42C/14NW-0012

LOAD: 16 MM
35 MM

2.6535
42C/14NW-0012

LOAD: 16 MM
35 MM

2.6535
Approved Reports of Work sent out

Notice of Intent filed

Approval after Notice of Intent sent out

Duplicate sent to Resident Geologist

Duplicate sent to A.F.R.O.
WORK REPORT
FOR
GOLDEN RULE RESOURCES LTD.
BULLDOZER LAKE PROPERTY
HEMLO AREA
SAULT STE. MARIE MINING DIVISION
NTS. 42C/14 42F/3

Prepared by:
JENS E. HANSEN, P.Eng.
Geotest Corporation
Nepean, Ontario
March 15, 1984
Project: 60-095

RECEIVED
MAR 22 1984
MINING LANDS SECTION
INDEX

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>I. INTRODUCTION</td>
<td>1</td>
</tr>
<tr>
<td>II. LOCATION AND ACCESS</td>
<td>2</td>
</tr>
<tr>
<td>III. PREVIOUS EXPLORATION</td>
<td>3</td>
</tr>
<tr>
<td>IV. GEOLOGY</td>
<td>3</td>
</tr>
<tr>
<td>V. DISCUSSION OF RESULTS</td>
<td>4</td>
</tr>
<tr>
<td>VI CONCLUSIONS AND RECOMMENDATIONS</td>
<td>6</td>
</tr>
<tr>
<td>BIBLIOGRAPHY</td>
<td></td>
</tr>
<tr>
<td>DECLARATION</td>
<td></td>
</tr>
<tr>
<td>FIGURE I - CLAIM MAP</td>
<td></td>
</tr>
<tr>
<td>FIGURE II - LOCATION MAF</td>
<td></td>
</tr>
<tr>
<td>FIGURE III - REDUCED INTERPRETATION MAP</td>
<td></td>
</tr>
<tr>
<td>FIGURE IV - REDUCED AEROMAGNETIC MAP</td>
<td></td>
</tr>
<tr>
<td>APPENDIX A - DIGIEM REPORT RELATING TO THE GOLDEN RULE PROPERTY</td>
<td></td>
</tr>
</tbody>
</table>

MAPS

- 1 Total Field Magnetics 1:15,000
- 1 Electromagnetic Anomalies 1:15,000
- 1 Filtered Total VLF EM Field 1:15,000
- 1 Resistivity 1:15,000
- 1 Enhanced Magnetics 1:15,000
Golden Rule Resources Ltd. has acquired a 179 claim gold prospect in the Hemlo area known as the Bulldozer Lake property.

The Hemlo deposits are hosted by altered and sheared volcanic and related sedimentary rocks of early Precambrian age. There is evidence that a similar geological environment occurs on the Bulldozer property. Sulphide minerals accompany the gold mineralization and this could lend this type of deposit amenable to geophysical prospecting.

According to assessment records, it appears that the region has never been prospected in detail but the available geology and geophysics suggest the presence of metasediments in contact with volcanics.

The Bulldozer project covers a metasedimentary unit which is one of those units located closest to Hemlo being 40 kilometres north east of the deposits. The project is also approximately 40 kilometres southeast of Manitouwadge.

The geophysical survey mapped and defined contact between mafic rocks and mapped sedimentary rocks. Two target areas have been recommended for surface exploration.
11. LOCATION AND ACCESS

The location of the Golden Rule property is shown on FIGURE I which is a copy of a portion of claim maps M-3 and G-579.

A listing of the claims and the staking dates are attached.

The property can be reached by a gravel road 30 kilometres north of Highway 17. The turnoff from Highway 17 is close to the Moberg road. This road deteriorates before reaching the property but it is easily passable by skidoo in winter.
III. PREVIOUS EXPLORATION

According to the writer's research, there is no evidence of any previous exploration over the specific area covered by the claim group.

IV. GEOLOGY

The general geology of the Hemlo area is shown on Map 2220 "Manitouwadge - Wawa sheet". A portion of the area covered by the Bulldozer project has been left blank on the geology map, presumably due to a lack of outcrop. The remainder of the property consists of metasedimentary rocks possibly of the type in which gold mineralization occurs some 40 kilometres to the southwest at Hemlo.

The aeromagnetic maps show a contour pattern, in the unmapped area, similar to the typical pattern caused by volcanics or metavolcanics hence it is possible that the metasedimentary rocks are in contact with metavolcanics which could present the possibility of discovering gold mineralization.

Map 5094 White River, NOEGTS Data Base Map indicates that the surface geology is characterized by glaciofluvial material.
The Bulldozer project was generated as a result of the discovery of gold deposits at Hemlo some 40 kilometres to the southwest. These deposits occur in metavolcanic rocks in contact with metasedimentary rocks.

Geological Map 2220 shows a large area of metavolcanics located adjacent to a region where there is a lack of outcrop and the rocks are not identified. The regional GSC aeromagnetics suggest that a portion of the unmapped area is underlain by volcanic rocks.

The detailed aeromagnetic survey was flown to map the contacts of volcanics with metasediments to map significant structure within the various units and to locate conductors which may be caused by massive sulphides or shears.

The anomalous situations are recommended for followup to determine if there is gold mineralization in the environment.

The aeromagnetic interpretation map is enclosed in this report, it has been photoreduced along with aeromagnetic contour map and form FIGURES 3 and 4 of this report.

With the exception of the northeastern quarter of the property, there appears to be no outcrop within the area. A very definite contact between mapped metasediments and volcanics is noted extending from the northwestern corner of the property in a southeasterly direction (135°) to the eastern boundary. The magnetic unit has a geophysical signature more typical of intrusive mafic rocks than of mafic metavolcanic rocks. The mafic unit is broken by a parallel series of northeasterly (045°) faults.
The magnetic rock unit which has a less magnetic core, is truncated on the east and southeast by acidic rocks.

The induction electromagnetics (Dighem 3, frequency EM) reveal a number of anomalies which are described in the APPENDIX A to this report. Dighem suggests that some of these responses may have a bedrock origin, however there is sufficient ambiguity in all of the anomalies to suggest that there are probably few or no typical massive sulphide targets within the project area. Massive sulphide type anomalies were not present over the Hemlo deposits hence the EM data is not necessarily significant.

The map of VLF EM conductors (FIG V) shows a number of conductors. While some of these coincide with lakes a number of them are long, narrow features suggestive of the type of anomaly that could be caused by shears or faults. Two trends of conductors are noted namely east-west and northwest-southeast.

The VLF data in the northern half of the property is considered more reliable than the same data in the southern half because conductive overburden is more widespread in the south.
VI. CONCLUSIONS AND RECOMMENDATIONS

The prime area for ground followup would appear to be the region of the contact between interpreted mafic volcanics and mapped meta-sediments in the northeastern quarter of the property. The central and eastern portions of this contact, where 4 or 5 interpreted faults cross the unit could be of interest.

Geophysics such as induced polarization and magnetics would be useful to map structure and detect disseminated sulphides if present. Prior to undertaking a geophysical program, surface geology and geo-chemical sampling is recommended. A detailed ground check in the target area may reveal float or possible anomalous indications of mineralization.

A second area of interest would be the extreme southern portion of the area, near the contact between felsic and mafic rocks also covering the area of Dighem anomalies 213A-215XA.

Since very little is known of the geology of this area, it may be desirable to drill a hole within the target areas quite early in the exploration program. Reverse circulation drilling may be appropriate.

There may be other locations of interest within the area but since so little is known of the geology it is desirable to start at specific locations and work out from there if the results are encouraging.

Respectfully submitted,

JENS E. HANSEN, P.Eng.
March 15, 1984
DECLARATION

I, Jens Eskelund Hansen of the City of Nepean, in the Municipality of Ottawa-Carleton do hereby declare:

1. That I am a consulting geophysicist residing at 19 Nesbitt Street, Nepean, Ontario K2H 8C4.

2. That I am a graduate of Engineering Physics of Queen's University, Kingston, Ontario in 1964 and have been continuously engaged as a practicing geophysicist since that time, and I am a Registered Professional Engineer in the Province of Ontario.

3. That the foregoing report is based on personal supervision and examination of the airborne data discussed in the report.

JENS E. HANSEN, P.Eng.
Consulting Geophysicist

Nepean, Ontario
BIBLIOGRAPHY

MAPS

MAP 2220 - Geological Compilation Series - Manitouwadge - Wawa sheet
Scale 1" = 4 miles.

MAP 5094 - NOEGTS Data Base Map - White River
Scale 1:100,000.

MAPS 2179G, 2180G - Geological Survey of Canada
Geophysical Series (Aeromagnetic)
Scale 1" = 1 mile.

MAPS 42 C/14, 42 F/3 - Department of Energy Mines and Resources
Topographical Maps
Scale 1:50,000

MAP P494 - Geological Compilation Series
Scale 1" = 2 miles.

REPORTS

Department of Industrial Development, CPR.

APPENDIX A

DIGHEM REPORT
RELATING TO THE
GOLDEN RULE
BULLDOZER LAKE
PROPERTY
DIGHEM III SURVEY

OF THE

MOLSON LAKE EAST AND WEST,
SHABOTIK RIVER, AND LORNA LAKE AREAS,
ONTARIO

FOR

GEOTEST CORPORATION

BY

DIGHEM LIMITED

Toronto, Ontario
January 31, 1984
SUMMARY AND RECOMMENDATIONS

A total of 464 km of electromagnetic/resistivity/magnetic/VLF-EM surveys were flown in December 1983, over four blocks southeast of Hemlo, Ontario.

