JAMIE FRONTIER RESOURCES INC.

Report of the Company's Property
Sandra Township
in the Mining Division of Thunder Bay

Peter J. Vamos, P.Eng.

September 5, 1986
SUMMARY

Jamie Frontier Resources Inc. optioned the property from Mr. G. L. Mealey and partners in May 1986. It consists of 39 contiguous mining claims, staked in the west side of Sandra Township in the Thunder Bay Mining Division. It is located within the Beardmore-Geraldton Greenstone Belt, in the vicinity of the Town of Beardmore, about 7 miles west of the currently discovered "Metalore" deposit.

The claim group shows geological similarities with the Metalore find both in lithology and in structural geology.

Just west of the property, in Dorothea Township, gold was discovered in quartz veins during the 1930's. The host rocks of this early occurrence continue over the township and property boundary unto the Jamie claims.

It was concluded that the property has a good potential to host gold mineralization and therefore merits an exploration program consisting of airborne surveys, ground follow-up and diamond drilling of approximately 5,000 feet. The cost of such an undertaking was estimated to be $107,620 for the first phase and $167,200 for the second. An approximate total of $275,000.

INTRODUCTION

The following report has been compiled at the request of Mr. H. Vance White the President of Jamie Frontier Resources Inc., with its Head Office at Suite 1201, 121 Richmond Street West, Toronto, Ontario. The claims were acquired under the terms of a three year working option from Mr. G. L. Mealey and partners, all from the Thunder Bay area.

The author, who is familiar with the Beardmore-Geraldton area, visited the property in June of 1986 accompanied by Mr. G. L. Mealey.

The report is based on the author's extensive research of published material relating to the area, the files of the Ministry of Northern Development and Mines (Thunder Bay), verbal communications with the geological staff of the Ministry and others. Also the author's 23 years of experience as a mining geologist, his familiarity
with the area and a visit to the property.

THE PROPERTY, ITS LOCATION AND ACCESS

The Sandra Township property of Jamie Frontier Resources Inc. was optioned from Mr. Mealey and partners on the 5th of May, 1986. The property was staked by Mr. Mealey and partners and it was acquired by Jamie after a release of information about a gold discovery by Metalore Resources, a company which has been exploring for several years in and around Irwin Township in the vicinity of Beardmore.

The claims are located in the southwest quarter of Sandra Township in the Mining Division of Thunder Bay, Geraldton-Nipigon Mining District.

The claim group occupies a more or less rectangular shape between the west shore of the Namewaminikan River and the west boundary of Sandra Township.

The claims are numbered as follows:

864518 864369 864381
864527 864370 864382
864528 864371 864383
864358 864372 864384
864359 864373 864385
864360 864374 864386
864361 864375 864387
864362 864376 864388
864363 864377 864389
864364 864378 864390
864365 864379 864391
864366 864380 864392
864367

A total of 39 mining claims, forty acres each, more or less.

The property can be approached by road from Highway 11 and 580. From here a gravel road leads to the centre of Sandra Township crossing the Namewaminikan River. Just past the bridge a trail leads to the south and to the claims.
At the time of the author's visit this trail was not suitable for regular vehicles. The Beardmore-Geraldton area is serviced by a small airport in Geraldton approximately 100 km east of the property and by Thunder Bay which is approximately 200 km to the west.

HISTORY

Gold was first discovered in the Beardmore-Geraldton area in 1925 at the Beardmore Mine property. The first production from the area came from the Northern Empire Mine which commenced production in 1934. Gold was produced in the Beardmore area until 1968. Considerable exploration activity has been noted from the early years, however, very little information can be found from those times. Exploration for gold has been on the decline since the 1940's due to depressed gold price. In the 1950's the interest shifted to base metal exploration from these times on sporadic exploration focusing mostly on base metals has been reported lasting to the late seventies without any considerable success this work was mainly local and of moderate dimensions. With the increase in the price of gold starting in the late seventies the Beardmore-Geraldton group became moderately active until very recently when a staking rush of major proportions took place.

According to the reports of the Northern Miner, close to 6,000 claims were staked in approximately 5 - 6 months from the time the releases from the Metalore discovery became public knowledge.

Very little information regarding the history of Sandra Township is available. Two occurrences of gold are mentioned, both were discovered and worked in 1936. The most significant work is filed in the neighbouring Dorothea Township and it spilled over to the east to Sandra Township. The Amorada Prospect was worked "probably" by various interests prior to 1958 when Nortoba Mines Ltd. conducted geophysical surveys and some diamond drilling. Later in 1965 Candore Explorations Limited had explored a molybdenite showing with stripping, trenching and diamond drilling. Gold was not a priority at this time and the drill results from the molybdenite showing were not as good as anticipated therefore Candore withdrew from the option.

