REPORT ON
GEOPHYSICAL SURVEYS
AND
TRENCHING
POWELL LAKE AREA
THUNDER BAY MINING DIVISION
ONTARIO
FOR
WOLF RIVER RESOURCES LTD.

George Cavey
Larry LeBel
February 2, 1987

RECEIVED
R 14 1987
MINING LANDS SECTION
SUMMARY

An exploration program consisting of an induced polarization geophysical survey and limited trenching was carried out on the Wolf River Resources Ltd., Powell Lake area property located west of Thunder Bay, Ontario. The work was a continuation of previous exploration consisting of airborne geophysics, mapping and rock and soil sampling done on the 21 claim property.

The property hosts a belt of metavolcanics and mafic intrusions with intercalations of felsic volcanics that contain pyrite and chalcopyrite.

Modest rock and soil geochemical anomalies occur on the property, but no significant gold or base metal mineralization has been located.

Several strong induced polarization anomalies reflect local increases in pyrite content of the metavolcanics.

Even though there is an unexplained gold soil geochemical anomaly on the property, no further work is recommended.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Summary</td>
<td></td>
</tr>
<tr>
<td>Introduction</td>
<td>1</td>
</tr>
<tr>
<td>Property Description</td>
<td>1</td>
</tr>
<tr>
<td>Location and Access</td>
<td>1</td>
</tr>
<tr>
<td>Claims Status</td>
<td>2</td>
</tr>
<tr>
<td>Physiography and Vegetation</td>
<td>2</td>
</tr>
<tr>
<td>Regional Geology</td>
<td>3</td>
</tr>
<tr>
<td>History and Previous Work</td>
<td>5</td>
</tr>
<tr>
<td>Property Geology and Mineralization</td>
<td>8</td>
</tr>
<tr>
<td>Induced Polarization Survey</td>
<td>9</td>
</tr>
<tr>
<td>Trenching</td>
<td>12</td>
</tr>
<tr>
<td>Conclusions and Recommendations</td>
<td>14</td>
</tr>
<tr>
<td>Bibliography</td>
<td></td>
</tr>
<tr>
<td>Certificates of Qualifications</td>
<td></td>
</tr>
<tr>
<td>George Cavey, Consulting Geologist</td>
<td></td>
</tr>
<tr>
<td>Larry LeBel, Consulting Geophysicist</td>
<td></td>
</tr>
</tbody>
</table>
LIST OF APPENDICES

Appendix I Analytical Results
Appendix II IP Survey Pseudosections

LIST OF FIGURES

Figure 1 Location Map Following Page 1
Figure 2 Claim Map Following Page 2
Figure 3 Trench 1 Following Page 12
Figure 4 Trench 2 Following Page 13
Figure 5 Trench 3 Following Page 13
INTRODUCTION

This report presents the results of an induced polarization geophysical survey and limited trenching program carried out on the Wolf River Resources Ltd. property in the Powell Lake area of northwestern Ontario.

The purpose of the program was to follow up on previous work done on the property according to recommendations made by Dumouchel and Flegg (1984).

The work was carried out by OreQuest Consultants Ltd. during late November and early December, 1986. The scope of the trenching was limited because of the onset of winter weather conditions.

PROPERTY DESCRIPTION

Location and Access

The property is located approximately 115 air kilometers west of Thunder Bay, Ontario in the Thunder Bay Mining Division. It lies 20 kilometers south of Trans Canada Highway 11 and 25 kilometers due south of Owakonze on the Canadian National Railway line. The claim group is situated on claim sheet G-549, Powell Lake. The property is roughly centered on Hamlin Lake at NTS coordinates 48°28'N latitude and 90°47'W longitude.

The most convenient mode of access is by float plane to either Hamlin or McInnis Lakes via Shebandowan Air in Kashabowie or by helicopter from Thunder Bay.
FIGURE 1

PROPERTY LOCATION MAP

WOLF RIVER RES. LTD.

POWELL LAKE AREA, THUNDER BAY MIN. DIV.

OREQUEST
Alternative access is gained by turning south off Highway 11 onto the Birchell Lake Gravel road, 1.5 kilometers west of Kashabowie and travelling 38 kilometers to Great Lakes forestry camp 517. A forestry access road leads west from the camp for approximately one kilometer at which point an old forestry road leads northward to within 800 metres of McInnis Lake. From there, a portage trail leads to McInnis Lake. The southern part of the property borders on the north arm of McInnis Lake.

Claim Status

The property is composed of 21 claims which encompass an area of approximately 840 acres. The claims are situated in the Powell Lake area (Ontario Ministry of Natural Resources, Land Management Branch, Map G-549) in the Thunder Bay Mining Division.

Status of the claims is as follows:

<table>
<thead>
<tr>
<th>Claim Numbers</th>
<th>Number of Claims</th>
<th>Expiry Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>TB 685326-329</td>
<td>4</td>
<td>Feb. 28/87</td>
</tr>
<tr>
<td>TB 685331-342</td>
<td>12</td>
<td>Feb. 28/87</td>
</tr>
<tr>
<td>TB 673951</td>
<td>1</td>
<td>Feb. 28/87</td>
</tr>
<tr>
<td>TB 673949</td>
<td>1</td>
<td>Feb. 28/87</td>
</tr>
<tr>
<td>TB 685824</td>
<td>1</td>
<td>Feb. 28/87</td>
</tr>
<tr>
<td>TB 963360-361</td>
<td>2</td>
<td>Dec. 11/87</td>
</tr>
</tbody>
</table>

Physiography and Vegetation

Terrain on the property consists of a number of northeast/southwest trending rocky ridges and cliffs with intervening swampy valleys.
FIGURE 2

CLAIM MAP

WOLF RIVER RES. LTD.

POWELL LAKE AREA, THUNDER BAY MIN. DIV., ONT.

OREQUEST
The north arm of McInnis Lake borders on the property to the south and Hamlin Lake occupies the northwestern third of the claims. Water can also be obtained from Deatys Creek which cuts through the southeastern part of the property.

