GEOPHYSICAL REPORT
ON THE LATTIMER PROSPECT
IN THE BEARDMORE AREA
THUNDER BAY MINING DIVISION, ONTARIO
for
R.J. McGowan
Vancouver, BC

April 10, 1984

D.G. Harder
T.R. Foster
Consulting Geologists

P.O. Box 4, #370 · 625 Howe Street, Vancouver, B.C. V6C 2T6 Telephone: (604) 683-0417
SUMMARY

This report describes a VLF-EM and proton magnetometer survey on 14 claims of a 21-claim block known as the Lattimer Prospect. The claims are in the Beardmore-Geraldton belt.

The Lattimer Prospect was discovered in 1949 and several short X-ray drill holes were put down to test quartz veins. One drill hole intersected a sulphide horizon yielding 8.16 ounces/1.6 feet. The showing has never been tested using modern geophysics and geochemistry.

A total of 10 conductors were delineated, 7 of which are worthy of detailed follow-up. The magnetic data suggests that 5 of the conductors are flanking iron formation, suggesting sulphide replacement or a sulphide phase.

The geology at the Lattimer Prospect is similar to that at the important past producers in the area (Leitch, MacLeod-Cockshutt, etc.). It is the same horizon presently being tested in Vincent Township by Eldor and Hudson Bay Mining and Smelting and similar to the one at the Metalore deposit in Irwin Township.

A two-phase work program is recommended; Phase I, surficial exploration, costing $48,760 and Phase II, diamond drilling, costing $134,550 for a total cost of $183,310.
<table>
<thead>
<tr>
<th>TABLE OF CONTENTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>SUMMARY</td>
</tr>
<tr>
<td>TABLE OF CONTENTS</td>
</tr>
<tr>
<td>INTRODUCTION</td>
</tr>
<tr>
<td>LOCATION, ACCESS AND PHYSIOGRAPHY</td>
</tr>
<tr>
<td>RECENT GOLD PRODUCTION AND EXPLORATION ACTIVITY IN THE AREA</td>
</tr>
<tr>
<td>REGIONAL GEOLOGY</td>
</tr>
<tr>
<td>GOLD MINERALIZATION IN THE BEARDMORE-GERALDTON BELT</td>
</tr>
<tr>
<td>GEOLOGY OF THE LATTIMER PROSPECT</td>
</tr>
<tr>
<td>PREVIOUS WORK AND MINERALIZATION</td>
</tr>
<tr>
<td>PRESENT SURVEY</td>
</tr>
<tr>
<td>DETAILED DESCRIPTION OF CONDUCTORS</td>
</tr>
<tr>
<td>DESCRIPTION OF MAGNETICS</td>
</tr>
<tr>
<td>DISCUSSION OF RESULTS</td>
</tr>
<tr>
<td>SUMMARY AND CONCLUSIONS</td>
</tr>
<tr>
<td>COST ESTIMATES</td>
</tr>
<tr>
<td>BIBLIOGRAPHY</td>
</tr>
<tr>
<td>APPENDIX I - INSTRUMENT SPECIFICATIONS</td>
</tr>
<tr>
<td>APPENDIX II - SURVEY PROCEDURE - SABRE VLF-EM RECEIVER</td>
</tr>
<tr>
<td>TABLE I - RECENT EXPLORATION PROGRAMS IN THE BEARDMORE-GERALDTON AREA</td>
</tr>
</tbody>
</table>

LIST OF FIGURES

FIGURE 1: REGIONAL LOCATION MAP	After Page 1
FIGURE 2: CLAIM MAP	After Page 2
FIGURE 3: REGIONAL GEOLOGY OF BEARDMORE-GERALDTON BELT	After Page 5
FIGURE 4: GEOLOGY OF THE LATTIMER PROSPECT	After Page 13
FIGURE 5: PROTON MAGNETOMETER SURVEY	In Pocket
FIGURE 6: VLF-EM SURVEY	In Pocket
INTRODUCTION

This report covers a proton magnetometer and VLF-EM survey on 14 claims in Legault Township (G-170) and south of Legault Township Area (G-131), Thunder Bay Mining Division, Ontario. The survey was done in March 1984. The 14 subject claims are part of a 21-claim block held by R.J. McGowan (see Claim Map).