The surveys outlined several conductors which are associated with areas of low resistivity and high VLF-EM activity, and in some cases with correlating magnetic anomalies. Most of the resistivity, VLF-EM, and magnetic features are believed to reflect geologic structures of possible exploration interest. These features, together with some EM anomalies, may warrant further investigation using appropriate surface methods and techniques.
CONTENTS

INTRODUCTION ... 1

SECTION I: SURVEY RESULTS ... I- 1

CONDUCTORS IN THE SURVEY AREA ... I- 1

Molson Lake, West ... I- 6 Not included
Molson Lake, East ... I- 7 Not included
Shabotik River ... I- 8 Included
Lorna Lake ... I- 9 Not included

SECTION II: BACKGROUND INFORMATION .. II- 1 Not included

ELECTROMAGNETICS ... II- 1

Geometric interpretation ... II- 2
Discrete conductor analysis ... II- 2
X-type electromagnetic responses II-10
The thickness parameter .. II-11
Resistivity mapping ... II-12
Interpretation in conductive environments II-16
Reduction of geologic noise ... II-18
EM magnetite mapping .. II-19
Recognition of culture .. II-21

TOTAL FIELD MAGNETICS .. II-24

VLF-EM ... II-27

MAPS ACCOMPANYING THIS REPORT

APPENDICES

A. The Flight Record and Path Recovery

B. EM Anomaly List

AA 2D-187
INTRODUCTION

DIGHEMIII surveys totalling 464 line-km were flown with 150 m line-spacing for Geotest Corporation, from December 1 to 3, 1983, in four areas south to southeast of Hemlo, Ontario (Figure 1).

The Astar CG-NSM turbine helicopter flew at an average airspeed of 131 km/h with an EM bird height of approximately 39 m. Ancillary equipment consisted of a Sonotek PMH 5010 magnetometer with its bird at an average height of 54 m, a Sperry radio altimeter, a Geocam sequence camera, an RMS GR33 analog recorder, a Sonotek SDS 1200 digital data acquisition system, a DigiData 1640 9-track 800-bpi magnetic tape recorder, and a Herz Industries Totem-2A VLF-electromagnetometer with its sensor towed at an average height of 62 m. The VLF-EM receivers were tuned to NAA Cutler, Maine, which operates at 17.8 kHz, and to NLK Seattle, Washington, which operated at 24.8 kHz. The analog equipment recorded four channels of EM data at approximately 900 Hz, two channels of EM data at approximately 7,200 Hz, two ambient EM noise channels (for the coaxial and coplanar receivers), two channels of magnetics (coarse and fine count), a channel of radio altitude, and four channels of VLF-EM (the total field and the quadrature of the vertical component for two stations). The digital equipment recorded
the EM data with a sensitivity of 0.20 ppm at 900 Hz, and 0.40 ppm at 7,200 Hz, the magnetic field to one nT (i.e., one gamma), and the VLF-EM field to 0.10 percent.

Appendix A provides details on the data channels, their respective sensitivities, and the flight path recovery procedure. Noise levels of less than 2 ppm are generally maintained for wind speeds up to 35 km/h. Higher winds may cause the system to be grounded because excessive bird swinging produces difficulties in flying the helicopter. The swinging results from the 5 m² of area which is presented by the bird to broadside gusts. The DIGHEM system nevertheless can be flown under wind conditions that seriously degrade other AEM systems.

It should be noted that the anomalies shown on the electromagnetic anomaly map are based on a near-vertical, half plane model. This model best reflects "discrete" bedrock conductors. Wide bedrock conductors or flat-lying conductive units, whether from surficial or bedrock sources, may give rise to very broad anomalous responses on the EM profiles. These may not appear on the electromagnetic anomaly map if they have a regional character rather than a locally anomalous character. These broad conductors, which more closely approximate a half space model, will be maximum
coupled to the horizontal (coplanar) coil-pair and are clearly evident on the resistivity map. The resistivity map, therefore, may be more valuable than the electromagnetic anomaly map, in areas where broad or flat-lying conductors are considered to be of importance.

In areas where magnetite causes the inphase components to become negative, the apparent conductance and depth of EM anomalies may be unreliable.

Areas where EM responses are evident only on the quadrature components, indicate zones of poor conductivity. Where these responses are coincident with strong magnetic anomalies, it is possible that the inphase component amplitudes have been suppressed by the effects of magnetite. Most of these poorly-conductive magnetic features give rise to resistivity anomalies which are only slightly below background. These weak features are evident on the resistivity map but may not be shown on the electromagnetic anomaly map. If it is expected that poorly-conductive sulphides may be associated with magnetite-rich units, some of these weakly anomalous features may be of interest.

AA ZD-187
SECTION I: SURVEY RESULTS

CONDUCTORS IN THE SURVEY AREA

The survey covered four grids with 464 km of flying, the results of which are shown on four separate map sheets. Tables I-1 to I-4 summarize the EM responses on the four sheets with respect to conductance grade and interpretation.

The line spacing, line direction, and distances flown over the four areas are shown below:

<table>
<thead>
<tr>
<th>Area</th>
<th>Line No.</th>
<th>Line Spacing</th>
<th>Line Direction</th>
<th>km</th>
</tr>
</thead>
<tbody>
<tr>
<td>Molson Lake, West</td>
<td>1-23</td>
<td>150 m</td>
<td>N-S</td>
<td>88</td>
</tr>
<tr>
<td>Molson Lake, East</td>
<td>101-112</td>
<td>150 m</td>
<td>N-S</td>
<td>28</td>
</tr>
<tr>
<td>Shabotik River</td>
<td>201-236</td>
<td>150 m</td>
<td>N-S</td>
<td>273</td>
</tr>
<tr>
<td>Lorna Lake</td>
<td>301-327</td>
<td>150 m</td>
<td>N-S</td>
<td>75</td>
</tr>
<tr>
<td>TOTAL</td>
<td></td>
<td></td>
<td></td>
<td>464</td>
</tr>
</tbody>
</table>

The electromagnetic anomaly maps show the anomaly locations with the interpreted conductor shape, dip, conductance and depth being indicated by symbols. Direct magnetic correlation is also shown if it exists. The strike direction and length of the conductors are indicated when anomalies can be correlated from line to line.
TABLE I-3

196 SHABOTIK

<table>
<thead>
<tr>
<th>CONDUCTOR GRADE</th>
<th>CONDUCTANCE RANGE</th>
<th>NUMBER OF RESPONSES</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>> 99 MHOS</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>50-99 MHOS</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>20-49 MHOS</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>10-19 MHOS</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>5-9 MHOS</td>
<td>3</td>
</tr>
<tr>
<td>1</td>
<td>< 5 MHOS</td>
<td>148</td>
</tr>
<tr>
<td>X</td>
<td>INDETERMINATE</td>
<td>27</td>
</tr>
<tr>
<td>TOTAL</td>
<td></td>
<td>179</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CONDUCTOR MODEL</th>
<th>MOST LIKELY SOURCE</th>
<th>NUMBER OF RESPONSES</th>
</tr>
</thead>
<tbody>
<tr>
<td>B</td>
<td>DISCRETE BEDROCK CONDUCTOR</td>
<td>15</td>
</tr>
<tr>
<td>S</td>
<td>CONDUCTIVE COVER</td>
<td>82</td>
</tr>
<tr>
<td>H</td>
<td>ROCK UNIT OR THICK COVER</td>
<td>81</td>
</tr>
<tr>
<td>?</td>
<td>QUESTIONABLE</td>
<td>1</td>
</tr>
<tr>
<td>TOTAL</td>
<td></td>
<td>179</td>
</tr>
</tbody>
</table>

(SEE EM MAP LEGEND FOR EXPLANATIONS)
studying the map sheets for follow-up planning, consult the anomaly listings appended to this report to ensure that none of the conductors are overlooked.
Pages 1-2, 1-3, 1-5 and 1-7 of the Dighem report contain technical information on different properties, and this unrelated data is not included.

Shabotik River

Half of the survey area is weakly conductive due to surficial cover. The remaining half is very resistive.
Resistivities in the areas of cover vary from a low of 100 ohm-m to a more common value of 500 ohm-m. Rock resistivities generally are in excess of 8,000 ohm-m, as is the case for the Molson Lake and Lorna Lake areas.

EM anomalies 201C-206F appear to reflect a weak bedrock conductor. It probably extends eastward to 215C, but the response broadens, suggesting a rock unit may be the source of the conductivity.

Other possible bedrock conductors are 201F-203H, 204C, 204D, 206G, and 213A-215xA. The other anomalies with the interpretive symbol "H" reflect thicker conductive cover and, possibly, weak rock conductivity.

The VLF-EM contour patterns may define a number of faults. The magnetic patterns, while quite complex, appear on the enhanced map to identify some dikes striking northwestward. Some of the VLF-EM lineaments have a similar strike.
APPENDIX A

THE FLIGHT RECORD AND PATH RECOVERY

Both analog and digital flight records were produced. The analog profiles were recorded on chart paper in the aircraft during the survey. The digital profiles were generated later by computer and plotted on electrostatic chart paper at a scale of 1:15,000. The digital profiles are listed in Table A-1.

In Table A-1, the log resistivity scale of 0.03 decade/mm means that the resistivity changes by an order of magnitude in 33 mm. The resistivities at 0, 33, 67, 100 and 133 mm up from the bottom of the digital flight record are respectively 1, 10, 100, 1,000 and 10,000 ohm-m.

The fiducial marks on the flight records represent points on the ground which were recovered from camera film. Continuous photographic coverage allowed accurate photo-path recovery locations for the fiducials, which were then plotted on the geophysical maps to provide the track of the aircraft.

The fiducial locations on both the flight records and flight path maps were examined by a computer for unusual helicopter speed changes. Such speed changes may denote
an error in flight path recovery. The resulting flight path locations therefore reflect a more stringent checking than is provided by standard flight path recovery techniques.