Vegetation consists of a variety of tree types from poplar and birch to jack pine and cedar, particularly in the swamps. Underbrush consists of alder and moose maple.

REGIONAL GEOLOGY

The property lies within the Shebandowan greenstone belt which forms the western extension of the Abitibi-Wawa-Shebandowan subprovince within the Superior Province of the Canadian Shield. The Shebandowan belt extends westward from Thunder Bay, Ontario, approximately 190 kilometers to the Canada-USA border and is shown on the Atikokan Lakehead map sheet 2065, of the Geological Compilation series (scale 1:250,000). The region and area of interest has previously been mapped by Tanton (1938), Giblin (1964) and Harris (1970) with the latter's study area including the present Wolf River property. Detailed studies of gold and styles of mineralization in the Shebandowan region have recently been completed by Stott and Schneiders (1983) and Chorlton and Brown (1984-1985).

The Shebandowan greenstone belt forms an east-west trending sequence of Archean metavolcanic and metasedimentary rocks that have been intruded by numerous mafic to felsic bodies. The metavolcanics consist predominantly of basic to intermediate volcanic schists, pillowed flows, pyroclastic rocks and
minor acidic rocks. The metavolcanics are most abundant in the middle to eastern portions of the belt while the metasediments consisting of arkose and greywacke become volumetrically more abundant to the west.

A number of faults and lineaments transect the belt parallel to sub-parallel to the regional bedding. A second lesser set of faults occurs at right angles.

In the Powell Lake area, the metavolcanic rocks consist of an inner zone of felsic to intermediate pyroclastic and flow rocks, with an outer margin of mafic to intermediate massive and schistose flow rocks. Harris (1970) interprets this as a large anticlinal fold, citing the general symmetry of the volcanic rocks and rare pillow tops as supporting evidence. The Powell Lake granite widening to the west occupies the central hinge section of the fold. The Knife Lake Fault marks the southern extent of the metavolcanic rocks and the intrusion of the Myrt Lake Batholith.

Gold mineralization in the Shebandowan belt is generally associated with regional fault systems and related shear zone systems eg. the Ardeen Mine, Fountain Lake occurrence, Snodgrass Lake property (Tandem Resources Ltd.). Gold occurs in the native state within quartz veins, and in association with pyrite within shear zones and iron formations.
HISTORY and PREVIOUS WORK

Gold mineralization was first discovered in the area in 1871 at the site of the Ardeen Mine (Kerry Gold Mines property), approximately 8 kilometers north of the property. As of 1949, the Ontario Department of Mines records indicate a total production of 29,948 ounces of gold and 172,376 ounces of silver from quartz veins hosted within highly sheared mafic metavolcanic rocks in association with dacitic porphyry dykes. The property has since seen intermittent exploration by Noranda Mines Limited, McIntyre Porcupine Mines Limited and Dome Exploration who drilled 17 holes in 1973 (Cohoon, 1973). Work is presently being contemplated by Matt Bevy Mines Limited under an option from the current owners, Belore Mines Limited.

Two kilometers north of the Wolf River property, the Gitchie Syndicate carried out considerable trenching along a pyritic cherty iron formation on what is now ground held by Wawiag Resources Limited. Values of up to 0.1 to 0.30 ounces per ton gold over widths of 1.0 to 6.0 feet were reported (Northern Miner Press, December 10, 1936) although sampling by Kennco Explorations Limited in 1985 could not substantiate these results (Suchanek, 1985).

About 6 kilometers east of Snodgrass Lake, a minor structurally related, quartz hosted gold occurrence was discovered by trenching and drilling. No further work has occurred since that time (Kuehnbaum, 1985).

Throughout the 1950’s to 1970’s, base metal exploration took precedence in the area. In 1956, Ray Smith discovered copper mineralization in altered metavolcanic rocks just northwest of the property. Noranda Mines Limited
subsequently optioned the claims and carried out geological mapping, a ground electromagnetic survey, trenching and diamond drilling (2,251 feet over 7 holes). Narrow bands of chalcopyrite and pyrite mineralization with grade estimates of 0.5 to 3.0% copper over widths up to 2 feet was intersected in drill core, with two trenches reporting values of 0.23% copper over 20 foot widths.

In 1956, MacLeod Cockshutt Gold Mines Limited carried out work on a copper occurrence northeast of Hamlin Lake. Two drill holes (Harris, 1970) revealed minor amounts of disseminated chalcopyrite, pyrite and pyrrhotite within a chlorite schist hosted by an agglomeritic sequence. This area was also explored with ground electromagnetic and magnetic geophysical surveys by Conwest Exploration in 1972. No further work has since been recorded.

Also in 1956, Cominco Limited flew an airborne magnetic and electromagnetic survey over 120 square miles including the area now held by Wolf River Resources Ltd. As a result, 21 drill holes were put down to test the various electromagnetic conductors (Cominco, 1966). Most of the conductors were found to be caused by zones of pyrite/pyrrhotite mineralization and/or graphite. One drill hole to test a strong conductor southwest of the Wolf River property intersected two zones of massive pyrite and pyrrhotite sulfide mineralization in the same stratigraphy that underlies the Wolf River property.

In 1957, Cominco Limited discovered copper mineralization 10 kilometers to the southwest of the Wolf River property. Named the Redfox lake occurrence, chalcopyrite mineralization is hosted within a dacite porphyry intrusive body.
Falconbridge Nickel Ltd. and Rio Tinto worked in the area surrounding the
property in the early to mid-seventies. Falconbridge conducted diamond drill
programs in the Home and Windblown Lakes areas directly south of the property.
Rio Tinto flew the area in 1976 with an INPUT electromagnetic survey and
subsequently staked two claim blocks, one of which adjoined the present Wolf
River property on the west.

In 1966-1970, the area was the subject of a geological mapping program
commissioned by the Ontario Department of Mines. The results are reported in
g geological report 85 by Harris entitled Geology of the Moss Lake Area (Harris,
1970).

