.

A deposit type that has not been actively looked for on the Burchell Lake Property are Iron Oxide Copper Gold deposits (IOCG). Several drill logs note that copper and gold mineralisation occurs often with significant magnetite (5-10%) and in red stained rhyolites both in the south Hermia Lake area and south of Burchell Lake (BU series holes; Gulf, 1981; Figure 4). These characteristics are typical of IOCG deposits and although not definitive proof of IOCG mineralization, it is certainly a plausible exploration target.
9.0 MINERALIZATION

The most significant mineralization identified on the Burchell Lake Property is south and east of Hermia Lake and consists of disseminated sulphides containing Cu-Au (trace Mo and Ag) hosted generally within felsic volcanic rocks chert, and silicified amphibole-magnetite-chlorite schist (mafic schist). It is apparent that there is no outcrop in this vicinity as it is covered by a thick glacial moraine as was observed along the logging road on the way to Hermia Lake. Economic minerals in this zone comprise chalcopyrite, pyrite, and minor bornite, malachite, arslenopyrite, and molybdenite. East and northeast trending shears that contain disseminated and massive sulphide layers cut the mineralized area and may or may not control the distribution of the copper and gold mineralization. Mineralization appears to be east-west oriented and has been traced for at least 400 m along strike.

As mentioned in the previous section, several other styles of mineralization are represented on or in the area around the Burchell Lake Property, including volcanogenic massive sulphide (VMS), disseminated low-grade gold, Archean greenstone lode gold and possibly iron-oxide copper-gold (IOCG). All are possible targets to be considered during exploration especially disseminated low-grade gold. Disseminated low-grade gold mineralization has been encountered by Newmont drill holes within the Burchell Lake Property and low-grade gold deposits, East Coldstream and Snodgrass/Moss Lake, bookend the Property occurring roughly along strike ~5 km northeast and ~ 5 km east-southeast, respectively. Also, considering exploration on the Burchell Lake Property mainly focused upon copper mineralization, the potential for disseminated low-grade gold is good.

10.0 EXPLORATION

On two separate occasions, site visits and a prospecting program were conducted on some of the claims held under option by Aurmin Corporation. On April 5th, the author’s along with an assistant conducted an initial site visit and examining some outcrops alongside the logging roads. Due to the snow cover at the time it was not possible to see a lot of outcrop, however, it was still possible to observe some of the local geology and prominent structures.

On July 8th and 9th, 2004 a limited prospecting and sampling program was conducted by Joel Scodnick and an assistant. The purpose of this program was to attempt to locate previously made trenches and sample in and around the trenches. This will be described in more detail below:
Claim# 1064690 - Access to where the old trenches are located is via an old 1.8 km road that has been almost completely overgrown. Using an all terrain vehicle, we were able to access the northwest part of the claim where the series of parallel trenches are situated (Figure 8, blue mark near the northwest corner of the claim).

A total of eleven grab samples were selected from four trenches approximately 25-30 m apart. Most of the sample locations were photographed and can be seen in Appendix III. The assays are identified as well underneath each of the photos. A certificate of analysis also accompanies this report and is found in Appendix IV. A brief sample description can be found in Appendix V.

All of the rocks observed in the trenches and in the local area are comprised of intermediate to felsic metavolcanic rocks, some of which have a very pervasive fabric at N40°E to N50°E. Most of the rocks however are more felsic in composition. Two samples in particular returned favourable gold assays with some copper, lead and zinc values. Sample numbers 379007 and 379008 returned 3.1 g/t Au, 0.14% Cu, 0.24% Pb, 0.63% Zn, and 3.3 g/t Au, 0.19% Cu, 0.75% Pb, and 0.97% Zn respectively. The intensely altered and gossanous surface can be seen in Appendix IV, plate 5. Samples taken from this location were cut with a diamond blade saw to better observe textural features. In Appendix IV, plate 6, one can see the intense deformation with the vugs in-filled with subordinate chalcopyrite, malachite, bornite, pyrite and galena. This type of feature forms mainly as pods within the host rock, and these two samples were taken approximately 7 metres apart.

Claim#’s TB 300151, TB 3001514, & TB 3001515 - A traverse was made from a logging road just north of Hermia Lake to an area located just south and about ½ km east of the southern tip of Hermia Lake (Figure 8). This is shown as a black line heading easterly from claim# 300513 to 3339462 and then south through claim 3001512 and 3001514.