Table A-1. The Digital Profiles

<table>
<thead>
<tr>
<th>Channel Name (Freq)</th>
<th>Observed parameters</th>
<th>Scale units/mm</th>
</tr>
</thead>
<tbody>
<tr>
<td>HAG</td>
<td>magnetics</td>
<td>10 nT</td>
</tr>
<tr>
<td>ALT</td>
<td>bird height</td>
<td>3 m</td>
</tr>
<tr>
<td>CXI (900 Hz)</td>
<td>vertical coaxial coil-pair inphase</td>
<td>1 ppm</td>
</tr>
<tr>
<td>CXQ (900 Hz)</td>
<td>vertical coaxial coil-pair quadrature</td>
<td>1 ppm</td>
</tr>
<tr>
<td>CXS (900 Hz)</td>
<td>ambient noise monitor (coaxial receiver)</td>
<td>1 ppm</td>
</tr>
<tr>
<td>CPI (900 Hz)</td>
<td>horizontal coplanar coil-pair inphase</td>
<td>1 ppm</td>
</tr>
<tr>
<td>CPQ (900 Hz)</td>
<td>horizontal coplanar coil-pair quadrature</td>
<td>1 ppm</td>
</tr>
<tr>
<td>CPS (900 Hz)</td>
<td>ambient noise monitor (coplanar receiver)</td>
<td>1 ppm</td>
</tr>
<tr>
<td>CPI (7200 Hz)</td>
<td>horizontal coplanar coil-pair inphase</td>
<td>1 ppm</td>
</tr>
<tr>
<td>CPQ (7200 Hz)</td>
<td>horizontal coplanar coil-pair quadrature</td>
<td>1 ppm</td>
</tr>
<tr>
<td>VLFT</td>
<td>VLF-EM total field</td>
<td>(Primary station)</td>
</tr>
<tr>
<td>VLFQ</td>
<td>VLF-EM vertical quadrature (Primary station)</td>
<td>1 ppm</td>
</tr>
<tr>
<td>VT2</td>
<td>VLF-EM total field</td>
<td>(Secondary station)</td>
</tr>
<tr>
<td>VQ2</td>
<td>VLF-EM vertical quadrature (Secondary station)</td>
<td>1 ppm</td>
</tr>
</tbody>
</table>

Computed Parameters

<table>
<thead>
<tr>
<th>Channel Name (Freq)</th>
<th>Observed parameters</th>
<th>Scale units/mm</th>
</tr>
</thead>
<tbody>
<tr>
<td>DIFI (900 Hz)</td>
<td>difference function inphase from CXI and CPI</td>
<td>1 ppm</td>
</tr>
<tr>
<td>DIFQ (900 Hz)</td>
<td>difference function quadrature from CXQ and CPQ</td>
<td>1 ppm</td>
</tr>
<tr>
<td>REC1</td>
<td>first anomaly recognition function</td>
<td>1 ppm</td>
</tr>
<tr>
<td>REC2</td>
<td>second anomaly recognition function</td>
<td>1 ppm</td>
</tr>
<tr>
<td>REC3</td>
<td>third anomaly recognition function</td>
<td>1 ppm</td>
</tr>
<tr>
<td>REC4</td>
<td>fourth anomaly recognition function</td>
<td>1 ppm</td>
</tr>
<tr>
<td>CDT</td>
<td>conductance</td>
<td>1 grade</td>
</tr>
<tr>
<td>RES (900 Hz)</td>
<td>log resistivity</td>
<td>.03 decade</td>
</tr>
<tr>
<td>RES (7200 Hz)</td>
<td>log resistivity</td>
<td>.03 decade</td>
</tr>
<tr>
<td>DP (900 Hz)</td>
<td>apparent depth</td>
<td>3 m</td>
</tr>
<tr>
<td>DP (7200 Hz)</td>
<td>apparent depth</td>
<td>3 m</td>
</tr>
<tr>
<td>FEOt (900 Hz)</td>
<td>apparent weight percent magnetite</td>
<td>0.25%</td>
</tr>
</tbody>
</table>
APPENDIX B

EM ANOMALY LIST
ESTIMATED DEPTH MAY BE UNRELIABLE BECAUSE THE STRONGER PART

OF THE CONDUCTOR MAY BE DEEPER OR TO ONE SIDE OF THE FLIGHT

LINE, OR BECAUSE OF A SHALLOW DIP OR OVERBURDEN EFFECTS.

<table>
<thead>
<tr>
<th>Coaxial</th>
<th>Co-planar</th>
<th>Co-planar</th>
<th>Vertical</th>
<th>Horizontal Conductive</th>
</tr>
</thead>
<tbody>
<tr>
<td>900 Hz</td>
<td>900 Hz</td>
<td>7200 Hz</td>
<td>Dike</td>
<td>Sheet Earth</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Anomaly/ Real Quad</th>
<th>Real Quad</th>
<th>Real Quad</th>
<th>Cond Depth</th>
<th>Cond Depth</th>
<th>Resist Depth</th>
</tr>
</thead>
<tbody>
<tr>
<td>PPM PPM PPM PPM PPM PPM</td>
<td>MHOS M MHOS M OHM-M</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

LINE 201 (Flight 4)

A	444 S	1	4	0	10	29	62	1	0	1	30	308	6
B	451 H	0	1	0	3	7	15	1	12	1	50	809	16
B'	482 B?	0	2	0	3	11	25	1	0	1	151	1035	0
C	483 H	0	10	0	21	61	125	1	0	1	37	206	5
D	521 H	0	27	1	55	255	142	1	0	1	0	291	0
E	524 H	0	18	0	35	188	75	9	0	1	21	31	10
F	543 B?	0	1	0	2	6	11	1	0	1	87	723	45

LINE 202 (Flight 4)

A	684 H	0	2	0	3	11	23	1	5	1	57	519	25
B	645 D?	0	3	0	3	11	20	1	0	1	147	1035	0
B'	638 H	0	4	0	10	28	50	1	0	1	50	310	0
C	630 H	0	2	0	3	13	26	1	0	1	42	610	11
D	593 H	6	31	18	80	282	47	2	0	1	12	92	0
G	585 H	0	11	0	20	95	99	1	0	1	25	110	11
H	569 B?	1	1	2	1	7	8	1	11	1	97	428	59

LINE 203 (Flight 4)

A	214 H	0	2	0	3	9	17	1	13	1	49	876	14
B	242 D?	1	2	1	2	14	20	1	4	1	59	401	28
C	249 H?	0	3	0	6	21	47	1	0	1	35	465	8
D	254 H	0	3	0	4	5	23	1	0	1	27	1906	0
E	278 H	3	12	10	42	169	41	2	0	1	19	107	0
F	280 H	3	11	11	39	169	122	4	0	2	26	10	17
G	288 H	2	2	4	3	25	25	1	0	1	44	179	19
H	298 B?	1	2	0	1	5	9	1	12	1	81	1300	34

LINE 204 (Flight 4)

A	191 H	0	3	0	4	10	27	1	11	1	53	711	22
B	153 B?	1	1	2	4	15	23	1	2	1	64	292	35
C	147 B?	1	4	1	9	30	50	1	9	1	52	183	30
D	127 B?	0	1	0	2	5	9	1	7	1	53	1331	10
E	106 H?	0	9	0	14	59	70	2	0	1	28	118	9
F	101 H?	1	10	3	19	101	46	6	0	1	25	24	13
G	89 H?	1	3	0	2	9	15	1	0	1	53	605	17

LINE 205 (Flight 3)

A	3677 H	1	3	0	5	13	33	1	0	1	31	752	1
C	3645 B?	1	2	0	6	15	40	1	0	1	29	625	0
D	3603 S	1	3	0	4	10	36	1	0	1	13	1008	0
E	3594 S	0	6	0	11	34	76	1	0	1	12	310	0
F	3588 S	0	3	0	4	7	37	1	0	1	9	1134	0
ANOMALY/ REAL QUAD REAL QUAD REAL QUAD . COND DEPTH*. COND DEPTH RESIS DEPTH