In 1977, Amoco Canada Limited drilled 2 holes (872 feet) to test an
electromagnetic anomaly, 3 kilometers northwest of Hamlin Lake. The source was
identified as graphite (Amoco Canada Ltd., 1977).

Four old drill sites are located on the southern half of the property.
These holes are believed to be from the 1973 Falconbridge Nickel exploration
program. Logs of the holes which show rhyolite and dacite flows and tuffs with
substantial quantities of sulphides differ substantially from the core remaining
at one of the sites which is entirely granite.

More recently the area was covered by an airborne geophysical survey in
1983 (Arctic Atlantic, 1984). This survey recorded a number of anomalies in the
vicinity of the north arm of McGinnis Lake and Deatys Creek. The anomalies may
be caused by the Knife Lake fault which passes through this area and may the
target of the 1973 Falconbridge Drilling.

The property was prospected, mapped and soil sampled in 1984 (Dumouchel and
Flegg, 1984). This work isolated several areas of anomalous rocks and soils
recommended for follow up.

Presently the area is completely staked as a result of the recent discovery
by Tandem Resources Ltd. (under option from Belore Mines Ltd.) on their
Snodgrass Lake property, 10 kilometers to the northeast. Gold mineralization
has been identified in three parallel shear zones within intermediate
metavolcanic rocks with some section of drill core assaying 0.26 ounces per ton
over 17 feet. Plans are presently being formulated for an underground test of
the zones and an additional, 20,000 feet of diamond drilling (Northern Miner

PROPERTY GEOLOGY and MINERALIZATION

According to Dumouchel and Flegg (1984) about 70% of the property is
underlain by felsic porphyritic, granitic, syenitic and mafic igneous
intrusives. The remaining 30% is composed of intercalated metavolcanics and
metasediments.

The metavolcanics occur in a northeast trending band across the
southeastern part of the property sandwiched between intrusives to the northeast
and intrusives to the extreme southeast corner of the property. The
metavolcanics are predominantly rhyolites. The metasediments consist of
greywacke, chert and quartzite. They are limited in extent and are concentrated in the southeast corner of the property.

Mineralization including pyrite, chalcopyrite and malachite occurs predominantly in the metavolcanics. In particular, a pyritic rhyolite with lenses of quartz sericite and green mica with a strike length of 200 metres occurs in the southwest corner of the property.

Multi-element soil geochemical anomalies occur in the southwest part of the property and near the baseline of lines 4+00E - 6+00E. A modest gold soil anomaly occurs along line 10+00E at about 2+50N.

INDUCED POLARIZATION SURVEY

The induced polarization (IP) survey was conducted in the time domain with an EDA IP-1 receiver and a Phoenix IPT-1 transmitter. Part of the survey was done with a Huntex MIV receiver after when the IP-1 malfunctioned. The delay time and total integration on the MIV were set at 158 msec and 1580 msec, respectively to be compatible with the EDA receiver. The dipole-dipole electrode array with an electrode spacing of 25 metres expanded through four separations was used.

Coverage was applied selectively by doing alternate lines at 400 metre intervals first then in filling at 200 metre intervals when anomalous zones were encountered. The granitic terrain in the northwestern part of the property was considered unfavourable terrain and was avoided. Coverage across the Knife Fault in the southeast corner of the property was not possible because Deatys
Creek which follows the trace of the fault was not adequately frozen at each line.

The results, apparent chargeability in msec and apparent resistivity in ohm-m are illustrated in pseudosection format in Appendix II.

Anomalous chargeabilities from 20 msec up to 139 msec were recorded by the survey. The anomalous values form a wide zone which extends across the property from south of 100S on line 4+00W to south of 250N on line 8+00E. There is a gap in the anomalous zone on line 0+00 which is non-anomalous over its entire length from 4+75N to 2+00S. Anomalous values are also absent on the portion of line 2+00E that was surveyed as well because bedrock is "masked" by a blanket conductive overburden.

Chargeabilities within the anomalous zone vary considerably and often change dramatically over relatively short distances. Although the 200 metre line spacing is rather coarse there does not seem to be any consistent lie to line correlations in the results.

The anomalies no doubt reflect variations in sulphide content of the bedrock. With such a large anomalous zone showing considerable internal variations it is difficult to specify specific target areas. The highest chargeabilities identify the highest concentrations of sulphides. However, the mode of occurrence of gold mineralization if it indeed exists on the property is known.
Apparent resistivities also vary dramatically from 20 ohm-m to 40,000 ohm-m. Variations of this sort are common in the Canadian Shield and reflect variations in the composition and texture of the bedrock, but are also influenced by structure and overburden. Distinguishing between the various causes in complicated results is difficult. Many of the variations in apparent resistivity ie. highs and juxtaposed lows are caused by the terrain which consists of rocky ridges and intervening swamps.

It is difficult to select targets from the results. First order anomalies would consist of abnormally high chargeabilities associated with resistivity lows.

From a gold exploration point of view such coincident signatures may be caused by pyritic (chargeability anomaly) shear zones (resistivity low). Second order anomalies are chargeability highs by themselves. Zones which exhibit either of these qualities are located as follows:

<table>
<thead>
<tr>
<th>Line</th>
<th>Coordinate</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>10+00E</td>
<td>0+00 - 0+25S</td>
<td>chargeability high</td>
</tr>
<tr>
<td></td>
<td>1+25N - 1+00N?</td>
<td>chargeability high</td>
</tr>
<tr>
<td>8+00E</td>
<td>0+00</td>
<td>chargeability high</td>
</tr>
<tr>
<td></td>
<td></td>
<td>resistivity low</td>
</tr>
<tr>
<td>6+00E</td>
<td>0+50S - 0+75S</td>
<td>chargeability high</td>
</tr>
<tr>
<td>4+00E</td>
<td>1+25S - 1+75S</td>
<td>chargeability high</td>
</tr>
<tr>
<td></td>
<td></td>
<td>resistivity low</td>
</tr>
<tr>
<td>2+00W</td>
<td>1+50S - 2+25S</td>
<td>chargeability high</td>
</tr>
<tr>
<td></td>
<td></td>
<td>resistivity low</td>
</tr>
<tr>
<td>4+00W</td>
<td>1+50S</td>
<td>chargeability high</td>
</tr>
<tr>
<td></td>
<td></td>
<td>resistivity low</td>
</tr>
</tbody>
</table>
TRENCHING

The trenching was done manually with explosives and shovel because there is no convenient road access to the area for heavy equipment.