The information found regarding the gold occurrence is very limited. Diamond drilling indicated the presence of a gold-bearing vein which averaged 1.1 ounces of gold per ton, but had only a limited length (25.0') is reported by Ministry of Natural
Resources in 1971. Diamond drill logs on files are mostly without any assay information. The few logs which have this information show only very few samples.

REGIONAL GEOLOGY

The Beardmore-Geraldton area lies within an east trending folded sequence of early Precambrian rocks composed of metavolcanics and metasedimentary units stretching east of Lake Nipigon to the vicinity of Klotz Lake.

In summary a unit of fine grained metasedimentary rocks bound on the south on mafic to intermediate volcanics. These appear to be unconformably overlain by a coarser metasedimentary unit in the Geraldton area. Both metasedimentary units thin to the north. In the Beardmore area they are overlain by mafic to intermediate unit.

Further north, up section, in the Paint Lake area of felsic pyroclastic rocks interfinger with coarse clastic metasediments. The metasedimentary and metavolcanic series are intruded by felsic batholites and lenticular mafic intrusions. Late Precambrian diabase dikes and sills are abundant on the western part of the belt.

Folding has been reported extensively on the Geraldton area and to a lesser degree at Beardmore, fold axisis are trending east-west. Regional faults show the same trend and mark changes in the lithology. Subsidiary faults occur and are striking northeast.

Several ideas have been put forward just recently regarding the genesis of the Beardmore-Geraldton Greenston Belt. Some of these current thoughts suggests that the coarse conglomerates found here are derived from gravel alluvial fans from areas of uplift. Others propose that the volcanics represent fragments of a plate which was squeezed under and into a sedimentary section.

The author has been informed about work currently being done at Brock University regarding the area, which research eventually will benefit further exploration.
PROPERTY GEOLOGY

The most distinct geological feature in Sandra Township is a wide diabase dike (2 to 3 miles in width) which diagonally cuts across the township and is represented by several outcrops. It has been mapped both north and south of the property.

The north side of the Jamie claims are underlain by mafic amygdaloidal lavas south of which a series of undifferentiated felsic and intermediate volcanics both rock types, are represented by several outcrops. Further south near to the property boundary outcrops of polymictic conglomerates were found. Gold showings in Dorothea Township are just west of the township and property boundaries. The Paint Lake Fault is shown to come up against the diabase intrusion on the east. If it would extend past the diabase it appears that the Jamie property would occupy most of its path.

ECONOMIC GEOLOGY

According to recently published reports by the Ontario Geological Survey the Beardmore-Geraldton camp has produced in excess of 4.1 million ounces of gold between 1934 and 1968. Nineteen prospects and producers were named, in this report, three of which were below the thousand ounces output. The most gold came from the MacLeod-Cockshutt Mine. It was located in the Geraldton side of the belt, in Ashmore Township about 40 miles to the east of Jamie claims. Here 1,366,404 ounces of gold were produced between 1938 and 1968, most of which came from a zone of numerous quartz veins in metavolcanic rocks near a feldspar porphyry intrusion. The overall grade was 0.15 ounces of gold per ton milled.

The second largest and important, also the highest grade producer was Leitch Gold Mines Limited which was active between 1936 and 1968. The mine was in Eva Township about 4 miles southwest of the Jamie property. Gold recovery here averaged 0.92 ounces gold per ton milled and the total output of the mine was reported as 847,690 ounces. The gold occurred in greywackes with interbeds of iron formation and conglomerate intruded by diorite and diabase dikes. It was associated with quartz veins which were mainly found within the greywackes.

The newest discovery, which has sparked the current staking rush, was made by Metalore Resources Ltd. This property lies in the neighbouring Irwin Township to the
east of the Jamie claims with approximately seven miles. According to releases by Metalore, gold was found in economic grades at depth under an old surface showing. This occurrence was investigated by others in the past. Metalore conducted deeper exploration drilling and found the downward extension of the deposit. It has been said that the deepest intersection is about at 1,500 feet vertical and the deposit is still open at depth. This significant discovery has again focused the attention to the Beardmore-Geraldton area and is in part responsible for renewed exploration activity.