According to the Optionor of the Property, a copper mineralised outcrop occurs along the eastern shoreline of Hermia Lake, and this area was traversed. Several hours of prospecting were unsuccessful at finding this outcrop, possibly due to the area being covered by unusually dense deadfall. Line-cutting will be necessary to adequately access this area and locate any mineralized outcrops.
11.0 ADJACENT PROPERTIES

Four significant deposits (1) the North Coldstream copper Mine, (2) the East Coldstream gold deposit, (3) the Ardeen gold Mine, and (4) the Moss Lake gold deposit are within 10 km of the Burchell Lake Property. Their property boundaries are directly adjacent to the Burchell Lake Property or in the case of the Ardeen Property come within a kilometre of the Burchell Lake Property boundary (Figure 7). The Author's have not verified the data on the adjacent properties described below and mineralization contained on the adjacent properties is not necessarily indicative of the mineralization on the Burchell Lake Property.

11.1 Moss Lake Property

The Moss Lake Property contains the Moss Lake deposit and is owned by Moss Lake Gold Mines Ltd, of which River Gold Mines owns 62%. It is a “large tonnage, low-grade gold deposit.” (River Gold Mines web site, 2004) that is hosted by a sheared to unsheared diorite body and metadacite with disseminated pyrite and hosted within a felsic metavolcanic unit (Chorlton, 1987). Gold is rarely associated with quartz veins. According to the River Gold Mines Ltd web site the Moss Lake deposit has an indicated resource of 60 million tonnes at 1.1 gpt gold and a core zone of 475,000 tonnes at 6.2 gpt gold.

11.2 Coldstream Property

The Coldstream Property contains the North and East Coldstream deposits and is currently co-owned by Alto Ventures Ltd. and Kinross Gold Corp. (Alto Ventures Ltd web site, http://www.altoventures.com/projects/coldstream/ , 2004). It is comprised of 71 patented mining claims and 25 unpatented claims and borders the Burchell Lake Property to the north (Figure 7).

At the East Coldstream deposit, gold is associated with disseminated pyrite, chalcopyrite and minor arsenopyrite, hosted within variably schistose, silicified, carbonitized, and locally intensely iron-carbonate altered metavolcanic rocks and quartz-feldspar porphyry dykes and sills (Osmani, 1997). Gold mineralization also occurs with anomalous to highly anomalous copper, arsenic, antimony, molybdenum and bismuth values. Alto Ventures Ltd has announced an indicated resource of 4.05 million tonnes at 2.2 gpt gold or approximately 285,000 ounces of gold.
Figure 8: Sample Location & Prospecting Map
The North Coldstream mine was mined by Noranda from 1955 to 1967, who extracted 2.7 million tonnes of ore and ~ 102 million pounds of copper 22,000 ounces of gold and 440,000 ounces of silver please indicate (Alto Ventures, web site, 2004). It is a disseminated to semi-massive sulphide deposit hosted predominantly by a chert and siliceous rhyolite.

11.3 Ardeen Property

Pele Mountain Resources Inc. is the current owner of the Ardeen Property, which encompasses the Ardeen gold mine. The Ardeen Property comprises 4 patented claims and 153 unpatented claims and borders the Burchell Lake Property on its western border (Figure 7).

This is a quartz vein hosted lode-gold deposit, which began production in 1882 to 1935 and has had many episodes of exploration, since. Most of the production, 29,678 ounces of gold and 143,724 ounces of silver has come from two parallel vein systems, which occur along the Ardeen Fault system (Dimmell and Larouche, 2003).

12.0 INTERPRETATIONS AND CONCLUSIONS

The Burchell Lake Property and surrounding area has been the focus of many phases of exploration. Work done on the Burchell Lake Property included five airborne VLF-EM and/or magnetic and/or radiometric geophysical surveys, four ground VLF-EM magnetic geophysical surveys, two IP geophysical surveys, multiple prospecting and geological mapping programmes, and five diamond drilling programmes totalling 58 holes for 8735 m. Even with all this work, the Burchell Lake Property is still in an early phase of exploration, mainly because no work programme extended past two years and most only spanned one year. Follow-up of geophysical anomalies and positive drill results were rarely if ever completed.