The claims covered by the present report are: 592550 to 592559 inclusive and 655625 to 655629 inclusive. The claims were recorded on September 9, 1982. An extension was obtained on these 14 claims to May 31, 1984. Another 7 adjoining claims, 715488 to 715493 inclusive and 759953 were recorded on June 8, 1983.
LOCATION, ACCESS AND PHYSIOGRAPHY

The Lattimer Prospect is 5.5 km east-southeast of Jellicoe, Ontario. The property is readily accessible by a lumber road which passes through the east portion of the claims, 3 km south of Highway 11. This road was not ploughed during the survey and therefore a snowmobile was used. An east-west trail passes through over one-half of the property.

The topography on the property is gently rolling. A narrow east-west stream passes along the property. The tree cover includes balsam, spruce, pine, birch, and poplar. Most of the larger softwoods were removed by logging operations over 30 years ago.
Two gold deposits in the Beardmore-Geraldton area were in production during 1983. Mining Corporation of Canada Limited is mining and milling the Consolidated Louanna Gold Mine orebody at O'Sullivan Lake. Thyssen Mining Construction of Canada Limited, representing numbered Ontario Company 530260, is mining (bulk sampling) the Brenbar Gold Mine, Irwin Township, for treatment at the Pamour Mill, Timmins. As of November 15, 1983, 800 to 850 tons of gold ore were shipped.

Teck Corporation, owner of the Leitch Gold Mine, has leased the Pancontinental Mining (Canada) Limited Custom Gold Mill, Beardmore, for 3 years, 7 months effective November 1, 1983. The mill will be modified to a total cyanide circuit compatible with Leitch ore (waste dump). Hand-sorting of vein material was employed at the Leitch Mine throughout production (1936 to 1968) of 847,690 ounces of gold at a grade of 0.92 ounce gold per ton. The mill will continue to provide custom gold milling service through the GOMILL Program of the Ontario Government.

Roxmark Mines and Sherritt-Gordon Mines Limited are re-evaluating the Magnet Consolidated Gold Mine, Errington Township, through a program of dewatering, diamond drilling, sampling, and mapping. A headframe, hoist, warehouse, and office have been installed on site.
Phoenix Gold Mines Limited has initiated a feasibility study for possible exploration and development on the Quebec Sturgeon River Gold Mine. The company plans to spend 6 million dollars developing the deposit.

Metalore Resources is conducting a 4-stage, 6000-metre diamond drill program on the Brookbank gold prospect, Irwin Township. Dome Exploration (Canada) Limited have commenced a 3900-metre drill program on the Jellicoe Mine property, Lindsley Township.

During the survey, Hudson Bay Mining and Smelting and Eldor Resources were drilling separate properties in Vincent Township, 6 miles west of Legault Township.

Other Exploration programs within the Beardmore-Geraldton area have been summarized in Table I.
TABLE I