CONCLUSIONS

After compiling the data and examining the property the author has reached the conclusion, that the Jamie Frontier prospect in Sandra Township has a good potential to host gold mineralization and therefore it is worthy of an exploration program to investigate this potential. The above statement is based on the following factors.

(a) Geological similarities between the Metalore deposit and the Jamie properties such as the similar lithologies with the deposit like the occurrence of polymictic conglomerates in contact with volcanics.

(b) The property lies in an area where gold deposits were mined in the past.

(c) Gold has been reported from a short distance from the property where the same rocks known from the Jamie property also occur.

An exploration program consisting of two phases is therefore recommended.

RECOMMENDATIONS

Since it has been demonstrated that certain structural features, such as contacts and faults have a definite geophysical expression which can be observed by utilizing airborne geophysical surveys, it is suggested that such work be completed prior to any ground work. The airborne survey should include both magnetic and VLF systems which have been found the most successful in locating contacts and structural features.

To follow up on the airborne surveys it is suggested that a line grid allowing for sufficient detail work be established. Line separation of 300 feet and picket spacing of 20 feet is proposed.
We are also recommending that geological mapping be completed in conjunction of geochemical sampling. To conclude the surface work we suggest a VLF and a magnetic survey be conducted over the grid area.

As a second phase it is suggested that a diamond drilling program be undertaken approximately 5,000 feet of drilling is required to test the selected targets found by the surface work.

The third phase of exploration would commence only if the previous two have shown definite success and warrant follow up.

COST ESTIMATE

<table>
<thead>
<tr>
<th>A) Airborne survey</th>
<th>B) Surface exploration</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maps & reports - VLF and magnetic</td>
<td>$ 5,000</td>
</tr>
<tr>
<td>Interpretation and project preparation</td>
<td>500</td>
</tr>
<tr>
<td>Contingencies 10%</td>
<td>500</td>
</tr>
<tr>
<td>Total</td>
<td>$ 6,000</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Line cutting, 45 miles</th>
<th>VLF and magnetic surveys, 40 miles</th>
</tr>
</thead>
<tbody>
<tr>
<td>$350 /mile</td>
<td>$320 /mile</td>
</tr>
<tr>
<td>$15,750</td>
<td>12,800</td>
</tr>
<tr>
<td>Data compilation</td>
<td>3,000</td>
</tr>
<tr>
<td>Report</td>
<td>2,000</td>
</tr>
<tr>
<td>Supervision 10% of field work</td>
<td>2,855</td>
</tr>
<tr>
<td>Contingencies 10%</td>
<td>3,640</td>
</tr>
<tr>
<td>Sub-total</td>
<td>$ 40,045</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Geological mapping</th>
</tr>
</thead>
<tbody>
<tr>
<td>Two man party - 15 days @ $550 /day</td>
</tr>
<tr>
<td>Travel</td>
</tr>
<tr>
<td>Supervision 10%</td>
</tr>
<tr>
<td>Sub-total</td>
</tr>
</tbody>
</table>
3) Geochemical survey
 Sample collection 30 days,
 2 men party $350/day $10,500
 Gold determinations 3,000 x $12 36,000
 Data plotting 2,000
 Supervision 10% of field work 1,050
 Report 1,500
 Sub-total $51,500

Total for Phase I $51,500

Phase II

C) Diamond drilling
 Mobilization and demobilization $3,000
 Drilling 5,000 feet N.Q. core size, 110,000
 $22.00/ft.
 Supervision 15% 16,500
 Sampling & assays 7,500
 Transportation 5,000
 Materials - rentals 10,000
 Contingencies 10% 15,200
 Sub-total $167,200