<table>
<thead>
<tr>
<th>LINE 206 (FLIGHT 3)</th>
<th>A 3473 H</th>
<th>2 2</th>
<th>0</th>
<th>4</th>
<th>10</th>
<th>13</th>
<th>1</th>
<th>29</th>
<th>1</th>
<th>29</th>
<th>801</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>C 3476 H</td>
<td>0 2</td>
<td>0</td>
<td>8</td>
<td>11</td>
<td>52</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>15</td>
<td>2165</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>F 3508 B?</td>
<td>0</td>
<td>4</td>
<td>0</td>
<td>6</td>
<td>12</td>
<td>48</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>28</td>
<td>889</td>
</tr>
<tr>
<td></td>
<td>G 3515 B?</td>
<td>0</td>
<td>2</td>
<td>1</td>
<td>6</td>
<td>14</td>
<td>38</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>32</td>
<td>681</td>
</tr>
<tr>
<td></td>
<td>H 3561 S</td>
<td>0</td>
<td>9</td>
<td>0</td>
<td>17</td>
<td>36</td>
<td>115</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>9</td>
<td>379</td>
</tr>
<tr>
<td></td>
<td>I 3570 S</td>
<td>0</td>
<td>3</td>
<td>0</td>
<td>4</td>
<td>10</td>
<td>41</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>6</td>
<td>1019</td>
</tr>
<tr>
<td>---------------------</td>
<td>---------</td>
<td>-----</td>
<td>---</td>
<td>---</td>
<td>----</td>
<td>----</td>
<td>---</td>
<td>-----</td>
<td>---</td>
<td>-----</td>
<td>-----</td>
<td>---</td>
</tr>
<tr>
<td>LINE 207 (FLIGHT 3)</td>
<td>A 3440 S?</td>
<td>0 1</td>
<td>0</td>
<td>3</td>
<td>4</td>
<td>25</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>20</td>
<td>2643</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>B 3409 H?</td>
<td>1 1</td>
<td>2</td>
<td>3</td>
<td>9</td>
<td>8</td>
<td>1</td>
<td>23</td>
<td>1</td>
<td>39</td>
<td>639</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td>C 3386 S</td>
<td>0 2</td>
<td>3</td>
<td>5</td>
<td>5</td>
<td>35</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>8</td>
<td>1865</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>D 3357 S</td>
<td>0 4</td>
<td>0</td>
<td>8</td>
<td>13</td>
<td>49</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>12</td>
<td>747</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>E 3354 S</td>
<td>0 3</td>
<td>0</td>
<td>3</td>
<td>6</td>
<td>16</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>14</td>
<td>564</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>F 3352 S</td>
<td>0 5</td>
<td>0</td>
<td>12</td>
<td>19</td>
<td>80</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>10</td>
<td>610</td>
<td>0</td>
</tr>
<tr>
<td>---------------------</td>
<td>---------</td>
<td>-----</td>
<td>---</td>
<td>---</td>
<td>----</td>
<td>----</td>
<td>---</td>
<td>-----</td>
<td>---</td>
<td>-----</td>
<td>-----</td>
<td>---</td>
</tr>
<tr>
<td>LINE 208 (FLIGHT 3)</td>
<td>A 3231 S</td>
<td>0 2</td>
<td>0</td>
<td>4</td>
<td>1</td>
<td>30</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>30</td>
<td>5328</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>C 3264 H</td>
<td>0 2</td>
<td>0</td>
<td>4</td>
<td>8</td>
<td>35</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>22</td>
<td>877</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>D 3318 S</td>
<td>0 8</td>
<td>1</td>
<td>11</td>
<td>25</td>
<td>80</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>37</td>
<td>765</td>
<td>0</td>
</tr>
<tr>
<td>---------------------</td>
<td>---------</td>
<td>-----</td>
<td>---</td>
<td>---</td>
<td>----</td>
<td>----</td>
<td>---</td>
<td>-----</td>
<td>---</td>
<td>-----</td>
<td>-----</td>
<td>---</td>
</tr>
<tr>
<td>LINE 209 (FLIGHT 3)</td>
<td>A 3165 H</td>
<td>1 3</td>
<td>0</td>
<td>4</td>
<td>10</td>
<td>29</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>24</td>
<td>819</td>
<td>0</td>
</tr>
<tr>
<td>---------------------</td>
<td>---------</td>
<td>-----</td>
<td>---</td>
<td>---</td>
<td>----</td>
<td>----</td>
<td>---</td>
<td>-----</td>
<td>---</td>
<td>-----</td>
<td>-----</td>
<td>---</td>
</tr>
<tr>
<td>LINE 210 (FLIGHT 3)</td>
<td>A 2935 H</td>
<td>1 2</td>
<td>0</td>
<td>4</td>
<td>9</td>
<td>28</td>
<td>1</td>
<td>4</td>
<td>1</td>
<td>31</td>
<td>664</td>
<td>4</td>
</tr>
<tr>
<td>---------------------</td>
<td>---------</td>
<td>-----</td>
<td>---</td>
<td>---</td>
<td>----</td>
<td>----</td>
<td>---</td>
<td>-----</td>
<td>---</td>
<td>-----</td>
<td>-----</td>
<td>---</td>
</tr>
<tr>
<td>LINE 210 (FLIGHT 3)</td>
<td>A 3031 H</td>
<td>0 2</td>
<td>0</td>
<td>2</td>
<td>8</td>
<td>14</td>
<td>1</td>
<td>19</td>
<td>1</td>
<td>39</td>
<td>894</td>
<td>7</td>
</tr>
<tr>
<td>---------------------</td>
<td>---------</td>
<td>-----</td>
<td>---</td>
<td>---</td>
<td>----</td>
<td>----</td>
<td>---</td>
<td>-----</td>
<td>---</td>
<td>-----</td>
<td>-----</td>
<td>---</td>
</tr>
<tr>
<td>LINE 211 (FLIGHT 3)</td>
<td>C 2764 S</td>
<td>1 1552</td>
<td>1</td>
<td>2</td>
<td>8</td>
<td>15</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>23</td>
<td>572</td>
<td>0</td>
</tr>
<tr>
<td>---------------------</td>
<td>---------</td>
<td>-----</td>
<td>---</td>
<td>---</td>
<td>----</td>
<td>----</td>
<td>---</td>
<td>-----</td>
<td>---</td>
<td>-----</td>
<td>-----</td>
<td>---</td>
</tr>
<tr>
<td>LINE 212 (FLIGHT 3)</td>
<td>B 2692 H</td>
<td>0 3</td>
<td>0</td>
<td>7</td>
<td>8</td>
<td>51</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>9</td>
<td>1376</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>E 2755 S</td>
<td>0 4</td>
<td>1</td>
<td>4</td>
<td>13</td>
<td>39</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>16</td>
<td>634</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>F 2759 H?</td>
<td>1 2</td>
<td>1</td>
<td>3</td>
<td>15</td>
<td>16</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>27</td>
<td>274</td>
<td>2</td>
</tr>
<tr>
<td>---------------------</td>
<td>---------</td>
<td>-----</td>
<td>---</td>
<td>---</td>
<td>----</td>
<td>----</td>
<td>---</td>
<td>-----</td>
<td>---</td>
<td>-----</td>
<td>-----</td>
<td>---</td>
</tr>
<tr>
<td>LINE 213 (FLIGHT 3)</td>
<td>A 2633 H</td>
<td>0 0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>53</td>
<td>1</td>
<td>192</td>
<td>8280</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>B 2544 H</td>
<td>0 2</td>
<td>1</td>
<td>2</td>
<td>10</td>
<td>14</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>53</td>
<td>321</td>
<td>21</td>
</tr>
<tr>
<td>---------------------</td>
<td>---------</td>
<td>-----</td>
<td>---</td>
<td>---</td>
<td>----</td>
<td>----</td>
<td>---</td>
<td>-----</td>
<td>---</td>
<td>-----</td>
<td>-----</td>
<td>---</td>
</tr>
<tr>
<td>LINE 214 (FLIGHT 3)</td>
<td>A 2435 B?</td>
<td>0 2</td>
<td>1</td>
<td>2</td>
<td>6</td>
<td>26</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>32</td>
<td>1523</td>
<td>0</td>
</tr>
</tbody>
</table>

* ESTIMATED DEPTH MAY BE UNRELIABLE BECAUSE THE STRONGER PART OF THE CONDUCTOR MAY BE DEEPER OR TO ONE SIDE OF THE FLIGHT LINE, OR BECAUSE OF A SHALLOW DIP OR OVERBURDEN EFFECTS.
196 - SH.3 SHABOTIK

| COAXIAL COPLANAR COPLANAR VERTICAL HORIZONTAL CONDUCTIVE |
| 900 HZ 900 HZ 7200 HZ DIKE SHEET EARTH |
| ANOMALY/ REAL QUAD REAL QUAD REAL QUAD COND DEPTH* COND DEPTH RESIS DEPTH |
| FID/INTERP PPM PPM PPM PPM PPM MIOS M MIOS M OHM-M M |

LINE 214 (FLIGHT 3)

- **B 2464 H**: 1 2 1 4 8 28 1 0 1 19 1116 0
- **C 2508 S**: 0 3 0 7 6 50 1 0 1 5 1785 0
- **D 2533 H**: 0 2 2 4 23 18 2 0 1 25 113 2

LINE 215 (FLIGHT 3)

- **A 2394 H**: 0 2 0 7 11 26 1 2 1 15 1094 0
- **C 2374 H**: 0 3 0 4 7 36 1 0 1 9 1410 0
- **D 2329 S**: 0 3 0 8 14 57 1 0 1 11 780 0

LINE 216 (FLIGHT 3)

- **A 2211 S**: 0 3 0 5 8 38 1 0 1 12 1264 0
- **C 2277 S**: 0 5 2 7 15 55 1 0 1 14 728 0
- **D 2290 S**: 1 11 0 19 41 86 1 0 1 9 318 0

LINE 217 (FLIGHT 3)

- **C 2096 S**: 0 4 1 9 21 57 1 0 1 4 477 0
- **D 2086 S**: 0 9 0 14 37 95 1 0 1 13 318 0
- **E 2083 S**: 0 7 0 9 24 55 1 0 1 12 230 0

LINE 218 (FLIGHT 3)

- **B 1997 S**: 0 7 0 9 12 61 1 0 1 9 983 0
- **C 2045 S**: 1 3 1 8 19 57 1 0 1 13 541 0
- **D 2053 B**: 1 16 1 33 121 168 1 0 1 0 450 0
- **E 2061 S**: 1 8 0 17 38 94 1 0 1 10 351 0

LINE 219 (FLIGHT 3)

- **A 1946 S**: 0 3 1 5 5 40 1 0 1 5 1932 0
- **B 1913 S**: 0 3 0 8 12 52 1 0 1 12 943 0
- **C 1866 S**: 1 2 1 5 8 34 1 0 1 17 1000 0
- **D 1858 S**: 1 10 1 16 44 97 1 0 1 15 253 0
- **E 1854 S**: 1 5 0 9 15 69 1 0 1 11 592 0
- **F 1850 S**: 1 8 1 16 35 105 1 0 1 11 342 0

LINE 220 (FLIGHT 3)

- **B 1770 S**: 0 3 0 4 3 37 1 0 1 0 2748 0
- **C 1817 S**: 0 6 0 12 20 92 1 0 1 10 676 0
- **D 1824 S**: 1 13 0 24 49 156 1 0 1 14 540 0
- **E 1833 S**: 0 7 0 17 25 122 1 0 1 9 558 0