The scope of the trenching was limited because of snow conditions and cold weather which caused the ground to freeze almost immediately after blasting.

Three trenches were excavated, two on geophysical targets and one on a rock geochemical anomaly. The gold soil geochemical anomalies, for example on line 10+00E at 2+50N were not trenched because no outcrop was found in the area.

Samples were continuous channel samples 2-3 cm wide and 1-2 cm deep that were cut with a portable rock saw. Analyses were carried out by Vangeochem Laboratories of North Vancouver, B.C. and the results are shown in Appendix I.

Trench 1 - (Figure 3)

Trench 1, located at 4+43E, was to test a chargeability anomaly on line 4+00E between 1+25S and 1+75S. Outcrop was exposed between 1+05S and 1+11S, but overburden greater than 2 metres thick made it impractical to extend the trench by hand further to the south so the main target anomaly was not explained.

The exposed outcrop consists of mainly volcanics with variable pyrite content. Only one sample (4032) returned anomalous gold of 140 ppb over 0.9 metres. This interval also had the highest sulphide content (15%) observed in the trench.
TARGET:
IP chargeability anomaly on L 4+00E
LOCATION:
4 + 43E
1 +05S—1+12S

FIGURE 3
TRENCH 1
WOLF RIVER RES. LTD.
POWELL LAKE AREA, THUNDER BAY MIN. DIV., ONT
OREQUEST
FEB 1987
An angular boulder containing chalcopyrite and malachite was found in the trench. The source of the boulder could not be found, but based on its angularity a nearby source is expected. Analyses of boulder (sample 4038) returned 800 ppm Cu and 130 ppb Au.

Trench 2 - (Figure 4)

Trench 2 tested a previous rock geochemical response (960 ppb Au). The trench between 3+32S and 3+39S at 7+13E uncovered the quartz vein from which the original sample came, but no more veins were discovered. A new grab sample of the vein (4031) was devoid of gold mineralization. Bedrock in the trench is intermediate to felsic volcanics with up to 3% disseminated pyrite. One sample of the bedrock (4025) returned 150 ppb Au over 0.5 metres. This sample included the original gold bearing quartz vein. The IP survey did not cover this part of the grid.

Trench 3 - (Figure 5)

Trench 3 tested a chargeability anomaly on line 4+00W at 1+50S. The trench is actually at 3+81W, 1+43S - 1+52S. The trench uncovered at 7 metre wide band of silicious/silicified white to grey, fine to medium grained chert. The zone may be primary or may be an altered phase of the surrounding mafic volcanics. Variable pyrite content through the interval explains the observed chargeability anomaly. Minor concentrations of gold up to 100 ppb over 0.8 metres (sample 4047) were returned from the sampling. An interval of 20% disseminated pyrite between 1+47S - 1+49S did not display an appreciable gold enrichment.
<table>
<thead>
<tr>
<th>Sample length</th>
<th>Sample numbers</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.5</td>
<td>4025</td>
</tr>
<tr>
<td>0.5</td>
<td>4026</td>
</tr>
<tr>
<td>1.0</td>
<td>4027</td>
</tr>
<tr>
<td>1.0</td>
<td>4028</td>
</tr>
<tr>
<td>0.6</td>
<td>4029</td>
</tr>
<tr>
<td>1.2</td>
<td>4030</td>
</tr>
</tbody>
</table>

- blue black quartz veins, irregular, discontinuous, 10cm long, <1% py
- black grey Intermediate to felsic (silicified)
- 0-3% diss.py
- mafic volcanic, fine grained
- granite contact ~ 25m. south

<table>
<thead>
<tr>
<th>▲</th>
<th>Grab sample</th>
<th>TARGET</th>
<th>LOCATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>OB</td>
<td>overburden</td>
<td>Rock geochemistry</td>
<td>7+13E</td>
</tr>
<tr>
<td>qtz</td>
<td>quartz</td>
<td>Gold anomaly 960ppb</td>
<td>3+33S—3+39S</td>
</tr>
<tr>
<td>py</td>
<td>pyrite</td>
<td>Quartz vein</td>
<td></td>
</tr>
<tr>
<td>diss</td>
<td>disseminated</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

FIGURE 4

TRENCH 2

WOLF RIVER RES. LTD.

POWELL LAKE AREA, THUNDER BAY MIN. DIV., ONT

OREQUEST
<table>
<thead>
<tr>
<th>Sample length</th>
<th>Sample numbers</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0</td>
<td>4039</td>
</tr>
<tr>
<td>0.8</td>
<td>4040</td>
</tr>
<tr>
<td>1.2</td>
<td>4041</td>
</tr>
<tr>
<td>1.0</td>
<td>4042</td>
</tr>
<tr>
<td>1.0</td>
<td>4043</td>
</tr>
<tr>
<td>1.0</td>
<td>4044</td>
</tr>
<tr>
<td>1.0</td>
<td>4045</td>
</tr>
<tr>
<td>1.0</td>
<td>4046</td>
</tr>
<tr>
<td>0.8</td>
<td>4047</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Location</th>
<th>Mafic volcanic</th>
</tr>
</thead>
<tbody>
<tr>
<td>1+3% diss.py</td>
<td>10% diss.py</td>
</tr>
<tr>
<td>5% diss.py</td>
<td>20% blebs + diss.py</td>
</tr>
</tbody>
</table>

From 1+44S – 1+51S, siliceous/silicified, white to grey, fine to medium grained, possibly chert and/or an alteration of the surrounding mafic volcanics.