Total for Phase II $167,200

Grand Total Phases I and II $274,820

September 5, 1986

Peter J. Vamos, P.Eng.
REFERENCES

<table>
<thead>
<tr>
<th>Source</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ontario Department of Mines</td>
<td>Preliminary Geological Map P480</td>
</tr>
<tr>
<td></td>
<td>Sandra Township 1968</td>
</tr>
<tr>
<td>Ontario Division of Mines</td>
<td>Map 2102 Tashota - Geraldton Sheet</td>
</tr>
<tr>
<td></td>
<td>Geological Compilation Series 1966</td>
</tr>
<tr>
<td>Geological Survey of Canada</td>
<td>Open File Report 5538</td>
</tr>
<tr>
<td></td>
<td>Field Guide to the Beardmore-Geraldton</td>
</tr>
<tr>
<td></td>
<td>Metasedimentary - Metavolcanic Belt</td>
</tr>
<tr>
<td>Ontario Division of Mines</td>
<td>Mineral Resources Circular No. 13 1971</td>
</tr>
<tr>
<td></td>
<td>Gold Deposits of Ontario</td>
</tr>
<tr>
<td>Ontario Geological Survey</td>
<td>Open File Report 5469</td>
</tr>
<tr>
<td></td>
<td>A Report on Geophysical Survey Conducted in the Beardmore-Geraldton</td>
</tr>
<tr>
<td></td>
<td>Greenstone Belt</td>
</tr>
<tr>
<td></td>
<td>by D. Marcotte - B. Webster -1982</td>
</tr>
<tr>
<td>Ministry of Northern Affairs and Mines</td>
<td>Thunder Bay office - Files</td>
</tr>
<tr>
<td>Candore Explorations Limited</td>
<td>Mr. H. G. Harper, P.Eng., Director, Verbal</td>
</tr>
</tbody>
</table>
JAHIE FRONTIER RES.
GEOLOGICAL MAP, SANDRA TWP. PROPERTY.
Source: Ontario Department of Mines,
Preliminary Geological Map F 480, 1968
Scale 1" = 1/4 mile
REPORT ON AN
AIRBORNE MAGNETIC AND VLF-EM SURVEY
SANDRA TOWNSHIP
THUNDER BAY MINING DIVISION, ONTARIO

for
MID NORTH ENGINEERING SERVICES LTD.

RECEIVED
JAN - 6 1987
by
MINING LANDS SECTION

TERRAQUEST LTD.
Toronto, Canada

October 27, 1986
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. INTRODUCTION</td>
<td>1</td>
</tr>
<tr>
<td>2. THE PROPERTY</td>
<td>1</td>
</tr>
<tr>
<td>3. GEOLOGY</td>
<td>1</td>
</tr>
<tr>
<td>4. SURVEY SPECIFICATIONS</td>
<td>2</td>
</tr>
<tr>
<td>4.1 Instruments</td>
<td>2</td>
</tr>
<tr>
<td>4.2 Lines and Data</td>
<td>3</td>
</tr>
<tr>
<td>4.3 Tolerances</td>
<td>3</td>
</tr>
<tr>
<td>4.4 Photomosaics</td>
<td>3</td>
</tr>
<tr>
<td>5. DATA PROCESSING</td>
<td>4</td>
</tr>
<tr>
<td>6. INTERPRETATION</td>
<td>4</td>
</tr>
<tr>
<td>6.1 General Approach</td>
<td>4</td>
</tr>
<tr>
<td>6.2 Interpretation</td>
<td>5</td>
</tr>
<tr>
<td>7. SUMMARY</td>
<td>6</td>
</tr>
</tbody>
</table>

LIST OF FIGURES

- Figure 1 – General Location Map
- Figure 2 – Survey Area Map
- Figure 3 – Sample Record
- Figure 4 – Terraquest Classification of VLF-EM Conductor Axes

LIST OF MAPS IN JACKET

- No. A-634-1, Total Magnetic Field
- No. A-634-2, Vertical Magnetic Gradient
- No. A-634-3, VLF-EM Survey
- No. A-634-4, Interpretation

TEGRAQUEST LTD.
1. INTRODUCTION

This report describes the specifications and results of a geophysical survey carried out for Mid North Engineering Services Ltd. of 1201-121 Richmond Street West, Toronto Ontario M5H 2K7 by Terraquest Ltd., 905 - 121 Richmond St. W., Toronto, Canada. The field work was performed on August 31, 1986 and the data processing, interpretation and reporting from September 1 to October 27, 1986.

The purpose of a survey of this type is two-fold. One is to prospect directly for anomalously conductive and magnetic areas in the earth's crust which may be caused by, or at least related to, mineral deposits. A second is to use the magnetic and conductivity patterns derived from the survey results to assist in mapping geology, and to indicate the presence of faults, shear zones, folding, alteration zones and other structures potentially favourable to the presence of gold and base-metal concentration. To achieve this purpose the survey area was systematically traversed by an aircraft carrying geophysical instruments along parallel flight lines spaced at even intervals, 100 metres above the terrain surface, and aligned so as to intersect the regional geology in a way to provide the optimum contour patterns of geophysical data.

2. THE PROPERTY

The property is located in Sandra township, in the Thunder Bay Mining Division of Ontario about 12 kilometres north of the settlement of Beardmore. The claims lie in the southwest quadrant of the township and are readily accessible from logging roads.