LINE 221 (FLIGHT 3)

- **A 1675 S**: 0 13 0 22 32 144 1 0 1 7 490 0

ESTIMATED DEPTH MAY BE UNRELIABLE BECAUSE THE STRONGER PART OF THE CONDUCTOR MAY BE DEEPER OR TO ONE SIDE OF THE FLIGHT. LINE, OR BECAUSE OF A SHALLOW DIP OR OVERBURDEN EFFECTS.
<table>
<thead>
<tr>
<th>FID/INTERP</th>
<th>PPM</th>
<th>PPM</th>
<th>PPM</th>
<th>PPM</th>
<th>PPM</th>
<th>MHOS</th>
<th>MHOS</th>
<th>M OHM-M</th>
<th>M</th>
</tr>
</thead>
<tbody>
<tr>
<td>LINE 221</td>
<td>(FLIGHT 3)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B 1634 S</td>
<td>1</td>
<td>3</td>
<td>0</td>
<td>4</td>
<td>8</td>
<td>43</td>
<td>1</td>
<td>7</td>
<td>1242</td>
</tr>
<tr>
<td>LINE 222</td>
<td>(FLIGHT 3)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A 1557 S</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>4</td>
<td>7</td>
<td>30</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>LINE 223</td>
<td>(FLIGHT 3)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A 1484 H</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>3</td>
<td>7</td>
<td>23</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>B 1477 H</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>4</td>
<td>15</td>
<td>32</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>C 1450 S</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>3</td>
<td>0</td>
<td>19</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>LINE 224</td>
<td>(FLIGHT 3)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A 1278 H</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>3</td>
<td>13</td>
<td>20</td>
<td>1</td>
<td>13</td>
<td>1</td>
</tr>
<tr>
<td>B 1285 H</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>5</td>
<td>18</td>
<td>24</td>
<td>1</td>
<td>8</td>
<td>1</td>
</tr>
<tr>
<td>LINE 225</td>
<td>(FLIGHT 3)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A 1251 H</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>1</td>
<td>8</td>
<td>5</td>
<td>2</td>
<td>27</td>
<td>1</td>
</tr>
<tr>
<td>B 1236 H</td>
<td>0</td>
<td>5</td>
<td>0</td>
<td>11</td>
<td>44</td>
<td>42</td>
<td>2</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>LINE 226</td>
<td>(FLIGHT 3)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A 921 H</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>14</td>
<td>2</td>
<td>17</td>
<td>14</td>
<td>1</td>
</tr>
<tr>
<td>B 925 H</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>12</td>
<td>10</td>
<td>1</td>
<td>13</td>
<td>1</td>
</tr>
<tr>
<td>C 941 H</td>
<td>1</td>
<td>4</td>
<td>1</td>
<td>6</td>
<td>30</td>
<td>37</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>D 955 H</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>12</td>
<td>18</td>
<td>1</td>
<td>8</td>
<td>1</td>
</tr>
<tr>
<td>E 964 S</td>
<td>0</td>
<td>4</td>
<td>0</td>
<td>9</td>
<td>19</td>
<td>57</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>LINE 227</td>
<td>(FLIGHT 3)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A 883 H</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>10</td>
<td>2</td>
<td>6</td>
<td>28</td>
<td>1</td>
</tr>
<tr>
<td>B 880 H</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>14</td>
<td>14</td>
<td>1</td>
<td>6</td>
<td>1</td>
</tr>
<tr>
<td>C 869 H</td>
<td>0</td>
<td>6</td>
<td>0</td>
<td>12</td>
<td>36</td>
<td>81</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>D 859 S</td>
<td>0</td>
<td>6</td>
<td>0</td>
<td>11</td>
<td>24</td>
<td>73</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>E 829 S</td>
<td>1</td>
<td>3</td>
<td>0</td>
<td>6</td>
<td>10</td>
<td>47</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>LINE 228</td>
<td>(FLIGHT 3)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A 688 H</td>
<td>0</td>
<td>3</td>
<td>0</td>
<td>5</td>
<td>18</td>
<td>41</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>B 694 H</td>
<td>1</td>
<td>3</td>
<td>1</td>
<td>3</td>
<td>12</td>
<td>26</td>
<td>1</td>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td>C 703 S</td>
<td>1</td>
<td>2</td>
<td>0</td>
<td>3</td>
<td>7</td>
<td>24</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>E 737 S</td>
<td>0</td>
<td>3</td>
<td>0</td>
<td>7</td>
<td>14</td>
<td>48</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>LINE 229</td>
<td>(FLIGHT 3)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A 642 H</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>4</td>
<td>13</td>
<td>19</td>
<td>1</td>
<td>12</td>
<td>1</td>
</tr>
<tr>
<td>C 593 S</td>
<td>0</td>
<td>7</td>
<td>0</td>
<td>11</td>
<td>24</td>
<td>74</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

ESTIMATED DEPTH MAY BE UNRELIABLE BECAUSE THE STRONGER PART OF THE CONDUCTOR MAY BE DEEPER OR TO ONE SIDE OF THE FLIGHT LINE, OR BECAUSE OF A SHALLOW DIP OR OVERBURDEN EFFECTS.
<table>
<thead>
<tr>
<th>Line</th>
<th>Flight</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F</th>
<th>G</th>
<th>H</th>
<th>I</th>
</tr>
</thead>
<tbody>
<tr>
<td>230</td>
<td>3</td>
<td>460 H</td>
<td>478 S</td>
<td>512 S</td>
<td>518 S</td>
<td>460 H</td>
<td>478 S</td>
<td>512 S</td>
<td>518 S</td>
<td>460 H</td>
</tr>
<tr>
<td>231</td>
<td>3</td>
<td>417 H</td>
<td>381 S</td>
<td>378 S</td>
<td>375 S</td>
<td>368 S</td>
<td>363 S</td>
<td>417 H</td>
<td>381 S</td>
<td>378 S</td>
</tr>
<tr>
<td>232</td>
<td>3</td>
<td>231 H</td>
<td>248 S</td>
<td>250 S</td>
<td>266 S</td>
<td>270 S</td>
<td>282 S</td>
<td>231 H</td>
<td>248 S</td>
<td>250 S</td>
</tr>
<tr>
<td>233</td>
<td>3</td>
<td>215 H</td>
<td>201 S</td>
<td>189 S</td>
<td>250 S</td>
<td>266 S</td>
<td>270 S</td>
<td>215 H</td>
<td>201 S</td>
<td>189 S</td>
</tr>
<tr>
<td>234</td>
<td>2</td>
<td>3040 H</td>
<td>3028 H</td>
<td>3010 H</td>
<td>3002 H</td>
<td>2995 H</td>
<td>2995 H</td>
<td>3040 H</td>
<td>3028 H</td>
<td>3010 H</td>
</tr>
<tr>
<td>235</td>
<td>2</td>
<td>2916 H</td>
<td>2932 H</td>
<td>2939 H</td>
<td>2916 H</td>
<td>2932 H</td>
<td>2939 H</td>
<td>2916 H</td>
<td>2932 H</td>
<td>2939 H</td>
</tr>
</tbody>
</table>

Estimated depth may be unreliable because the stronger part of the conductor may be deeper or to one side of the flight line, or because of a shallow dip or overburden effects.
196 - SH.3 SHABOTIK

<table>
<thead>
<tr>
<th>COAXIAL</th>
<th>COPLANAR</th>
<th>COPLANAR</th>
<th>VERTICAL</th>
<th>HORIZONTAL</th>
<th>CONDUCTIVE</th>
</tr>
</thead>
<tbody>
<tr>
<td>900 Hz</td>
<td>900 Hz</td>
<td>7200 Hz</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

ANOMALY/ REAL QUAD | REAL QUAD | REAL QUAD | COND DEPTH* | COND DEPTH | RESIS DEPTH |
FID/INTERP | PPM | PPM | PPM | PPM | PPM | MHOS | MHOS | OHM-M | M |

<table>
<thead>
<tr>
<th>LINE 235 (FLIGHT 2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>D 2947 H 0 37 1 68 290 282 3 0 1 16 29 6</td>
</tr>
<tr>
<td>E 2981 H 0 8 0 13 53 54 2 0 1 21 121 5</td>
</tr>
<tr>
<td>F 2983 H 0 6 0 16 53 83 1 0 1 25 176 5</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>LINE 236 (FLIGHT 2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A 2878 H 1 4 0 7 42 25 3 0 1 26 92 8</td>
</tr>
<tr>
<td>B 2867 H 0 19 0 35 109 200 1 0 1 17 84 4</td>
</tr>
<tr>
<td>C 2865 H 0 9 0 24 78 127 1 0 1 20 52 7</td>
</tr>
<tr>
<td>D 2862 H 0 18 0 43 171 164 3 0 1 21 86 6</td>
</tr>
<tr>
<td>E 2853 H 0 1 0 2 8 12 1 16 1 81 508 45</td>
</tr>
<tr>
<td>F 2831 H 0 4 0 10 43 48 1 0 1 28 132 8</td>
</tr>
<tr>
<td>G 2829 H 0 4 0 9 36 55 1 0 1 27 109 8</td>
</tr>
</tbody>
</table>