Figure 5

TARGET

- Grab sample
- OB overburden
- qtz quartz
- py pyrite
- diss disseminated

LOCATION

- 3+81W
- IP anomaly on L4+00W

FIGURE 5

TRENCH 3

WOLF RIVER RES. LTD.

POWELL LAKE AREA, THUNDER BAY MIN. DIV., ONT

OREQUEST

FEB 1987
CONCLUSIONS and RECOMMENDATIONS

The Wolf River Resources Ltd. property is situated in the Powell Lake area west of Thunder Bay, Ontario.

Exploration is active in the area in response to the recent discovery of gold mineralization by Tandem Resources Ltd. at Snodgrass Lake about 10 kilometers northeast of the Wolf River property.

Exploration on the Wolf River property to date has entailed airborne geophysics, geological mapping, roc and soil sampling, an induced polarization survey and trenching. There are four drill holes on the property completed by a previous operator.

So far the work done on behalf of Wolf River Resources has been unsuccessful in finding any significant mineralization. Although details of the drilling done previously on the property are absent, the lack of follow up drilling indicates that the results were probably discouraging, as well.

There is an unexplained and untested weak Au soil geochemically anomaly on the property. The potential of the anomaly to reflect a significant gold deposit is considered minimal.

No further work is recommended on the property.
CERTIFICATE of QUALIFICATIONS

I, George Cavey, of 6891 Wiltshire Street, Vancouver, British Columbia hereby certify:

1. I am a graduate of the University of British Columbia (1976) and hold a BSc. degree in geology.

2. I am presently employed as a consulting geologist with OreQuest Consultants Ltd. of 404-595 Howe Street, Vancouver, British Columbia.

3. I have been employed in my profession by various mining companies for the past ten years.

4. I am a Fellow of the Geological Association of Canada.

5. I am a member of the Canadian Institute of Mining and Metallurgy.

6. The information contained in this report was obtained from work done on the property by OreQuest Consultants Ltd. in 1986.

7. Neither OreQuest Consultants Ltd. nor myself have or expect to receive direct or indirect interest in the property nor in the securities of Wolf River Resources Ltd.

8. I consent to and authorize the use of the attached report and my name in the Company's Prospectus, Statement of Material Facts or other public document.

George Cavey
Consulting Geologist

DATED at Vancouver, British Columbia, this 2nd day of February, 1987.
CERTIFICATE of QUALIFICATIONS

I, J. L. LeBel, of 436 W. 6th Street, North Vancouver, British Columbia hereby certify:

1. I am a graduate of the Queens University (1971) and the University of Manitoba (1973) and hold a BSc. degree in geological engineering and a MSc. degree in geophysics.

2. I am a Professional Engineer registered with the Association of Professional Engineers of British Columbia, Vancouver, British Columbia.

3. I have been employed in my profession as a geophysicist with various companies since 1972.

4. The information contained in this report was obtained from work done on the property by OreQuest Consultants Ltd. in 1986.

5. I own no direct, indirect or expect to receive or contingent interests in the subject property or shares or securities of Wolf River Resources Ltd.

6. I consent to and authorize the use of the attached report and my name in the Company's Prospectus, Statement of Material Facts or other public document.

DATED at Vancouver, British Columbia, this 2nd day of February, 1987.

J. L. LeBel, P.Eng.
BIBLIOGRAPHY

AMOCO CANADA LIMITED

ARCTIC ATLANTIC EXPLORATIONS LTD.

CHORLTON, L.B.

CHORLTON, L.B. and BROIN, H.

COHOON, G.A.
1974: Report on Project 69, Belore Option, Moss Township, Dome Exploration Ltd.

COMINCO LIMITED

DUMOUCHEL, J. and FLEGG, D.

GIBLIN, P.E.

HARRIS, F.R.

KUEHNBAUM, R.M.

LEBBEL, J.L.
1986: Report on Geophysical Surveys, Powell Lake Area, Thunder Bay Mining Division for Gunflint Resources Ltd.

NORANDA EXPLORATIONS LTD.

SUCHANEK, C.
1985: Geology and Geochemistry, Grande Portage Property, Powell Lake Area, District of Thunder Bay.
SUINDEN, H.S.

TANTON, T.L.
1938: Zuetico Sheet (East Half), Thunder Bay, Rainy River Districts, Ontario, OGS Map 432A.
APPENDIX I

ANALYTICAL RESULTS
GEOCHEMICAL ANALYTICAL REPORT

CLIENT: DREQUEST CONSULTANTS LIMITED
ADDRESS: 404 - 595 Howe Street
 : Vancouver, B.C.
 : VGC 2T5

DATE: Dec 30 1986
REPORT#: 860756 GA
JOB#: 860756

REPORT##: JVS - GP
SAMPLES ARRIVED: Dec 22 1986
REPORT COMPLETED: Dec 30 1986
ANALYSED FOR: Cu Zn Ag As Au (FA/AAS)
TOTAL SAMPLES: 74
SAMPLE TYPE: 74 ROCK
REJECTS: SAVED

SAMPLES FROM: B. BARNES
COPY SENT TO: B. BARNES

PREPARED FOR: MR. IAN CAMPBELL

ANALYSED BY: VGC Staff
SIGNED: [Signature]