Previous work was mainly concerned with copper mineralization specifically in the Hermia Lake area. Almost all of the drilling on the Property was in this area but none of the drilling was systematic and very few correlations between drill holes appears to have been attempted highlighted by the fact the orientation and morphology of the zone of copper mineralization is still in doubt. This needs to be addressed, by first compiling and digitizing the data and then attempting to correlate zones of mineralization between holes.
Most of the airborne geophysical surveys have been either regional or not flown specifically over the Burchell Lake Property. The amount of data from airborne and ground geophysical surveys is immense but little appears to have been done in terms of testing the many geophysical anomalies on the Property. In one of the few examples of testing geophysical anomalies on the Burchell Lake Property, Newmont drilled one of its IP and EM anomalies on the north end of the Property and managed to find a previously unknown zone on anomalous to highly anomalous gold mineralization over significant widths (e.g. 1.05 gpt Au over 3.36 m and 0.8 gpt Au over 6.8 m). Therefore, compiling all and possibly reprocessing some of the geophysical data available will be invaluable to advancing future programmes.

At present, the disseminated to semi-massive sulphide hosted copper-gold mineralization in the Hermia Lake area is the most substantial mineralization on the Burchell Lake Property. It shares many geological, mineralogical and structural characteristics of the copper mineralization described at the North Coldstream Mine and as such continued exploration for this type of mineralization on the Burchell Lake Property is certainly warranted.

Disseminated low-grade gold mineralization has been demonstrated to exist on the north end of the Burchell Lake Property and has not generally been a target for exploration on the Property by previous workers. Felsic volcanic rocks that host the disseminated low-grade gold mineralization in the East Coldstream and Snodgrass/Moss Lake deposits occur on the Burchell Lake Property as does the Hermia Lake syenite stock, which Chorlton (1987) suggests is the same age as the Moss Lake stock that appears to have intruded contemporaneously with the gold mineralization in the Snodgrass/Moss Lake area. Furthermore, the close proximity of the Snodgrass/Moss Lake and East Coldstream disseminated low-grade gold deposits and the fact that these deposits occur approximately along strike to the west-southwest and east-northeast respectively of the Burchell Lake Property makes this type of mineralization an exceptional exploration target.

The recent prospecting campaign was successful in observing some of the rocks in the southwest part of the property where some previous trenching was done. The gold values are not very high but are nonetheless anomalous and the host rocks contain subordinate amounts of copper, lead and zinc. The rocks display some intense deformational fabrics, and some intense alteration, especially in the trench where samples 379007 and 379008 were taken.
13.0 RECOMMENDATIONS

In the Burchell Lake area, disseminated to semi-massive sulphide hosted copper-gold and disseminated low-grade gold mineralization appear to be the most prospective targets for exploration. Hence, future work programmes should mainly concentrate upon these types of targets, although VMS and Archean lode-gold deposit types should not be completely ignored as these deposit types also occur in the western Shebandowan Greenstone Belt.

The Burchell Lake Property has a significant amount of exploration work conducted on it and as such an initial compilation and verification of this data needs to be completed. This should include (1) compilation of the drill hole data, plotting sections and attempting to correlate between drill holes, (2) compilation of a geological map of the Property from government and exploration data, (3) assessment of the quality of the various geophysical surveys and (4) compilation of the airborne and ground geophysical survey data.

Once the data compilation is done, the field programme can be devised in more detail. However, from the current data review, it is suggested that the first phase of the field programme cost approximately $100,000 CAD of which $17,780.90 has already been completed. The program should include:

(1) Establishing a property wide grid and line cutting to improve access,

(2) Detailed geological mapping and geochemical sampling focussing upon the strike extensions of the felsic unit that hosts the copper mineralization east of Hermia Lake,

(3) Cleaning out old trenches and new trenching to test showings and strike extensions of previously documented surface showings,

A second phase to the field programme costing approximately $350,000 CAD should comprise:

(1) An induced-polarization survey should the previous IP surveys appear to be of poor quality,

(2) A small drilling programme (~1000 to 2000 m) to test geophysical anomalies, surface showings and possibly to verify previous drilling and extend the zone of mineralization east of Hermia Lake.

Contingent on positive results further fieldwork may be recommended.
14.0 REFERENCES

Aurmin Corporation

Larouche, Claude, 1993: Burchell Lake Area, 1992 Exploration Program Carried out by Art Wallace, OPAP Grant # OP92-024; Assessment Report, 2.15382.

Larouche, Claude, 1993: Results of the Exploration Work Carried out on the Property of John Ternowesky and Omer Belisle, OPAP Granps # OP92-134 and OP92-133; Assessment Report 2.14899.