RECENT EXPLORATION PROGRAMS IN THE BEARDMORE-GERALDTON AREA

<table>
<thead>
<tr>
<th>Company</th>
<th>Township/Area</th>
<th>Exploration</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bema Industries</td>
<td>Irwin Township</td>
<td>Surface, sampling</td>
</tr>
<tr>
<td>Cambridge Resources</td>
<td>Errington Township</td>
<td>Geology</td>
</tr>
<tr>
<td>Canamax</td>
<td>Klotz Lake</td>
<td>Geology</td>
</tr>
<tr>
<td>Canamax</td>
<td>Vincent Township</td>
<td>Geology, D.D.H.</td>
</tr>
<tr>
<td>Cominco Ltd.</td>
<td>Colter-Lindsley Townships</td>
<td>Overburden drilling</td>
</tr>
<tr>
<td>Eldor Resources Limited</td>
<td>Vincent Township</td>
<td>Geology, D.D.H., Geophysics</td>
</tr>
<tr>
<td>Exchange Mining</td>
<td>Klotz Lake</td>
<td>Linecutting</td>
</tr>
<tr>
<td>Explorations Banque-Or Incorporated</td>
<td>Klotz Lake</td>
<td>D.D.H.</td>
</tr>
<tr>
<td>Great Western Petroleum Corporation</td>
<td>Pifher Township</td>
<td>Geology, D.D.H., Trenching</td>
</tr>
<tr>
<td>Hill, Goettler, Delaporte</td>
<td>Elmhirst-Rickaby Townships</td>
<td>Geophysics, D.D.H.</td>
</tr>
<tr>
<td>Holmwood Resources</td>
<td>Meader-Sandra Townships</td>
<td>Surface</td>
</tr>
<tr>
<td>Hudson Bay Mining and Smelting</td>
<td>Vincent Township</td>
<td>D.D.H.</td>
</tr>
<tr>
<td>Kentgate Resources Incorporated</td>
<td>Elmhirst Township</td>
<td>D.D.H.</td>
</tr>
<tr>
<td>Kerr Addison Mines Limited</td>
<td>Melchett-Briarcliffe Lakes</td>
<td>Geology</td>
</tr>
<tr>
<td>Kerr Addison Mines Limited</td>
<td>Melchett-Briarcliffe Lakes</td>
<td>Geology</td>
</tr>
<tr>
<td>Kerr Addison Mines Limited</td>
<td>Onaman Lake</td>
<td>Geology</td>
</tr>
<tr>
<td>Kerr Addison Mines Limited</td>
<td>Jellicoe</td>
<td>Geology</td>
</tr>
<tr>
<td>Kerr Addison Mines Limited</td>
<td>Toronto Lake</td>
<td>Geology</td>
</tr>
<tr>
<td>Lacana Mining Corporation</td>
<td>O'Sullivan Lake</td>
<td>Linecutting, Geophysics, Overburden Sampling, D.D.H.</td>
</tr>
<tr>
<td>Lacana Mining Corporation</td>
<td>Humboldt Bay</td>
<td></td>
</tr>
<tr>
<td>Manwa Exploration</td>
<td>Pifher Township</td>
<td>Geology</td>
</tr>
<tr>
<td>Noranda Exploration Company Limited</td>
<td>Willet Lake</td>
<td>Geology</td>
</tr>
<tr>
<td>Odessa Exploration Incorporated</td>
<td>O'Sullivan Lake</td>
<td>Sampling, D.D.H.</td>
</tr>
<tr>
<td>Pancontinental Mining (Canada) Limited</td>
<td>Summers Township</td>
<td>D.D.H.</td>
</tr>
<tr>
<td>Stroud Resources Limited</td>
<td>Dorothea Township</td>
<td>Trenching, Geology, Sampling</td>
</tr>
<tr>
<td>Stroud Resources Limited</td>
<td>Vincent-McComber Townships</td>
<td>Trenching, Geology, Sampling</td>
</tr>
<tr>
<td>The Quaternary Mining and Exploration Company Limited</td>
<td>Geraldton to Long Lake</td>
<td>Linecutting, Stripping</td>
</tr>
<tr>
<td>Turner Energy and Resources Limited</td>
<td>Pifher Township</td>
<td>D.D.H., Geology, Stripping</td>
</tr>
<tr>
<td>Villeneuve Exploration</td>
<td>Klotz Lake</td>
<td>D.D.H.</td>
</tr>
</tbody>
</table>
• GOLD MINES, INCLUDING PAST PRODUCERS

× GOLD PROSPECTS
REGIONAL GEOLOGY

The Beardmore-Geraldton area lies at the southern boundary of the east-trending, isoclinally folded Early Precambrian metavolcanic-metasedimentary sequence of the Wabigoon Subprovince. It is not clear whether lithological contacts in the Beardmore-Geraldton area represent depositional facies changes or are tectonically transposed, as has been demonstrated elsewhere in the Wabigoon Subprovince. All lithofacies reconstructions are therefore, necessarily, conjectural. A unit of fine-grained metasediments (wacke, siltstone, argillite) bounded on the south by a laterally extensive mafic to intermediate metavolcanic unit (basalt, mafic tuff) appears to be disconformably overlain by a coarser grained metasedimentary unit (conglomerate, wacke, argillite, ironstone) in the Geraldton area (Mackasey 1970a; Pye 1951). Both metasedimentary units thin to the north, and are overlain by a mafic to intermediate unit in an area north of Beardmore (Mackasey 1975). Further north and up-section in the Paint Lake area, felsic pyroclastic rocks interfinger with coarse clastic metasediments (Mackasey 1970a). The metavolcanic-metasedimentary sequence has been intruded by felsic batholiths, stocks and sills, and lenticular mafic intrusions. Late Precambrian diabase dikes and sills intrude all rock types. The regional metamorphic grade is greenschist facies.

Folding has been about east-trending axes at Beardmore and Geraldton. Ironstone, spatially related to many
gold deposits in the Beardmore-Geraldton area, can be traced in outcrop and from aeromagnetic data from southwest of Lake Nipigon to east of Geraldton. The ironstone is situated at the northern boundary of the most southerly metasedimentary unit (coarse metasedimentary unit). Regional or east-trending faults, i.e. Paint Lake Fault, can mark changes in lithology or structural style. "South of the fault, interbedded metasediments and mafic-metavolcanic flows are folded along east-trending axes, but to the north, intermediate to felsic pyroclastic rocks predominate and fold axes trend north and northwest" (Mackasey 1970a, p.74).