The latitude and longitude are 49 degrees 42 minutes, and 80 degrees 00 minutes respectively, and the N.T.S. references are 42E/12 and 52H/9.

The claim numbers are shown in figure 2 and listed below:

<table>
<thead>
<tr>
<th>Claim Numbers</th>
<th>Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>TB 864358-864393</td>
<td>(36)</td>
</tr>
<tr>
<td>864518</td>
<td>(1)</td>
</tr>
<tr>
<td>864527</td>
<td>(1)</td>
</tr>
<tr>
<td>864529</td>
<td>(1)</td>
</tr>
</tbody>
</table>

......total 39 claims

3. GEOLOGY

Map References

1. Map 1934c: Namewaminikan River Area. scale 1:126,720. O.D.M. 1934

The survey area is underlain by east-northeast trending mafic to felsic metavolcanics and minor metasediments and a dioritic sill. Outcrops of ironstone and vein-type gold, silver and sulphide mineralization occur to the west beyond the property.

Regionally, the area is structurally complex with faults trending to the east, east-northeast, northeast, north and northwest.

4. SURVEY SPECIFICATIONS

4.1 Instruments

The survey was carried out using a Cessna 182 aircraft, registration C-FAKK, which carries a magnetometer and a VLF electromagnetic detector.

The magnetometer is a proton precession type based on the Overhauser effect. The Overhauser effect allows for polarization of a proton rich liquid of the sensor by adding a "free radical" to it and irradiating it by RF magnetic field. Strong precession signals are generated with modest RF power. The sensor element is mounted in an extension of the right wing tip. It's specifications are as follows:

- Resolution: 0.5 gamma
- Accuracy: 0.5 gamma
- Cycle time: 0.5 second
- Range: 20,000 - 100,000 gammas in 23 overlapping steps
- Gradient tolerance: Up to 5000 gammas per metre
- Model: GSM-9BA

The VLF-EM unit uses three orthogonal detector coils to measure (a) the total field strength of the time-varying EM field and (b) the phase relationship between the vertical coil and both the "along line" coil (LINE) and the "cross-line" coil (ORTHO). The LINE coil is tuned to a transmitter station that is ideally positioned at right angles to the flight lines, while the ORTHO coil transmitter should be in line with the flight lines. It's specifications are:

- Accuracy: 1%
- Reading interval: 1/2 second
- Model: TOTEM 2A
- Manufacturer: Herz Industries, Toronto
The VLF sensor is mounted in the left wing tip extension.

Other instruments are:

- King KRA-10A Radar altimeter
- UDAS-100 data processor with Digidata nine track tape recorder, manufactured by Urtec Ltd., Markham, Ontario.
- Geocam video camera and recorder for flight path recovery, manufactured by Geotech Ltd., Markham, Ontario.

4.2 Lines and Data

a) Line spacing: 100 metres
b) Line direction: 360 degrees
c) Terrain clearance: 100 metres
d) Average ground speed: 156 km/hr.
e) Data point interval:
 - Magnetic: 27 metres
 - VLF-EM: 27 metres
f) Tie Line interval: 2 kilometres
g) Channel 1 (LINE): NAA Cutler, Me., 24.0 kHz
h) Channel 2 (ORTHO): NSS Annapolis, 21.4 kHz
i) Line km over total survey area including overrun: 120 line km
j) Line km over claim groups: Magnetic survey totals.... 80 line km

VLF-EM survey totals...... 80 line km

4.3 Tolerances

a) Line spacing: Any gaps wider than twice the line spacing and longer than 10 times the line spacing were filled in by a new line.
b) Terrain clearance: Portions of line which were flown above 125 metres for more than one km were reflown if safety considerations were acceptable.
c) Diurnal magnetic variation: Less than twenty gammas deviation from a smooth background over a period of two minutes or less as seen on the base station analogue record.
d) Manoeuvre noise: Approximately +/-5 gammas.

4.4 Photomosaics

For navigating the aircraft and recovering the flight path, mosaics of aerial photographs were made from existing air photos.
FIGURE 3. Sample of analogue data
5. DATA PROCESSING

Flight path recovery was carried out in the field using a video tape viewer to observe the flight path as recorded by the Geocam video camera system. The flight path recovery was completed daily to enable reflights to be selected where needed for the following day.

The magnetic data was levelled in the standard manner by tying survey lines to the tie lines. The IGRF has not been removed. The total field was contoured by computer using a program provided by Dataplotting Services Inc. To do this the final levelled data set is gridded at a grid cell spacing of 1/10th of an inch at map scale.