* ESTIMATED DEPTH MAY BE UNRELIABLE BECAUSE THE STRONGER PART OF THE CONDUCTOR MAY BE DEEPER OR TO ONE SIDE OF THE FLIGHT LINE, OR BECAUSE OF A SHALLOW DIP OR OVERBURDEN EFFECTS.
<table>
<thead>
<tr>
<th>Claim Number</th>
<th>Date Staked</th>
<th>Staker</th>
</tr>
</thead>
<tbody>
<tr>
<td>694211</td>
<td>Jan. 26/83</td>
<td>Philippe Letourneau</td>
</tr>
<tr>
<td>694212</td>
<td>Jan. 27/83</td>
<td>"</td>
</tr>
<tr>
<td>694213</td>
<td>Jan. 28/83</td>
<td>"</td>
</tr>
<tr>
<td>694214</td>
<td>Jan. 29/83</td>
<td>"</td>
</tr>
<tr>
<td>694215</td>
<td>Jan. 30</td>
<td>"</td>
</tr>
<tr>
<td>694216</td>
<td>Jan. 30</td>
<td>"</td>
</tr>
<tr>
<td>694217</td>
<td>Jan. 29</td>
<td>"</td>
</tr>
<tr>
<td>694218</td>
<td>Jan. 28</td>
<td>"</td>
</tr>
<tr>
<td>694219</td>
<td>Jan. 27</td>
<td>"</td>
</tr>
<tr>
<td>694220</td>
<td>Jan. 26</td>
<td>"</td>
</tr>
<tr>
<td>694221</td>
<td>Jan. 26</td>
<td>"</td>
</tr>
<tr>
<td>694222</td>
<td>Jan. 27</td>
<td>"</td>
</tr>
<tr>
<td>694223</td>
<td>Jan. 29</td>
<td>"</td>
</tr>
<tr>
<td>694224</td>
<td>Jan. 29</td>
<td>"</td>
</tr>
<tr>
<td>694225</td>
<td>Jan. 30</td>
<td>"</td>
</tr>
<tr>
<td>694226</td>
<td>Jan. 30</td>
<td>"</td>
</tr>
<tr>
<td>694227</td>
<td>Jan. 29</td>
<td>"</td>
</tr>
<tr>
<td>694228</td>
<td>Jan. 28</td>
<td>"</td>
</tr>
<tr>
<td>694229</td>
<td>Jan. 27</td>
<td>"</td>
</tr>
<tr>
<td>694230</td>
<td>Jan. 26</td>
<td>"</td>
</tr>
<tr>
<td>694231</td>
<td>Jan. 26</td>
<td>"</td>
</tr>
<tr>
<td>694232</td>
<td>Jan. 27</td>
<td>"</td>
</tr>
<tr>
<td>694233</td>
<td>Jan. 28</td>
<td>"</td>
</tr>
<tr>
<td>694234</td>
<td>Jan. 29</td>
<td>"</td>
</tr>
<tr>
<td>694235</td>
<td>Jan. 30</td>
<td>"</td>
</tr>
<tr>
<td>694236</td>
<td>Jan. 31</td>
<td>"</td>
</tr>
<tr>
<td>694237</td>
<td>Jan. 31</td>
<td>"</td>
</tr>
<tr>
<td>694238</td>
<td>Jan. 31</td>
<td>"</td>
</tr>
<tr>
<td>694239</td>
<td>Jan. 31</td>
<td>"</td>
</tr>
<tr>
<td>694240</td>
<td>Jan. 31</td>
<td>"</td>
</tr>
<tr>
<td>694241</td>
<td>Feb. 1</td>
<td>"</td>
</tr>
<tr>
<td>694242</td>
<td>Feb. 1</td>
<td>"</td>
</tr>
<tr>
<td>694243</td>
<td>Feb. 1</td>
<td>"</td>
</tr>
<tr>
<td>694244</td>
<td>Feb. 1</td>
<td>"</td>
</tr>
<tr>
<td>694245</td>
<td>Feb. 1</td>
<td>"</td>
</tr>
<tr>
<td>Claim Number</td>
<td>Date Staked</td>
<td>Staker</td>
</tr>
<tr>
<td>--------------</td>
<td>-------------</td>
<td>----------------</td>
</tr>
<tr>
<td>694246</td>
<td>Feb. 2/83</td>
<td>Philippe Letourne</td>
</tr>
<tr>
<td>694247</td>
<td>Feb. 2</td>
<td>"</td>
</tr>
<tr>
<td>694248</td>
<td>Feb. 2</td>
<td>"</td>
</tr>
<tr>
<td>694249</td>
<td>Feb. 2</td>
<td>"</td>
</tr>
<tr>
<td>694250</td>
<td>Feb. 2</td>
<td>"</td>
</tr>
<tr>
<td>694251</td>
<td>Feb. 3</td>
<td>"</td>
</tr>
<tr>
<td>694252</td>
<td>Feb. 3</td>
<td>"</td>
</tr>
<tr>
<td>694253</td>
<td>Feb. 3</td>
<td>"</td>
</tr>
<tr>
<td>694254</td>
<td>Feb. 3</td>
<td>"</td>
</tr>
<tr>
<td>694255</td>
<td>Feb. 3</td>
<td>"</td>
</tr>
<tr>
<td>694256</td>
<td>Feb. 4</td>
<td>"</td>
</tr>
<tr>
<td>694257</td>
<td>Feb. 4</td>
<td>"</td>
</tr>
<tr>
<td>694258</td>
<td>Feb. 4</td>
<td>"</td>
</tr>
<tr>
<td>694259</td>
<td>Feb. 4</td>
<td>"</td>
</tr>
<tr>
<td>694260</td>
<td>Feb. 4</td>
<td>"</td>
</tr>
<tr>
<td>694024</td>
<td>Feb. 13</td>
<td>Robert Hoyle</td>
</tr>
<tr>
<td>694025</td>
<td>Feb. 12</td>
<td>"</td>
</tr>
<tr>
<td>694026</td>
<td>Feb. 11</td>
<td>"</td>
</tr>
<tr>
<td>694027</td>
<td>Feb. 11</td>
<td>"</td>
</tr>
<tr>
<td>694028</td>
<td>Feb. 11</td>
<td>"</td>
</tr>
<tr>
<td>694029</td>
<td>Feb. 11</td>
<td>"</td>
</tr>
<tr>
<td>694030</td>
<td>Feb. 11</td>
<td>"</td>
</tr>
<tr>
<td>694031</td>
<td>Feb. 10</td>
<td>"</td>
</tr>
<tr>
<td>694032</td>
<td>Feb. 10</td>
<td>"</td>
</tr>
<tr>
<td>694033</td>
<td>Feb. 10</td>
<td>"</td>
</tr>
<tr>
<td>694034</td>
<td>Feb. 10</td>
<td>"</td>
</tr>
<tr>
<td>694035</td>
<td>Feb. 10</td>
<td>"</td>
</tr>
<tr>
<td>694036</td>
<td>Feb. 9</td>
<td>"</td>
</tr>
<tr>
<td>694037</td>
<td>Feb. 9</td>
<td>"</td>
</tr>
<tr>
<td>694038</td>
<td>Feb. 9</td>
<td>"</td>
</tr>
<tr>
<td>694039</td>
<td>Feb. 9</td>
<td>"</td>
</tr>
<tr>
<td>694040</td>
<td>Feb. 9</td>
<td>"</td>
</tr>
<tr>
<td>694041</td>
<td>Feb. 8</td>
<td>"</td>
</tr>
<tr>
<td>694042</td>
<td>Feb. 8</td>
<td>"</td>
</tr>
<tr>
<td>Claim Number</td>
<td>Date Staked</td>
<td>Staker</td>
</tr>
<tr>
<td>--------------</td>
<td>-------------</td>
<td>-----------------</td>
</tr>
<tr>
<td>694043</td>
<td>Feb. 8</td>
<td></td>
</tr>
<tr>
<td>694044</td>
<td>Feb. 8</td>
<td></td>
</tr>
<tr>
<td>694045</td>
<td>Feb. 8</td>
<td></td>
</tr>
<tr>
<td>694046</td>
<td>Feb. 7</td>
<td></td>
</tr>
<tr>
<td>694047</td>
<td>Feb. 7</td>
<td></td>
</tr>
<tr>
<td>694048</td>
<td>Feb. 7</td>
<td></td>
</tr>
<tr>
<td>694049</td>
<td>Feb. 7</td>
<td></td>
</tr>
<tr>
<td>694050</td>
<td>Feb. 7</td>
<td></td>
</tr>
<tr>
<td>694051</td>
<td>Feb. 6</td>
<td></td>
</tr>
<tr>
<td>694052</td>
<td>Feb. 6</td>
<td></td>
</tr>
<tr>
<td>694053</td>
<td>Feb. 6</td>
<td></td>
</tr>
<tr>
<td>694054</td>
<td>Feb. 6</td>
<td></td>
</tr>
<tr>
<td>694055</td>
<td>Feb. 6</td>
<td></td>
</tr>
<tr>
<td>694056</td>
<td>Feb. 5</td>
<td></td>
</tr>
<tr>
<td>694057</td>
<td>Feb. 5</td>
<td></td>
</tr>
<tr>
<td>694058</td>
<td>Feb. 5</td>
<td></td>
</tr>
<tr>
<td>694063</td>
<td>Feb. 5</td>
<td></td>
</tr>
<tr>
<td>694064</td>
<td>Feb. 5</td>
<td></td>
</tr>
<tr>
<td>694065</td>
<td>Feb. 4</td>
<td></td>
</tr>
<tr>
<td>694066</td>
<td>Feb. 4</td>
<td></td>
</tr>
<tr>