The Bankfield-Tombill Fault (strike 100° to 110°, dip 60° to 70°S) and the east-trending Little Long Lac Fault appear to have been important in determining the location of most of the Geraldton area gold deposits. Motion on the faults is complex. Underground mapping by Pye (1951, p.42-45) indicates that thrusting to the north is dominant with minor rotational and translational adjustments. Faulting commenced prior to mineralization but subsequent to felsic intrusion and continued after mineralization (Mason and McConnell 1983).
GOLD MINERALIZATION IN THE BEARDMORE-GERALDTON BELT

Production from the Beardmore-Geraldton area has exceeded 4.1 million ounces of gold and 250,000 ounces of silver. Gold mineralization has been subdivided into "belts" on the basis of stratigraphic location and host rock lithology.

(1) Southern Mafic Metavolcanic Belt

The most southerly unit in the Wabigoon Subprovince is an intermediate to mafic metavolcanic sequence, forming an east-trending lenticular belt up to 3 km wide. It consists of massive, pillowed, and amygdaloidal flows (chlorite schist), mafic tuffs, felsic to mafic intrusions, and/or coarse flow rocks. Mapping by Carter (1983) has outlined a major anticline with overturned limbs in Vincent-McComber Townships. The south metasedimentary unit overlies the south metavolcanic unit; although the contact may be structural. Chemical metasediments (chert and ironstone) and post-ironstone quartz (± carbonate) veins are hosted by the metavolcanics. The ironstone units are east-trending, steeply dipping regional features, occurring as discontinuous lenses. They are magnetite-silicate-carbonate ironstones consisting of alternating ferruginous recrystallized chert, magnetite, iron carbonate, and iron amphibole (grunerite) members. Fracturing has allowed vein quartz to be injected with arsenopyrite, pyrrhotite, magnetite, chalcopyrite, and gold. The quartz

MANWA EXPLORATION SERVICES LTD.

This report may not be reproduced in whole, in part, or in summary without the written permission of Manwa Exploration Services Ltd.
(± carbonate) veining has intruded the mafic metavolcanics disconformably to foliation. Gold is associated with chalcopyrite, galena, and pyrrhotite.

Examples include: the Northern Empire Mine, the Maki property, Craskie-Vega prospects, the Ralph Lake, Lattimer, McWilliams-Beardmore and Spooner-Norex occurrences.

(2) Southern Metasedimentary Belt

A total of 11 gold mines of this deposit type have recorded production. Gold mineralization is associated with the east-trending metasedimentary unit which includes conglomerate, wacke, argillite, and magnetite-hematite chert (± jasper) ironstone. Gold mineralization occurs in shear zones, quartz veins, and breccia zones hosted in clastic metasediments, felsic intrusions, gabbro intrusions, sulphides within oxide ironstone, and minor mafic metavolcanics.

Isoclinal folding and tight drag folding in the Beardmore (Leitch and Sand River Mines) and Geraldton areas, specifically observable in the ironstone, appear to be necessary controls for ore structure developments. Drag folds are ore-bearing structures throughout the belt plunge westward at 35° to 40°. In the Geraldton camp, most gold production has come from the rocks adjacent to, and north of, the Bankfield-Tombill Fault, situated on the south limb of the Little Long Lac Syncline, south of the Little Long
Lac Fault-Portage Shear Zone. The Bankfield-Tombill Fault may be the resultant structure after "the limit of drag folding has been reached" (Horwood and Pye 1951, p.29). The 70-kilometre distance between the Beardmore and Geraldton camps, is marked predominantly by a linear ironstone within the metasedimentary package, which has supported no gold production.

Of the gold produced in Beardmore-Geraldton camp, 94% is from the southern sedimentary dominated belt (Mason and McConnell 1983). The deposits in this subdivision have been further subdivided for clarity into 4 types based upon host rock lithology (modified from Pye 1951; Horwood and Pye 1951). It should be noted that individual deposits may exhibit one or more types of mineralization:

(A) Metasedimentary host rock

i) quartz veins and stringers in fracture zones in clastic metasediments--Little Long Lac, Magnet Consolidated, Leitch, Sand River, Hard Rock, Jellicoe, and Talmora Mines;

ii) quartz vein stringers and replacement sulphide zones in ironstone (chemical metasediment with limited clastic component)--MacLeod-Cockshutt-Hard Rock Mines and Solomon's Pillars prospect.