APPENDIX I

CERTIFICATES OF QUALIFICATION
Stephen William Wetherup
635 East 45th Avenue
Vancouver, British Columbia
Canada, V5W 1X6
Telephone: 604-617-5955, E-mail: wetherup@shaw.ca

CERTIFICATE OF AUTHOR

I, Stephen William Wetherup of 635 East 45th Avenue, Vancouver, British Columbia, certify that:

1. I am a graduate of the University of Manitoba with a BSc. Honours in Geology, in 1995.

2. I have practiced my profession as a mineral exploration geologist with Fox Geological Services, Phelps Dodge Corp. of Canada and as a geological consultant, for 6 years.

3. I have been operating a business as a geological consultant under my own name since June, 2001.

5. I am a Professional Geoscientist registered with the Association of Professional Geoscientists and Engineers of British Columbia.

7. I am the author of this assessment report.

8. I am not aware of any material facts or change in facts at the time this certification is dated.

9. I have no monetary interest in the property nor do I own an interest in the company who is operating on the property.

10. I have had no previous involvement with the Burchell Lake Property or Aurmin Corporation.

Stephen William Wetherup.
BSc., P.Geo.

Dated this 14th day of July, 2004
CERTIFICATE OF QUALIFICATIONS

I, Joel Scodnick residing in Sudbury, Ontario, Canada, do hereby certify the following:

1. I am an independent minerals consultant residing at 75 Forest Lake Road, Sudbury, Ontario, Canada P3G 1K8;

2. I am a practicing member of the Association of Professional Geoscientists of Ontario (member# 1065);

3. I am a fellow member of the Geological Association of Canada (FGAC member# F4837);

4. I graduated in 1982 from Concordia University in Montreal, Quebec, Canada with a B.Sc. in Geology;

5. I graduated in 1978 from Algonquin College in Ottawa, Ontario, Canada with Honours Distinction in Electro-Mechanical Engineering Technology-Drafting;

6. I have practiced my profession continuously since 1982, having been actively involved mainly in gold exploration, development and mining throughout Canada, Mexico, Nicaragua, Guyana, Brazil, Peru, the Czech and Slovak Republics, Italy, and Portugal. I have also been involved in industrial minerals for approximately 5 years;

7. I first visited the Burchell Lake Property on April 5, 2004 and then again on July 8th and 9th, 2004.

8. I am not aware of any material fact or material change with respect to the subject matter of the Assessment Report that is not reflected herein, the omission to disclose which makes the Assessment Report misleading;

9. This report may be amended at the discretion of the author's of this report;

Joel Scodnick, P.Geo.

Dated in Sudbury, Ontario, Canada this 14th day of July, 2004.
APPENDIX II

GLOSSARY OF TERMS
(For more detailed descriptions or for geological, mining and mineral related terms not covered in this glossary, one should consult a reputable dictionary or source of related technical definitions)