GENERAL REMARK: None
<table>
<thead>
<tr>
<th>SAMPLE</th>
<th>Cu</th>
<th>Zn</th>
<th>Ag</th>
<th>As</th>
<th>Au</th>
</tr>
</thead>
<tbody>
<tr>
<td>ppm</td>
<td>ppm</td>
<td>ppm</td>
<td>ppm</td>
<td>ppm</td>
<td>dob</td>
</tr>
<tr>
<td>4007</td>
<td>45</td>
<td>89</td>
<td>.4</td>
<td>2</td>
<td>nd</td>
</tr>
<tr>
<td>4008</td>
<td>65</td>
<td>177</td>
<td>.2</td>
<td>2</td>
<td>15</td>
</tr>
<tr>
<td>4009</td>
<td>71</td>
<td>82</td>
<td>1.0</td>
<td>4</td>
<td>nd</td>
</tr>
<tr>
<td>4010</td>
<td>48</td>
<td>122</td>
<td>.2</td>
<td>2</td>
<td>nd</td>
</tr>
<tr>
<td>4011</td>
<td>85</td>
<td>185</td>
<td>.6</td>
<td>2</td>
<td>40</td>
</tr>
<tr>
<td>4012</td>
<td>48</td>
<td>115</td>
<td>.2</td>
<td>30</td>
<td>10</td>
</tr>
<tr>
<td>4013</td>
<td>38</td>
<td>77</td>
<td>.2</td>
<td>10</td>
<td>nd</td>
</tr>
<tr>
<td>4014</td>
<td>46</td>
<td>95</td>
<td>.8</td>
<td>2</td>
<td>70</td>
</tr>
<tr>
<td>4015</td>
<td>49</td>
<td>60</td>
<td>.2</td>
<td>2</td>
<td>10</td>
</tr>
<tr>
<td>4016</td>
<td>60</td>
<td>71</td>
<td>.8</td>
<td>2</td>
<td>nd</td>
</tr>
<tr>
<td>4017</td>
<td>187</td>
<td>75</td>
<td>.6</td>
<td>2</td>
<td>90</td>
</tr>
<tr>
<td>4018</td>
<td>175</td>
<td>32</td>
<td>.8</td>
<td>nd</td>
<td>200</td>
</tr>
<tr>
<td>4019</td>
<td>200</td>
<td>68</td>
<td>3.2</td>
<td>nd</td>
<td>4800</td>
</tr>
<tr>
<td>4020</td>
<td>111</td>
<td>36</td>
<td>1.0</td>
<td>nd</td>
<td>480</td>
</tr>
<tr>
<td>4021</td>
<td>145</td>
<td>51</td>
<td>1.0</td>
<td>nd</td>
<td>600</td>
</tr>
<tr>
<td>4022</td>
<td>170</td>
<td>49</td>
<td>2.0</td>
<td>nd</td>
<td>3600</td>
</tr>
<tr>
<td>4023</td>
<td>33</td>
<td>40</td>
<td>.6</td>
<td>4</td>
<td>210</td>
</tr>
<tr>
<td>4024</td>
<td>61</td>
<td>68</td>
<td>.4</td>
<td>nd</td>
<td>190</td>
</tr>
<tr>
<td>4025</td>
<td>15</td>
<td>76</td>
<td>.2</td>
<td>2</td>
<td>150</td>
</tr>
<tr>
<td>4026</td>
<td>11</td>
<td>65</td>
<td>nd</td>
<td>6</td>
<td>20</td>
</tr>
<tr>
<td>4027</td>
<td>18</td>
<td>53</td>
<td>.4</td>
<td>2</td>
<td>nd</td>
</tr>
<tr>
<td>4028</td>
<td>15</td>
<td>69</td>
<td>.4</td>
<td>4</td>
<td>nd</td>
</tr>
<tr>
<td>4029</td>
<td>27</td>
<td>180</td>
<td>.2</td>
<td>25</td>
<td>10</td>
</tr>
<tr>
<td>4030</td>
<td>70</td>
<td>43</td>
<td>.4</td>
<td>4</td>
<td>45</td>
</tr>
<tr>
<td>4031</td>
<td>15</td>
<td>71</td>
<td>.4</td>
<td>2</td>
<td>nd</td>
</tr>
<tr>
<td>4032</td>
<td>145</td>
<td>34</td>
<td>.2</td>
<td>2</td>
<td>140</td>
</tr>
<tr>
<td>4033</td>
<td>66</td>
<td>20</td>
<td>.2</td>
<td>nd</td>
<td>nd</td>
</tr>
<tr>
<td>4034</td>
<td>60</td>
<td>26</td>
<td>.4</td>
<td>nd</td>
<td>nd</td>
</tr>
<tr>
<td>4035</td>
<td>70</td>
<td>24</td>
<td>.2</td>
<td>nd</td>
<td>nd</td>
</tr>
<tr>
<td>4036</td>
<td>111</td>
<td>22</td>
<td>.2</td>
<td>nd</td>
<td>10</td>
</tr>
<tr>
<td>4037</td>
<td>112</td>
<td>15</td>
<td>.4</td>
<td>nd</td>
<td>nd</td>
</tr>
<tr>
<td>4038</td>
<td>800</td>
<td>14</td>
<td>.4</td>
<td>nd</td>
<td>130</td>
</tr>
<tr>
<td>4039</td>
<td>102</td>
<td>21</td>
<td>nd</td>
<td>nd</td>
<td>nd</td>
</tr>
<tr>
<td>4040</td>
<td>310</td>
<td>36</td>
<td>.4</td>
<td>nd</td>
<td>60</td>
</tr>
<tr>
<td>4041</td>
<td>316</td>
<td>57</td>
<td>.4</td>
<td>nd</td>
<td>nd</td>
</tr>
<tr>
<td>4042</td>
<td>700</td>
<td>70</td>
<td>1.0</td>
<td>2</td>
<td>15</td>
</tr>
<tr>
<td>4043</td>
<td>500</td>
<td>135</td>
<td>.6</td>
<td>nd</td>
<td>5</td>
</tr>
<tr>
<td>4044</td>
<td>850</td>
<td>115</td>
<td>1.0</td>
<td>nd</td>
<td>40</td>
</tr>
<tr>
<td>4045</td>
<td>60</td>
<td>20</td>
<td>.4</td>
<td>2</td>
<td>nd</td>
</tr>
</tbody>
</table>