<td>694067</td>
<td>Feb. 4</td>
<td></td>
</tr>
<tr>
<td>694068</td>
<td>Feb. 4</td>
<td></td>
</tr>
<tr>
<td>694069</td>
<td>Feb. 4</td>
<td></td>
</tr>
<tr>
<td>694070</td>
<td>Feb. 3</td>
<td></td>
</tr>
<tr>
<td>694071</td>
<td>Feb. 3</td>
<td></td>
</tr>
<tr>
<td>694072</td>
<td>Feb. 3</td>
<td></td>
</tr>
<tr>
<td>694073</td>
<td>Feb. 3</td>
<td></td>
</tr>
<tr>
<td>694074</td>
<td>Feb. 3</td>
<td></td>
</tr>
<tr>
<td>694075</td>
<td>Feb. 3</td>
<td></td>
</tr>
<tr>
<td>694080</td>
<td>Feb. 2</td>
<td></td>
</tr>
<tr>
<td>694083</td>
<td>Feb. 2</td>
<td></td>
</tr>
<tr>
<td>694084</td>
<td>Feb. 2</td>
<td></td>
</tr>
<tr>
<td>694085</td>
<td>Feb. 2</td>
<td></td>
</tr>
<tr>
<td>694086</td>
<td>Feb. 1</td>
<td></td>
</tr>
<tr>
<td>694087</td>
<td>Feb. 1</td>
<td></td>
</tr>
<tr>
<td>Claim Number</td>
<td>Date Staked</td>
<td>Staker</td>
</tr>
<tr>
<td>--------------</td>
<td>-------------</td>
<td>--------------</td>
</tr>
<tr>
<td>694083</td>
<td>Feb. 1</td>
<td>Robert Hoyle</td>
</tr>
<tr>
<td>694089</td>
<td>Feb. 1</td>
<td></td>
</tr>
<tr>
<td>694090</td>
<td>Feb. 1</td>
<td></td>
</tr>
<tr>
<td>694091</td>
<td>Jan. 31</td>
<td></td>
</tr>
<tr>
<td>694092</td>
<td>Jan. 31</td>
<td></td>
</tr>
<tr>
<td>694093</td>
<td>Jan. 31</td>
<td></td>
</tr>
<tr>
<td>694094</td>
<td>Jan. 31</td>
<td></td>
</tr>
<tr>
<td>694095</td>
<td>Jan. 31</td>
<td></td>
</tr>
<tr>
<td>694096</td>
<td>Jan. 30</td>
<td></td>
</tr>
<tr>
<td>694097</td>
<td>Jan. 30</td>
<td></td>
</tr>
<tr>
<td>694098</td>
<td>Jan. 30</td>
<td></td>
</tr>
<tr>
<td>694099</td>
<td>Jan. 30</td>
<td></td>
</tr>
<tr>
<td>694100</td>
<td>Jan. 30</td>
<td></td>
</tr>
<tr>
<td>694101</td>
<td>Jan. 29</td>
<td></td>
</tr>
<tr>
<td>694102</td>
<td>Jan. 29</td>
<td></td>
</tr>
<tr>
<td>694103</td>
<td>Jan. 29</td>
<td></td>
</tr>
<tr>
<td>694104</td>
<td>Jan. 29</td>
<td></td>
</tr>
<tr>
<td>694105</td>
<td>Jan. 29</td>
<td></td>
</tr>
<tr>
<td>694106</td>
<td>Jan. 28</td>
<td></td>
</tr>
<tr>
<td>694107</td>
<td>Jan. 28</td>
<td></td>
</tr>
<tr>
<td>694108</td>
<td>Jan. 28</td>
<td></td>
</tr>
<tr>
<td>694109</td>
<td>Jan. 28</td>
<td></td>
</tr>
<tr>
<td>694110</td>
<td>Jan. 28</td>
<td></td>
</tr>
<tr>
<td>694076</td>
<td>Feb. 13</td>
<td></td>
</tr>
<tr>
<td>694077</td>
<td>Feb. 13</td>
<td></td>
</tr>
<tr>
<td>694078</td>
<td>Feb. 13</td>
<td></td>
</tr>
<tr>
<td>694079</td>
<td>Feb. 13</td>
<td></td>
</tr>
<tr>
<td>694261</td>
<td>Jan. 29</td>
<td>Michel Emard</td>
</tr>
<tr>
<td>694262</td>
<td>Jan. 30</td>
<td></td>
</tr>
<tr>
<td>694263</td>
<td>Jan. 30</td>
<td></td>
</tr>
<tr>
<td>694264</td>
<td>Jan. 31</td>
<td></td>
</tr>
<tr>
<td>694265</td>
<td>Jan. 31</td>
<td></td>
</tr>
<tr>
<td>694266</td>
<td>Jan. 31</td>
<td></td>
</tr>
<tr>
<td>694267</td>
<td>Feb. 1</td>
<td></td>
</tr>
<tr>
<td>694286</td>
<td>Feb. 1</td>
<td></td>
</tr>
<tr>
<td>Claim Number</td>
<td>Date Staked</td>
<td>Staker</td>
</tr>
<tr>
<td>--------------</td>
<td>-------------</td>
<td>----------------</td>
</tr>
<tr>
<td>694287</td>
<td>Jan. 30</td>
<td>Michel Emard</td>
</tr>
<tr>
<td>694288</td>
<td>Jan. 29</td>
<td></td>
</tr>
<tr>
<td>694289</td>
<td>Jan. 27</td>
<td></td>
</tr>
<tr>
<td>694290</td>
<td>Jan. 27</td>
<td></td>
</tr>
<tr>
<td>694291</td>
<td>Jan. 26</td>
<td></td>
</tr>
<tr>
<td>694292</td>
<td>Jan. 26</td>
<td></td>
</tr>
<tr>
<td>694293</td>
<td>Jan. 27</td>
<td></td>
</tr>
<tr>
<td>694294</td>
<td>Jan. 27</td>
<td></td>
</tr>
<tr>
<td>694295</td>
<td>Jan. 29</td>
<td></td>
</tr>
<tr>
<td>694296</td>
<td>Jan. 30</td>
<td></td>
</tr>
<tr>
<td>694297</td>
<td>Feb. 1</td>
<td></td>
</tr>
<tr>
<td>694298</td>
<td>Feb. 1</td>
<td></td>
</tr>
<tr>
<td>694299</td>
<td>Jan. 30</td>
<td></td>
</tr>
<tr>
<td>694300</td>
<td>Jan. 29</td>
<td></td>
</tr>
<tr>
<td>706301</td>
<td>Jan. 28</td>
<td></td>
</tr>
<tr>
<td>706302</td>
<td>Jan. 27</td>
<td></td>
</tr>
<tr>
<td>706303</td>
<td>Jan. 26</td>
<td></td>
</tr>
<tr>
<td>706304</td>
<td>Jan. 26</td>
<td></td>
</tr>
<tr>
<td>706305</td>
<td>Jan. 26</td>
<td></td>
</tr>
<tr>
<td>706306</td>
<td>Jan. 23</td>
<td></td>
</tr>
<tr>
<td>706307</td>
<td>Jan. 28</td>
<td></td>
</tr>
<tr>
<td>706308</td>
<td>Jan. 28</td>
<td></td>
</tr>
<tr>
<td>706309</td>
<td>Jan. 28</td>
<td></td>
</tr>
<tr>
<td>706310</td>
<td>Jan. 29</td>
<td></td>
</tr>
<tr>
<td>694170</td>
<td>Feb. 1</td>
<td>J.C. Hautcoeur</td>
</tr>
<tr>
<td>694171</td>
<td>Feb. 1</td>
<td></td>
</tr>
<tr>
<td>694172</td>
<td>Feb. 1</td>
<td></td>
</tr>
<tr>
<td>694173</td>
<td>Feb. 1</td>
<td></td>
</tr>
<tr>
<td>694174</td>
<td>Feb. 1</td>
<td></td>
</tr>
<tr>
<td>694175</td>
<td>Feb. 2</td>
<td></td>
</tr>
<tr>
<td>694176</td>
<td>Feb. 2</td>
<td></td>
</tr>
<tr>
<td>694177</td>
<td>Feb. 2</td>
<td></td>
</tr>
<tr>
<td>694178</td>
<td>Feb. 2</td>
<td></td>
</tr>
<tr>
<td>694180</td>
<td>Feb. 2</td>
<td></td>
</tr>
<tr>
<td>694181</td>
<td>Feb. 3</td>
<td></td>
</tr>
<tr>
<td>694182</td>
<td>Feb. 3</td>
<td></td>
</tr>
<tr>
<td>Claim Number</td>
<td>Date Staked</td>
<td>Staker</td>
</tr>
<tr>
<td>--------------</td>
<td>-------------</td>
<td>------------</td>
</tr>
<tr>
<td>694183</td>
<td>Feb. 3</td>
<td></td>
</tr>
<tr>
<td>694184</td>
<td>Feb. 3</td>
<td>J.C. Hautcoeur</td>
</tr>
<tr>
<td>694185</td>
<td>Feb. 3</td>
<td></td>
</tr>
<tr>
<td>694186</td>
<td>Feb. 4</td>
<td></td>
</tr>
</tbody>
</table>
THUNDER BAY
SAULT STE. MARIE
BIG ROCK LAKE
1½ 40chains
SHABOTICK RIVER
Type of Survey(s): AIRBORNE GEOPHYSICS (EM, VLF, MAG)