<table>
<thead>
<tr>
<th>Term</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>"Ag"</td>
<td>silver</td>
</tr>
<tr>
<td>"alteration"</td>
<td>any physical or chemical change in a rock or mineral subsequent to its formation; milder and more localized than metamorphism</td>
</tr>
<tr>
<td>"anomaly"</td>
<td>an abnormal find or result</td>
</tr>
<tr>
<td>"Archaean"</td>
<td>a geological era greater than 2.5 Ga</td>
</tr>
<tr>
<td>"argillic"</td>
<td>clay or clay minerals; alteration whereby certain minerals are converted to clay</td>
</tr>
<tr>
<td>"assay"</td>
<td>the analysis of minerals and mine products to determine the concentration of their components</td>
</tr>
<tr>
<td>"Au"</td>
<td>gold</td>
</tr>
<tr>
<td>"basic"</td>
<td>a term applied to any dark coloured igneous rock which has a high proportion of pyroxene and olivine (see also mafic)</td>
</tr>
<tr>
<td>"bedrock"</td>
<td>un-weathered rock below the soil; solid rock</td>
</tr>
<tr>
<td>"bio-oxidation"</td>
<td>in mining the oxidation of sulphide minerals by the biological action of naturally occurring bacteria under aerobic and acidic conditions. This action degrades the sulphide mineral to expose the grains of gold for cyanidation</td>
</tr>
<tr>
<td>"breccia"</td>
<td>coarse clastic sedimentary rock, the constituent clasts of which are angular</td>
</tr>
<tr>
<td>"Cu"</td>
<td>copper</td>
</tr>
<tr>
<td>"clast"</td>
<td>particle of broken down rock</td>
</tr>
<tr>
<td>"concentrate"</td>
<td>a product in which valuable minerals have been enriched (concentrated) through mineral processing</td>
</tr>
<tr>
<td>"copper-porphyry"</td>
<td>or "copper-gold porphyry" is a type of copper (gold) deposit in which the copper (gold) minerals occur in disseminated grains and/or in veinlets through a large volume of rock</td>
</tr>
<tr>
<td>"cut-off grade"</td>
<td>the break-even or lowest grade of ore in a deposit that will recover its total mining costs</td>
</tr>
<tr>
<td>"cyanidation"</td>
<td>the process whereby gold in ore material is dissolved out using a weak cyanide solution</td>
</tr>
<tr>
<td>"decline"</td>
<td>access to underground via a downward incline or sloping roadway</td>
</tr>
<tr>
<td>"dip"</td>
<td>direction or angle that the plane of a rock formation makes with the horizontal</td>
</tr>
<tr>
<td>"disseminated"</td>
<td>in a mineral deposit, whereby the minerals (metals) occur as scattered particles in the rock, but in sufficient quantity to make the deposit a worthwhile ore</td>
</tr>
<tr>
<td>"dyke"</td>
<td>a sheet-like body of igneous rock cutting across bedding planes of rock</td>
</tr>
<tr>
<td>"epithermal"</td>
<td>vein deposit formed within about a kilometre of the Earth's surface by hot ascending solutions; low temperature-low pressure mineralization style</td>
</tr>
<tr>
<td>"fire assay"</td>
<td>an analytical smelting procedure for determining the precious metal content in rock and mine products</td>
</tr>
</tbody>
</table>
“gpt”
gram per tonne (gram per 1000 kilogram)

“Ga”
a thousand million years (a billion years)

“gabbro”
a coarse-grained igneous rock

“gossan”
rocks in which metal (usually iron)-bearing sulphide minerals have been oxidized by air and water

“grade”
the element or metal content per unit of material

“gravity process”
the physical process of separating minerals from waste rock using their natural differences in specific gravity

“ha”
hectare

“high-sulphidation”
an epithermal system whereby later stage mineralization consists mainly of gold-copper mineralization (generally deeper than low sulphidation)

“hydrothermal”
heated or superheated fluid or water from depth in the earth’s crust

“igneous rock”
rock formed by crystallization or solidification of magma

“lode”
the occurrence of mineralization or a mineral deposit within solid rock (bedrock)

“low sulphidation”
an epithermal system whereby early stage mineralization consists of silica minerals and gold; a shallow to surficial, hot spring environment

“Ma”
a million years

“mafic”
general term used to describe rocks containing ferromagnesian minerals (see also basic)

“magma”
molten rock material formed within the earth’s crust

“metamorphism”
The processes by which changes are brought about in rocks within the Earth’s crust through heat, pressure and chemically active fluids

“metasomatism”
a metamorphic change which involves the introduction of material from an external source

“mineral”
a naturally occurring inorganic substance typically with a crystalline structure

“Mo”
molybdenum

“mullock”
mine waste rock

“olivine”
a rock forming group of magnesium iron silicate minerals forming a complete solid solution series between the forsterite mineral (magnesium silicate) to the fayalite mineral (iron silicate)

“ophiolite”
collective name for a group of mafic and ultramafic rocks associated with marine origin; a fossilized piece of oceanic crust