DETECTION LIMIT: $1 = 1$ $0.1 = 2$ $5 = 5$

- nd = none detected
- -- = not analysed
- * = insufficient sample
<table>
<thead>
<tr>
<th>SAMPLE #</th>
<th>Cu (ppm)</th>
<th>Zn (ppm)</th>
<th>Ag (ppm)</th>
<th>As (ppm)</th>
<th>Au (ppb)</th>
</tr>
</thead>
<tbody>
<tr>
<td>4846</td>
<td>100</td>
<td>33</td>
<td>nd</td>
<td>2</td>
<td>nd</td>
</tr>
<tr>
<td>4847</td>
<td>76</td>
<td>30</td>
<td>.2</td>
<td>nd</td>
<td>100</td>
</tr>
<tr>
<td>4362</td>
<td>2</td>
<td>21</td>
<td>nd</td>
<td>nd</td>
<td>nd</td>
</tr>
<tr>
<td>4363</td>
<td>31</td>
<td>98</td>
<td>.2</td>
<td>nd</td>
<td>10</td>
</tr>
<tr>
<td>4374</td>
<td>24</td>
<td>304</td>
<td>.4</td>
<td>nd</td>
<td>220<</td>
</tr>
<tr>
<td>4375</td>
<td>35</td>
<td>142</td>
<td>.4</td>
<td>nd</td>
<td>148<</td>
</tr>
<tr>
<td>4376</td>
<td>174</td>
<td>59</td>
<td>1.2</td>
<td>nd</td>
<td>368<</td>
</tr>
<tr>
<td>4377</td>
<td>368</td>
<td>55</td>
<td>2.8</td>
<td>2</td>
<td>650<</td>
</tr>
<tr>
<td>4378</td>
<td>82</td>
<td>86</td>
<td>nd</td>
<td>nd</td>
<td>160<</td>
</tr>
<tr>
<td>4379</td>
<td>70</td>
<td>10</td>
<td>nd</td>
<td>nd</td>
<td>40<</td>
</tr>
<tr>
<td>4380</td>
<td>25</td>
<td>20</td>
<td>nd</td>
<td>nd</td>
<td>40<</td>
</tr>
<tr>
<td>4381</td>
<td>10</td>
<td>38</td>
<td>nd</td>
<td>nd</td>
<td>nd</td>
</tr>
<tr>
<td>4382</td>
<td>120</td>
<td>14</td>
<td>nd</td>
<td>nd</td>
<td>nd</td>
</tr>
<tr>
<td>4383</td>
<td>74</td>
<td>120</td>
<td>.2</td>
<td>4</td>
<td>nd</td>
</tr>
<tr>
<td>4384</td>
<td>224</td>
<td>138</td>
<td>.8</td>
<td>nd</td>
<td>80<</td>
</tr>
<tr>
<td>4385</td>
<td>25</td>
<td>182</td>
<td>nd</td>
<td>nd</td>
<td>nd</td>
</tr>
<tr>
<td>4386</td>
<td>34</td>
<td>196</td>
<td>nd</td>
<td>nd</td>
<td>20<</td>
</tr>
<tr>
<td>4387</td>
<td>78</td>
<td>150</td>
<td>nd</td>
<td>nd</td>
<td>2<</td>
</tr>
<tr>
<td>4388</td>
<td>68</td>
<td>48</td>
<td>nd</td>
<td>nd</td>
<td>25<</td>
</tr>
<tr>
<td>4389</td>
<td>65</td>
<td>184</td>
<td>nd</td>
<td>nd</td>
<td>nd</td>
</tr>
<tr>
<td>4390</td>
<td>47</td>
<td>125</td>
<td>nd</td>
<td>nd</td>
<td>10<</td>
</tr>
<tr>
<td>4391</td>
<td>73</td>
<td>140</td>
<td>nd</td>
<td>nd</td>
<td>nd</td>
</tr>
<tr>
<td>4392</td>
<td>80</td>
<td>139</td>
<td>nd</td>
<td>nd</td>
<td>nd</td>
</tr>
<tr>
<td>4393</td>
<td>41</td>
<td>120</td>
<td>nd</td>
<td>nd</td>
<td>2<</td>
</tr>
<tr>
<td>4394</td>
<td>64</td>
<td>121</td>
<td>nd</td>
<td>nd</td>
<td>nd</td>
</tr>
<tr>
<td>4395</td>
<td>41</td>
<td>85</td>
<td>nd</td>
<td>nd</td>
<td>2<</td>
</tr>
<tr>
<td>4396</td>
<td>35</td>
<td>134</td>
<td>nd</td>
<td>nd</td>
<td>2<</td>
</tr>
<tr>
<td>4397</td>
<td>36</td>
<td>139</td>
<td>nd</td>
<td>nd</td>
<td>5<</td>
</tr>
<tr>
<td>4398</td>
<td>53</td>
<td>91</td>
<td>nd</td>
<td>nd</td>
<td>nd</td>
</tr>
<tr>
<td>4399</td>
<td>46</td>
<td>110</td>
<td>nd</td>
<td>nd</td>
<td>nd</td>
</tr>
<tr>
<td>4400</td>
<td>38</td>
<td>75</td>
<td>nd</td>
<td>nd</td>
<td>2<</td>
</tr>
<tr>
<td>9938</td>
<td>19</td>
<td>49</td>
<td>nd</td>
<td>nd</td>
<td>15<</td>
</tr>
<tr>
<td>9931</td>
<td>26</td>
<td>100</td>
<td>.4</td>
<td>2</td>
<td>100<</td>
</tr>
<tr>
<td>9932</td>
<td>56</td>
<td>98</td>
<td>nd</td>
<td>nd</td>
<td>140<</td>
</tr>
<tr>
<td>9933</td>
<td>46</td>
<td>95</td>
<td>nd</td>
<td>4</td>
<td>nd</td>
</tr>
</tbody>
</table>

DETECTION LIMIT: 1 1 0.1 2 5
nd = none detected -- = not analysed is = insufficient sample
GEOCHEMICAL ANALYTICAL REPORT

CLIENT: OREQUEST CONSULTANTS LTD.
ADDRESS: 404 - 595 Howe Street
: Vancouver, B.C.
 : V6C 2T5

PROJECT#: JVS-GP
SAMPLES ARRIVED: Jan 14 1987
REPORT COMPLETED: Jan 15 1987
ANALYSED FOR: Cu Au (FA/AAS)

SAMPLES FROM: VGC FILES (see remarks)
COPY SENT TO: OREQUEST CONSULTANTS LTD.