The vertical magnetic gradient is computed from the total field data using a method of transforming the data set into the frequency domain, applying a transfer function to calculate the gradient, and then transforming back into the spatial domain. The method is described by a number of authors including Grant, 1972 and Spector, 1968. The computer program for this purpose is provided by Paterson, Grant and Watson Ltd. of Toronto.

The VLF data was treated automatically so as to normalize the non conductive background areas to 100 (total field strength) and zero (quadrature). The algorithms to do this were developed by Terraquest and will be provided to anyone interested by application to the company.

All of these dataprocessing calculations and map contouring were carried out by Dataplotting Services Inc. of Toronto.

INTERPRETATION

6.1 General Approach

To satisfy the purpose of the survey as stated in the introduction, the interpretation procedure was carried out on both the magnetic and VLF data. On a local scale the magnetic gradient contour patterns were used to outline geological units which have different

Grant, F.S., 1972: Review of Data Processing and Interpretation Methods in Gravity and Magnetics; Geophysics Vol 37-4
Spector, A., 1968: Spectral Analysis of Aeromagnetic maps; unpublished thesis; University of Toronto
magnetic intensity and patterns or "signatures". Where possible these are related to existing geology to provide a geological identity to the units. On a regional scale the total field contour patterns were used in the same way.

Faults and shear zones are interpreted mainly from lateral displacements of otherwise linear magnetic anomalies but also from long narrow "lows". The direction of regional faulting in the general area is taken into account when selecting faults. Folding is usually seen as curved regional patterns. Alteration zones can show up as anomalously quiet areas, often adjacent to strong, circular anomalies that represent intrusives. Magnetic anomalies that are caused by iron deposits of ore quality are usually obvious owing to their high amplitude, often in tens of thousands of gammas.

VLF anomalies are categorized according to whether the phase response is normal, reverse, or no phase at all. The significance of the differing phase responses is not completely understood although in general reverse phase indicates either overburden as the source or a conductor with considerable depth extent, or both. Normal phase response is theoretically caused by surface conductors with limited depth extent.

Areas showing a smooth response somewhat above background (ie. 110 or so) are likely caused by overburden which is thick enough and conductive enough to saturate at these frequencies. In this case no response from bedrock is seen.

6.2 Interpretation

The total magnetic field has a relief of approximately 510 gammas and shows the general trend of the lithology. The vertical magnetic gradient brings out the minor trends and, in places, shows improved resolution of the major trends. The following notes supplement the accompanying data and interpretation maps which form the major end-product of the survey.

The strong, north trending magnetic anomalies are interpreted to be diabase dykes (Unit 12) crosscutting the stratigraphy. These have been significantly offset by east-west faults. As these dykes are characterized by strong magnetic responses, their magnetically mapped widths may be exaggerated.

The outcrops of mafic to intermediate metavolcanics (Unit 1) and felsic to intermediate metavolcanics (Unit 2) correlate with moderate magnetic responses. Horizons of strong magnetic activity (Units 1m and 2m) may be related to increased concentrations of magnetic minerals (such as magnetite or pyrrhotite) or to more mafic horizons.
FIGURE 4

TERRAQUEST CLASSIFICATION OF VLF-EM CONDUCTOR AXES

<table>
<thead>
<tr>
<th>SYMBOL</th>
<th>CORRELATION</th>
<th>ASSOCIATION: Possible Origins</th>
</tr>
</thead>
<tbody>
<tr>
<td>a, A</td>
<td>Coincident with magnetic stratigraphy</td>
<td>Bedrock magnetic horizons: stratabound mineralogic origin or shear zone</td>
</tr>
<tr>
<td>b, B</td>
<td>Parallel to magnetic stratigraphy</td>
<td>Bedrock non-magnetic horizons: stratabound mineralogic origin or shear zone</td>
</tr>
<tr>
<td>c, C</td>
<td>No correlation with magnetic stratigraphy</td>
<td>Association not known: possible small scale stratabound mineralogic origin, fault or shear zone, overburden</td>
</tr>
<tr>
<td>d, D</td>
<td>Coincident with magnetic dyke</td>
<td>Dyke or possible fault: mineralogic or electrolytic</td>
</tr>
<tr>
<td>f, F</td>
<td>Coincident with topographic lineament or parallel to fault system</td>
<td>Fault zone: mineralogic or electrolytic</td>
</tr>
<tr>
<td>ob, OB</td>
<td>Contours of total field response conform to topographic depression</td>
<td>Most likely overburden: clayey sediments, swampy mud</td>
</tr>
<tr>
<td>cul, CUL</td>
<td>Coincident with cultural sources</td>
<td>Electrical, pipe or railway lines</td>
</tr>
</tbody>
</table>