“ore”
a mineral or rock that can be extracted economically

“ore body”
a mass of ore with defined geometry

“outcrop”
rock unit exposure at surface

“Pb”
lead

“polymetallic”
several metals

“porphyry”
a medium- to coarse-grained intrusive (generally felsic) igneous rock that contains conspicuous mineral crystals that are coarser-grained than the groundmass
"pyrite" iron sulphide mineral
"pyroxenite" an igneous rock comprising generally of pyroxene minerals, of varying
calcium, magnesium and iron silicates
"refractory" a term used to describe gold ores which are not amenable to recovery using
conventional gravity or cyanide leaching technology
"Reserve" that part of a Resource which can be mined at a profit under reasonably
expected economic conditions as defined by the JORC Code
"Resource" mineralised body for which there is sufficient sampling information and
geological understanding to outline a deposit of potential economic merit
"shaft" or "mine shaft" is a vertical or inclined excavation in rock or consolidated
material for
the purpose of providing access to an ore body. Usually equipped with a hoist at the
top
"sill" a sheet-like body of igneous rock which conforms to bedding planes of
rock
"skarn" a contact thermally metamorphosed impure limestone or dolomite
"stratabound" contained within a stratum
"stratiform" strata like
"strike" horizontal level direction or bearing of an inclined rock bed, structure,
vein or stratum surface. The direction is perpendicular to the direction of
dip
"strip ratio" ratio of waste rock to ore mined in open cast (pit) mining
"sub outcrop" rock unit exposure below the surface (also referred to as subcrop)
"sulphidation" a relative classification of ore forming environments principally
hydrothermal fluidisation
"sulphide" a mineral in which the element sulphur is in combination with one or more
metallic elements
"tailings" the waste products resulting from the processing of ore material
"troctolite" an olivine gabbro
"ultramafic" partial acronym describing an igneous rock consisting of ferro (iron) magnesian
minerals
"veinlet" a narrow, fine stringer or filament of mineral (metal) that occurs in a
discontinuous pattern in the host rock
"Zn" Zinc
APPENDIX III

PHOTO PLATES
Sample# 379001 (36 ppb Au) & 379002 (31 ppb Au)

Sample# 379001 (36 ppb Au) & 379002 (31 ppb Au)
Trench#1, Sample# 379003 (1.3 g/t Au)
Sample # 379004 (49 ppb Au)

Sample # 379005 (16 ppb Au)
Sample# 379006 (20 ppb Au)

Sample# 379007 (3.1 g/t Au)
Sample # 379008 (3.3 g/t Au, 0.14% Cu, 0.24% Pb, & 0.63% Zn)
Sample # 379008 (3.3 g/t Au, 0.14% Cu, 0.24% Pb, & 0.63% Zn)

Sample # 379008 (3.3 g/t Au, 0.14% Cu, 0.24% Pb, & 0.63% Zn)
APPENDIX IV

CERTIFICATE OF ANALYSIS
Certificate of Analysis

Tuesday, July 13, 2004

Aurmin Corporation
210 Cedar St., Suite 203
Sudbury, ON, CA
P3B 1M6
Phone: (705) 669-0300
Fax: (705) 669-0250
Email: scottm@ilacat.net

Date Received: 09-Jul-04
Date Completed: 12-Jul-04
Job #: 200440754
Reference:
Sample #: 11 Rock

<table>
<thead>
<tr>
<th>Accurassay #</th>
<th>Client Id</th>
<th>Au ppb</th>
<th>Pt ppb</th>
<th>Pd ppb</th>
<th>Rh ppm</th>
<th>Ag ppm</th>
<th>Co ppm</th>
<th>Cu ppm</th>
<th>Fe ppm</th>
<th>Ni ppm</th>
<th>Pb ppm</th>
<th>Zn ppm</th>
</tr>
</thead>
<tbody>
<tr>
<td>38106</td>
<td>379001</td>
<td>36</td>
<td></td>
</tr>
<tr>
<td>38107</td>
<td>379002</td>
<td>31</td>
<td></td>
</tr>
<tr>
<td>38108</td>
<td>379003</td>
<td>1301</td>
<td></td>
</tr>
<tr>
<td>38109</td>
<td>379004</td>
<td>49</td>
<td></td>
</tr>
<tr>
<td>38110</td>
<td>379005</td>
<td>16</td>
<td></td>
</tr>
<tr>
<td>38111</td>
<td>379006</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>38112</td>
<td>379007</td>
<td>3116</td>
<td>52</td>
<td>1434</td>
<td>2425</td>
<td>6265</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>38113</td>
<td>379008</td>
<td>3329</td>
<td>62</td>
<td>1906</td>
<td>7458</td>
<td>9743</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>38114</td>
<td>379010</td>
<td>335</td>
<td></td>
</tr>
<tr>
<td>38115</td>
<td>379011</td>
<td>277</td>
<td>25</td>
<td>346</td>
<td>144</td>
<td>52</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>38116 Check</td>
<td>379011</td>
<td>285</td>
<td>25</td>
<td>351</td>
<td>137</td>
<td>49</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>38117</td>
<td>379012</td>
<td>17</td>
<td></td>
</tr>
</tbody>
</table>

PROCEDURE CODES: Au, Cu, Al. AL2O3, Al2O3, AlPb, AL2O3, Zn

Certified By: [Signature]
Jason D. Cameron, M.Disc., Laboratory Manager

The results included on this report relate only to the items tested.
The Certificate of Analysis should not be reproduced except in full, without the written approval of the laboratory.
APPENDIX V

SAMPLE DESCRIPTIONS
Sample # 379001: Taken along logging road near trenches. Intermediate Metavolcanic Rock-containing 1-3% pyrite as stringers. Moderately altered with a rusty weathered surface.