DATE: Jan 15 1987
REPORT#: 870032 GA
JOB#: 870032
INVOICE#: 870032 NA
TOTAL SAMPLES: 4
SAMPLE TYPE: 4 ROCK PULP
REJECTS: SAVED

PREPARED FOR: MR. GEORGE CAVEY

ANALYSED BY: VGC Staff
SIGNED: ____________

GENERAL REMARK: Samples from 860756 & 860713
<table>
<thead>
<tr>
<th>SAMPLE</th>
<th>Cu</th>
<th>Au</th>
</tr>
</thead>
<tbody>
<tr>
<td>4838</td>
<td>610</td>
<td>120</td>
</tr>
<tr>
<td>4368</td>
<td>--</td>
<td>765</td>
</tr>
<tr>
<td>4369</td>
<td>--</td>
<td>810</td>
</tr>
<tr>
<td>4377</td>
<td>--</td>
<td>650</td>
</tr>
</tbody>
</table>

Wolf River
\[Grand Portage \]

DETECTION LIMIT

- nd = none detected
- -- = not analysed
- is = insufficient sample
APPENDIX II

IP SURVEY PSEUDOSECTIONS
IP SURVEY

LINE 4+00W

WOLF RIVER RES. LTD.

POWELL LAKE AREA, THUNDER BAY MIN. DIV, ONT.

OREQUEST

FEB. 1987

LEGEND

- **Tx**: Phoenix IPT-1
- **Rx**: EDA IP-1
- **Huntec M IV**
- **Array**: Dipole-Dipole
- **Electrode spacing**: 25 m
- **Chargeability anomaly** (moderate, strong)

Graphical Details

- **Ec (ohm-m)**
- **Ma (msec)**
LEGEND

- Tx: Phoenix IPT-1
- Rx: EDA IP-1
- Huntex M IV

Array: Dipole-Dipole
Electrode spacing: 25 m

- Chargeability anomaly (moderate, strong)

IP SURVEY

LINE 0+00

WOLF RIVER RES. LTD.

POWELL LAKE AREA, THUNDER BAY MIN. DIV., ONT.

ORIEQUEST

FEB. 1987
LEGEND
Tx: Phoenix IPT-1
Rx: EDA IP-1
Huntec M IV
Array: Dipole-Dipole
Electrode spacing: 25 m

Chargeability anomaly
(moderate, strong)

IP SURVEY
LINE 2+00E
WOLF RIVER RES. LTD.
POWELL LAKE AREA, THUNDER BAY MIN. DIV., ONT.
OREQUEST
FEB 1987
LEGEND

Tx: Phoenix IPT-1
Rx: EDA IP-1
Huntec M IV

Array: Dipole-Dipole
Electrode spacing: 25 m

- Chargeability anomaly
 (moderate, strong)

IP SURVEY
LINE 4+00 E

WOLF RIVER RES. LTD.
POWELL LAKE AREA, THUNDER BAY MIN. DIV, ONT.
IP SURVEY
LINE 6 +00E

WOLF RIVER RES. LTD.
POWELL LAKE AREA, THUNDER BAY MIN. DIV., ONT.

LEGEND
Tx: Phoenix IPT-1
Rx: EDA IP-1
Huntec M IV
Array: Dipole-Dipole
Electrode spacing: 25 m

Chargeability anomaly
(moderate, strong)
LEGEND

Tx: Phoenix IPT-1
Rx: EDA IP-1
Huntec M IV

Array: Dipole-Dipole
Electrode spacing: 25 m

Chargeability anomaly
(moderate, strong)

IP SURVEY
LINE 8+00E
WOLF RIVER RES. LTD.
POWELL LAKE AREA, THUNDER BAY MIN. DIV., ONT.
FEB. 1987
Report of Work

(geophysical, geological, geochemical and expenditures)

Ministry of Northern Development

and Mines (Geophysical, Geological, Geochemical and Expenditures)

W70400065

Type of Survey: Trenching

Claim Holder(s):

WOLF RIVER RESOURCES LTD

Address: 401-595 40-1 ST VANCOUVER B.C.

Survey Company: QREOEST CONSULTANTS LTD

Date of Survey: (from & to)

Total Miles of Line C.:

Name and Address of Author of Geo-Technical Report:

IAN CAMPBELL - 401-595 40-1 ST VANCOUVER B.C.

Credits Requested per Each Claim in Columns at right

<table>
<thead>
<tr>
<th>Mining Claim</th>
<th>Expent Days Cr.</th>
<th>Prefix</th>
<th>Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>78</td>
<td>673949</td>
<td>6</td>
<td>685327</td>
</tr>
<tr>
<td></td>
<td>685336</td>
<td>6</td>
<td></td>
</tr>
</tbody>
</table>

Man Days

<table>
<thead>
<tr>
<th>Geophysical</th>
<th>Days per Claim</th>
<th>Geochemical</th>
</tr>
</thead>
<tbody>
<tr>
<td>Electromagnetic</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Magnetometer</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Radiometric</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Other</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Geological</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Geochemical</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Expenditures (excludes power stripping)

For Office Use Only

Total Days Credits:

Instructions: Total Days Credits may be apportioned to the claim holder's choice. Enter number of days credits per claim selected in columns at right.

Certification Verifying Report of Work

I hereby certify that I have a personal and intimate knowledge of the facts set forth in the Report of Work annexed hereto and have performed the work as witnessed same during and or after its completion and the annexed report is true.

SIGNED FOR AND STAMPED AT:

IAN CAMPBELL - QREOEST CONSULTANTS LTD 401-595 W6-1 VANCOUVER B.C.