Township or Area: McGILL AND SHABOTIK TOWNSHIPS

Claim Holder(s): JENS E. HANSEN

Survey Company: GEOTEST CORPORATION/DIGHEM LTD.

Author of Report: JENS E. HANSEN

Address of Author: 19 Nesbitt Street, Nepean, Ontario K2H 8C4

Covering Dates of Survey: December 1 - 31, 1983

Total Miles of Line Cut: _____________________________

SPECIAL PROVISIONS

CREDITS REQUESTED

Geophysical

ENTER 40 days (includes line cutting) for first survey.

ENTER 20 days for each additional survey using same grid.

AIRBORNE CREDITS

Magnetometer: 20
Electromagnetic: 20
VLF: 20
Radiorrctic: 20

DATE: March 16, 1984
SIGNATURE: ________________________

Qualifications: ________________________

Previous Surveys

<table>
<thead>
<tr>
<th>File No.</th>
<th>Type</th>
<th>Date</th>
<th>Claim Holder</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

MINING CLAIMS TRAVERSED

List numerically

<table>
<thead>
<tr>
<th>MINING CLAIMS TRAVERSED</th>
</tr>
</thead>
<tbody>
<tr>
<td>SSMb24211</td>
</tr>
</tbody>
</table>

Please refer to the attached list

<table>
<thead>
<tr>
<th>TOTAL CLAIMS</th>
</tr>
</thead>
<tbody>
<tr>
<td>179</td>
</tr>
</tbody>
</table>
Self Potential

<table>
<thead>
<tr>
<th>Instrument</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Survey Method</th>
<th>Corrections made</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Radiometric

<table>
<thead>
<tr>
<th>Instrument</th>
<th>Values measured</th>
<th>Energy windows (levels)</th>
<th>Height of instrument</th>
<th>Background Count</th>
<th>Size of detector</th>
<th>Overburden</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(type, depth – include outcrop map)

Others (Seismic, Drill, Well Logging Etc.)

<table>
<thead>
<tr>
<th>Type of survey</th>
<th>Instrument</th>
<th>Accuracy</th>
<th>Parameters measured</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Additional information (for understanding results)

Airborne Surveys

Type of survey(s): DIGHEM III, EM, MAGNETICS, VLF EM

<table>
<thead>
<tr>
<th>Instrument(s)</th>
<th>Accuracy</th>
<th>Aircraft used</th>
<th>Sensor altitude</th>
<th>Navigation and flight path recovery method</th>
</tr>
</thead>
<tbody>
<tr>
<td>HERTZ TOTEM 2A VLF-EM, DIGHEM III INPHASE-QUADRATURE EM, PROTON PRECESSION PMH5010</td>
<td>VLF Seattle - 24.8 kHz, Total field 0.1% vertical Quadrature 0.1% MAG INT</td>
<td>Helicopter Alouette II</td>
<td>36 metres</td>
<td>Mosaics – Flight path</td>
</tr>
<tr>
<td>Cutler - 17.8 kHz Inphase 0.2 ppm Magnetics SONOTEK</td>
<td>Quadrature 0.2 ppm</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Aircraft altitude</th>
<th>Line Spacing</th>
<th>Miles flown over total area</th>
<th>Over claims only</th>
</tr>
</thead>
<tbody>
<tr>
<td>51 metres</td>
<td>150 metres</td>
<td>273</td>
<td>215</td>
</tr>
</tbody>
</table>
Natural Resources Ontario

Report of Work
(Geophysical, Geological, Geochemical and Expenditures)

The Mining Act

<table>
<thead>
<tr>
<th>Type of Survey(s)</th>
<th>Claim Holder(s)</th>
<th>Township or Area</th>
<th>Address</th>
<th>Survey Company</th>
<th>Name and Address of Author (of Geo-Technical report)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Geochemical, E.</td>
<td>JENS E. HANSEN</td>
<td>19 NESBITT ST, NEW TON ON</td>
<td>A439232</td>
<td>PROTEST CO (PROD. BY DIGITAL)</td>
<td>JENS E. HANSEN 19 NESBITT 111 NEW TON ON</td>
</tr>
</tbody>
</table>

Special Provisions

For first survey:
- Enter 40 days. (This includes line cutting)

For each additional survey:
- Using the same grid:
 - Enter 20 days (for each)

Man Days

Complete reverse side and enter total(s) hr.

Airborne Credits

- Electromagnetic
- Magnetometer
- Radiometric
- Other

Geophysical

- Electromagnetic
- Magnetometer
- Radiometric
- Other

Geological

- Geochemical

Geochernical

- Days per Claim

Expenditures (Excludes Power Stripping)

- For one survey:
 - Enter 40 days

- For each additional survey:
 - Using the same grid:
 - Enter 20 days

Calculation of Expenditure Days Credits

Total Expenditures + 15 = Total Days Credits

Certification Verifying Report of Work

I hereby certify that I have a personal and intimate knowledge of the facts set forth in the Report of Work annexed hereto, having performed the work or witnessed the same during and/or after its completion and the annexed report is true.

Name and Postal Address of Person Certifying:

JENS E. HANSEN 19 NESBITT ST

Date Certified: Feb 1, 1984

Certified by (Signature): JENS E. HANSEN

Date: Feb 1, 1984

For Office Use Only:

Recorded Date: Feb 6, 1984

Mining Recorder: JENS E. HANSEN 19 NESBITT ST

Date Approved by: JENS E. HANSEN 19 NESBITT ST

Date: Feb 6, 1984
Ministry of Natural Resources

Report of Work

Geophysical, Geological, Geochemical and Expenditures)

Send in Feb 1, 1984

The Mining Act

Instructions: — Please type or print.

— If number of mining claims traversed exceeds space on this form, attach a list.

Note: — Only days credits calculated in the "Expenditures" section may be entered in the "Expend. Days Cr." columns.

— Do not use shaded areas below.

Type of Survey(s): — AERIAL ELECTROMAGNETICS, ULF, MAGNETICS, SCHREIBER.

Name: JENS E. HANSEN

Address: 19 NESBITT ST NEVERAN ONT K1H 6C4

Date of Survey (from & to): Jul 12, 1984 to Jul 12, 1984

Survey Company: DSH/SH

Name and Address of Author of Geo-Technical Report: JENS E. HANSEN

Mining Claim Traversed (List in numerical sequence)

<table>
<thead>
<tr>
<th>Days per Claim</th>
<th>Mining Claim</th>
<th>Exp. Days Cr.</th>
</tr>
</thead>
<tbody>
<tr>
<td>UFL 20 Days</td>
<td>VLF 649211</td>
<td></td>
</tr>
</tbody>
</table>

Expenditures (excludes power stripping)

Type of Work Performed

Calculation of Expenditure Days Credits

Instructions: Total Days Credits may be apportioned at the claim holder's choice. Enter number of days credits per claim selected in columns at right.

Date: Feb 1, 1984

Certification Verifying Report of Work

I hereby certify that I have a personal and intimate knowledge of the facts set forth in the Report of Work annexed hereto, having performed the work or witnessed same during and/or after its completion and the annexed report is true.

Name and Postal Address of Person Certifying

JENS E. HANSEN, 19 NESBITT ST NEVERAN ONT K1H 8C4

Date: Feb 1, 1984
<table>
<thead>
<tr>
<th>To: Geophysics</th>
<th>MR. BARLOW</th>
</tr>
</thead>
<tbody>
<tr>
<td>Comments</td>
<td></td>
</tr>
<tr>
<td></td>
<td>regret not agreed</td>
</tr>
<tr>
<td>Approved</td>
<td>Wish to see again with corrections</td>
</tr>
<tr>
<td>Date</td>
<td>MAY 1987</td>
</tr>
<tr>
<td>Signature</td>
<td>R. V.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>To: Geology - Expenditures</th>
</tr>
</thead>
<tbody>
<tr>
<td>Comments</td>
</tr>
<tr>
<td>Approved</td>
</tr>
<tr>
<td>Date</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>To: Geochemistry</th>
</tr>
</thead>
<tbody>
<tr>
<td>Comments</td>
</tr>
<tr>
<td>Approved</td>
</tr>
<tr>
<td>Date</td>
</tr>
</tbody>
</table>

To: Mining Lands Section, Room 6462, Whitney Block.

(Tel: 5-1380)
Ministry of Natural Resources

Geotechnical Report Approval

Mining Lands Comments

To: Roger Barlow

— Can you explain to me in more detail whether the LiF survey is acceptable? (Haven't we accepted airborne E.M. surveys that were filtered before?) Thanks.

— Dennis King

To: Geophysics

Comments: "ok"

RECEIVED

FEB 05, 1985

MINING LANDS SECTION

[Signature]

To: Geology - Expenditures

Comments:

[Signature]

To: Geochemistry

Comments: [Mathematical calculation]

[Signature]

To: Mining Lands Section, Room 6462, Whitney Block. (Tel: 5-1380)
Dear Mr. Matthews:

Enclosed please find two copies of our WORK REPORT on the Bulldzoer Lake Property - Hemlo Area on behalf of Golden Rule Resources Ltd.

We trust this meets with your requirements.

Yours sincerely,

[Signature]

IVNS E. HANSEN
Geophysicist
Mrs. M.V. St. Jules
Mining Recorder
Ministry of Natural Resources
875 Queen Street East
P.O. Box 669
Sault Ste. Marie, Ontario
P6A 5N2

Dear Madam:

We have received reports and maps for an Airborne Geophysical (Electromagnetic and Magnetometer) Survey submitted on Mining Claims SSM 694211 et al in the Townships of McGill and Shabotik. Areas of Bigrock Lake and Shabotik River.

This material will be examined and assessed and a statement of assessment work credits will be issued.

Yours sincerely,

S.E. Yundt
Director
Land Management Branch
Whitney Block, Room 6643
Queen's Park
Toronto, Ontario
M7A 1W3
Phone: (416)965-6918

A. Barr

cc: Jens E. Hansen
19 Nesbit Street
Nepean, Ontario
K2H 8C4
For additional information see maps:

42C/14 NW-0012 # 1-5
DIGHEM® SURVEY
SHABOTIK AREA, ONTARIO
FILTERED TOTAL VLF EM FIELD
FOR
GEOTEST CORPORATION

GOLDEN RULE RESOURCES LTD

LOCATION MAP

SHABOTIK AREA

1/2 Scale 1 = 15,000
1/2 1 1/2 Kilometres
1/4 1/4 1/2 3/4 Miles

Flight Line
Fiducial 2120 (Not recovered from film)
Fiducial 2118 (Recovered from film)
Fiducial 2110 (Not recovered from film)
— Fiducial 2104 (Recovered from film)

GOLDEN RULE RESOURCES LTD

DATE FEB. '84
DRAWN BY
CHECKED BY