NOTES
1. Upper case symbols denote a relatively strong total field strength
2. Underlined symbols denote a relatively strong quadrature response
3. Mineralogic origins include sulphides, graphite, and in fault zones, gouge
4. Electrolytic origins imply conductivity related to porosity or high moisture content
Outcrops of clastic metasediments (Unit 4) correlate with weak magnetic responses. The east-west trending anomaly within this geological unit to the south is interpreted to be ironstone (Unit 3) in composition. The variation in magnetic activity along strike may be related to the width, number of individual horizons or the concentration of magnetic minerals. Variation in concentration may in turn be related to facies changes, such as magnetite ironstone to sulphide or carbonate ironstone.

Numerous VLF-EM conductor axes have been identified and evaluated according to the Terraquest classification system (Figure 4). This system correlates the nature and orientation of the conductor axes with stratigraphic, structural and topographic features to obtain an association from which one or more origins may be selected. Alternate associations are indicated in parentheses.

The interpretation of the VLF-EM data is complicated by the fact that some faults possess similar orientations and topographic features as the stratigraphy. Therefore many of the conductor axes interpreted to possess stratigraphic sources may also, or alternatively, possess fault related origins. The conductivity of faults may be related to mineralogic (such as gouge, graphite or sulphide) or electrolytic (porosity or overburden) origins. Faults defined by magnetic or VLF-EM data may provide primary structural control for epithermal mineralization.

Those conductor axes that coincide with or parallel the magnetic stratigraphy possess potential for bedrock, stratabound sources, either as mineralogic or electrolytic origins. These should be followed up on the ground by EM or IP techniques.

7. SUMMARY

An airborne combined magnetic and VLF-EM survey has been done on the property at line intervals of 100 metres. The total field and vertical gradient magnetic data, VLF-EM data and interpretation maps are produced at a scale of 1:10,000.

The magnetic data has been used to modify and update the existing geology and has shown a number of new contacts and faults. A number of VLF-EM conductor axes were found of which some are believed to have potential sulphide origins and have been recommended for additional investigation.

Charles Q. Barrie, M.Sc.
Geologist
April 15, 1987

Dear Madam:

The assessment work credits, as listed on the attached statement, have been approved as per the above date.

Please inform the recorded holder of these mining claims that these credits are available and that he should file a Report of Work with your office.

Yours sincerely,

J.C. Smith, A/Manager
Mining Lands Section
Mineral Development and Lands Branch
Mines and Minerals Division
Whitney Block, Room 6610
Queen's Park
Toronto, Ontario
M7A 1V3

Telephone: (416) 965-4888
DK/mc

cc: Jamie Frontier Resources Inc
 Suite 1201
 121 Richmond Street West
 Toronto, Ontario
 M5H 2K7

Mr. G.H. Ferguson
Mining & Lands Commissioner
Toronto, Ontario

Resident Geologist
Thunder Bay, Ontario

Attachment
Report of Work
(Geophysical, Geological, Geochemical and Expenditures)

Ministry of
Ontario

Report of Work
(Instructions: — Please type or print. — If number of mining claims traversed exceeds space on this form, attach a list. — Only days credits calculated in the “Expenditures” section may lie entered in the “Expend. Days Cr.” columns. — Do not use shaded areas below.)

Type of Survey(s): Airborne VLF - EM and Magnetometer

Claim Holder(s): Jamie Frontier Resources Inc.

Address: 1201 - 121 Richmond St. West, Toronto, Ont., M5H 2K7

Survey Company: Terraquest Ltd.

Name and Address of Author (of Geo-Technical report): Charles Q. Barrie, M. Sc.

Township or Area: Sandra Township

Prospector’s Licence No.: T 4692

Date of Survey (from Site): 31/08/86
Total Miles of line flown: 120 line km.

Credits Requested per Each Claim in Columns at right

Special Provisions

For first survey: Enter 40 days. (This includes line cutting)

For each additional survey: using the same grid:
Enter 20 days (for each)

Geophysical

- Electromagnetic
- Magnetometer
- Radiometric
- Other

Geologicai

Geochemical

Man Days

Complete reverse side and enter total(s) here

Airborne Credits

- Electromagnetic
- Magnetometer
- Radiometric

Expenditures (excludes power stripping)

Type of Work Performed

Performed on Claim(s):

Calculation of Expenditure Days Credits

Total Expenditures

Total Days Credits may be apportioned at the claim holder’s choice. Enter number of days credits per claim selected in columns at right.