Sample # 379002: Felsic Metavolcanic Rock with 2-3% disseminated pyrite, moderately fractured with a rusty weathered surface.

Sample # 379003: Felsic Metavolcanic Rock with 3-5% disseminated pyrite, slightly schistose and contains narrow seams of pyrite along schistocity planes. Rusty weathered surface.

Sample # 379004: Felsic Metavolcanic Rock with about 1% disseminated pyrite throughout, some semi-massive to massive sulphide-enriched (pyrite) pods. Relatively fresh weathered surface unless the pods outcrop.

Sample # 379007 & 379008: Highly altered Felsic Metavolcanic Rock, highly schistose and fractured with 5% disseminated pyrite throughout and narrow pyrite stringers. Contains subordinate galena, malachite, bornite, and chalcopyrite as vuggy material. Highly gossaned surface.

Sample # 379010 and 379012: Felsic metavolcanic Rock with subordinate pyrite. Massive.

Sample # 379011: Felsic Metavolcanic Rock with 3-5% disseminated pyrite. Slightly fractured and a slight rusty surface.
Work Report Summary

Transaction No: W0440.01126
Status: APPROVED
Recording Date: 2004-JUL-15
Work Done from: 2004-MAR-12 to: 2004-JUL-14
Approval Date: 2004-OCT-21

Client(s):
132415 FOGEN, MICHAEL N
200691 TERNOWESKY, JOHN EDWARD

Survey Type(s): PROSP

Work Report Details:

<table>
<thead>
<tr>
<th>Claim#</th>
<th>Perform</th>
<th>Perform Approve</th>
<th>Applied</th>
<th>Applied Approve</th>
<th>Assign</th>
<th>Assign Approve</th>
<th>Reserve</th>
<th>Reserve Approve</th>
<th>Due Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>TB 1064690</td>
<td>$11,781</td>
<td>$11,781</td>
<td>$6,000</td>
<td>$6,000</td>
<td>$0</td>
<td>0</td>
<td>$5,781</td>
<td>$5,781</td>
<td>2005-JUL-15</td>
</tr>
<tr>
<td>TB 3001512</td>
<td>$2,000</td>
<td>$2,000</td>
<td>$800</td>
<td>$800</td>
<td>$0</td>
<td>0</td>
<td>$1,200</td>
<td>$1,200</td>
<td>2005-JUL-15</td>
</tr>
<tr>
<td>TB 3001513</td>
<td>$2,000</td>
<td>$2,000</td>
<td>$800</td>
<td>$800</td>
<td>$0</td>
<td>0</td>
<td>$1,200</td>
<td>$1,200</td>
<td>2005-JUL-15</td>
</tr>
<tr>
<td>TB 3001514</td>
<td>$2,000</td>
<td>$2,000</td>
<td>$800</td>
<td>$800</td>
<td>$0</td>
<td>0</td>
<td>$1,200</td>
<td>$1,200</td>
<td>2005-JUL-15</td>
</tr>
</tbody>
</table>

$17,781 $17,781 $8,400 $8,400 $0 $0 $9,381 $9,381

External Credits: $0

Reserve: $9,381 Reserve of Work Report#: W0440.01126

$9,381 Total Remaining

Status of claim is based on information currently on record.
Subject: Approval of Assessment Work

We have approved your Assessment Work Submission with the above noted Transaction Number(s). The attached Work Report Summary indicates the results of the approval.

At the discretion of the Ministry, the assessment work performed on the mining lands noted in this work report may be subject to inspection and/or investigation at any time.

If you have any question regarding this correspondence, please contact STEVEN BENETEAU by email at steve.beneteau@ndm.gov.on.ca or by phone at (705) 670-5855.

Yours Sincerely,

Ron C. Gashinski
Senior Manager, Mining Lands Section

Cc: Resident Geologist
 Michael N Fogen (Claim Holder)
 John Edward Ternowesky (Assessment Office)

Assessment File Library
 John Edward Ternowesky (Claim Holder)