Date: January 5, 1987

Certification Verifying Report of Work

W. P. Dickie - Director - Jamie Frontier Resources Inc.
1201 - 121 Richmond Street, West,
Toronto, Ontario, M5H 2K7

Date Certified: January 5, 1987

Mining Claims Traversed (List in numerical sequence)

<table>
<thead>
<tr>
<th>Mining Claim</th>
<th>Prefix</th>
<th>Number</th>
<th>Exp. Days Cr.</th>
</tr>
</thead>
<tbody>
<tr>
<td>TB</td>
<td>864358</td>
<td>80</td>
<td></td>
</tr>
<tr>
<td></td>
<td>864359</td>
<td>80</td>
<td></td>
</tr>
<tr>
<td></td>
<td>864360</td>
<td>80</td>
<td></td>
</tr>
<tr>
<td></td>
<td>864361</td>
<td>80</td>
<td></td>
</tr>
<tr>
<td></td>
<td>864362</td>
<td>80</td>
<td></td>
</tr>
<tr>
<td></td>
<td>864363</td>
<td>80</td>
<td></td>
</tr>
<tr>
<td></td>
<td>864364</td>
<td>80</td>
<td></td>
</tr>
<tr>
<td></td>
<td>864365</td>
<td>80</td>
<td></td>
</tr>
<tr>
<td></td>
<td>864366</td>
<td>80</td>
<td></td>
</tr>
<tr>
<td></td>
<td>864367</td>
<td>80</td>
<td></td>
</tr>
<tr>
<td></td>
<td>864368</td>
<td>80</td>
<td></td>
</tr>
<tr>
<td></td>
<td>864369</td>
<td>80</td>
<td></td>
</tr>
<tr>
<td></td>
<td>864370</td>
<td>80</td>
<td></td>
</tr>
<tr>
<td></td>
<td>864371</td>
<td>80</td>
<td></td>
</tr>
<tr>
<td></td>
<td>864372</td>
<td>80</td>
<td></td>
</tr>
<tr>
<td></td>
<td>864373</td>
<td>80</td>
<td></td>
</tr>
<tr>
<td></td>
<td>864374</td>
<td>80</td>
<td></td>
</tr>
<tr>
<td></td>
<td>864375</td>
<td>80</td>
<td></td>
</tr>
<tr>
<td></td>
<td>864376</td>
<td>80</td>
<td></td>
</tr>
<tr>
<td></td>
<td>864377</td>
<td>80</td>
<td></td>
</tr>
<tr>
<td></td>
<td>864378</td>
<td>80</td>
<td></td>
</tr>
<tr>
<td></td>
<td>864379</td>
<td>80</td>
<td></td>
</tr>
</tbody>
</table>

Total number of mining claims covered by this report of work: 39
Technical Assessment

Work Credits

Recorded Holder: JAMIE FRONTIER RESOURCES INC

Township or Area: SANDRA TOWNSHIP

<table>
<thead>
<tr>
<th>Type of survey and number of Assessment days credit per claim</th>
<th>Mining Claims Assessed</th>
</tr>
</thead>
<tbody>
<tr>
<td>Geophysical</td>
<td></td>
</tr>
<tr>
<td>Electromagnetic</td>
<td>40 days</td>
</tr>
<tr>
<td>Magnetometer</td>
<td>40 days</td>
</tr>
<tr>
<td>Radiometric</td>
<td></td>
</tr>
<tr>
<td>Induced polarization</td>
<td></td>
</tr>
<tr>
<td>Other</td>
<td></td>
</tr>
</tbody>
</table>

Section 77 (19) See “Mining Claims Assessed” column

- Geophysical: 40 days
- Geological: 40 days
- Geochemical: 40 days
 - Man days:
 - Airborne: ☑
 - Special provision:
 - Ground:

- Credits have been reduced because of partial coverage of claims.
- Credits have been reduced because of corrections to work dates and figures of applicant.

Special credits under section 77 (16) for the following mining claims

No credits have been allowed for the following mining claims

- ☐ not sufficiently covered by the survey
- ☐ insufficient technical data filed

The Mining Recorder may reduce the above credits if necessary in order that the total number of approved assessment days recorded on each claim does not exceed the maximum allowed as follows: Geophysical - 80; Geological - 40; Geochemical - 40; Section 77(19) - 60.