(B) Felsic and mafic intrusive host rocks

i) quartz veins and stringers in folded albite porphyry--MacLeod-Cockshutt-Hard Rock Mines, Roche Long Lac Gold Mine;

ii) mineralized zones of shearing and brecciation in albite porphyry--Consolidated Mosher Mine;

iii) quartz veins in shear zones in diorite or gabbro--Talmora Mine.
(C) Localized at the contact between minor felsic intrusive rocks and metasediments or diorite

i) shear zone containing quartz stringers or sulphides are between metawacke and albite porphyry--Bankfield, MacLeod-Cockshutt-Hard Rock, and Consolidated Mosher Mines;

ii) sulphide zones in fracture or shear zones at the contact between ironstone and quartz diorite--Macleod-Cockshutt Mine;

iii) quartz veins at contact between hornblende diorite or gabbro and albite porphyry--Roche Long Lac Gold Mine.

(D) Mafic metavolcanic host rock

i) veins cutting mafic metavolcanic--Wods Mac prospect.

(3) Northern Felsic Metavolcanic Belt

The stock-related, metavolcanic-hosted gold deposit type is typically of high grade and low tonnage. The deposits are auriferous quartz (±carbonate) veins and fracture-filled sulphide-associated gold deposits in mafic to felsic metavolcanics, often marginal to felsic intrusive stocks. Veins are sigmoidal or lenticular products of ductile failure. Three principal stocks occur in the west-central portion of the belt: The Coyle Lake Stock, The Elmhirst Lake Stock, and the Kaby Lake Stock. Most of the veins that were mined are hosted in the metavolcanics around the intrusions and include the Quebec Sturgeon River Mine and the Orphan (Dik-Dik) Mine. Few gold occurrences have been located within the stocks. Wolfe (1971) noted no anomalous gold concentrations within the Coyle
Lake Stock, where a detailed geochemical survey was undertaken.

Examples of deposits in this type of geological setting include the Quebec Sturgeon River Gold Mine, the Consolidated Louanna Gold Mine, the Orphan (Dik-Dik) Mine, the Tyson Mine, the Cowan Mine, the Mitto and Greenoaks prospects and the Maloney Sturgeon Mine.
GEOLOGY OF THE LATTIMER PROSPECT

Legault Township has been mapped by the Ontario Geological Survey on a scale of 1/4 mile:1 inch (Mackasey et al, 1976). The Lattimer Prospect lies along the southern mafic metavolcanic belt. This belt, less than a mile wide at the Lattimer Prospect, has been folded into an east-west anticlinal structure. The metavolcanics on the property include massive flows, coarse-grained flows, lapilli tuff, tuff breccia and interspersed irregular bands of iron formation. Recrystallized chert, magnetite and grunerite are the three components at the iron formation.

Metasediments occur to the north and south of the property and the east-west contact appears to be faulted in both instances. The metasediments include greywacke, sandstone, and siltstone.

An elongated east-west trending band of biotite leucogabbro, 150 metres wide, has intruded along the northern volcanic-sedimentary contact. A narrow north-south trending diabase dyke occurs in the east half of the property.

The east-west anticline has both limbs apparently dipping steeply north. The east-west faulted contacts have been cross-faulted along a northeast axis in the centre of the property.
LEGEND

4 DIABASE DYKE
131 BIOTITE LEUCOGABBRO
V2V INTERMEDIATE VOLCANICS FLOWS
 a. Tuff breccia
 b. Porphyritic flow

METASEDIMENTS
 mainly greywacke

IF IRON FORMATION
Au X GOLD PROSPECT
X BEDROCK OUTCROP
OUTCROP
GEOLoGICAL BOUNDARY
FAULT
LINEAMENT
BEDDING: INCLINED, VERTICAL
FOLIATION INCLINED
ROAD

ADAPTED FROM MACKASEY 1976.
PREVIOUS WORK AND MINERALIZATION

The original gold showing was discovered and drilled by C. Lattimer. No information is available on the surface showing. Nine short X-ray diamond drill holes were put down, 3 of which failed to reach bedrock. A drill plan was not filed but it is known from old claim maps that the holes were put down in the vicinity of the present claim 592551. Assays are not available for each hole but the quartz veins generally assayed trace or 0.01 ounces Au/ton. Apparently the target was coarse gold in quartz veins.

The best intersection was in Hole 3 where a sample at 116.6 feet yielded 8.16 ounces Au/1.6 feet. The mineralization is described as "mainly carbonaceous material--fine-grained black, easily disintegrated, considerable pyrite and pyrrhotite, few narrow quartz-carbonate stringers." This unit is probably graphitic.

There is no other recorded work on the property. In 1981 Amoco held some claims south of Legault Township and did some regional soil geochemistry. (Ben Nelson, prospector from Jellicoe, personal communication.)
PRESENT SURVEY

The present proton magnetometer and VLF-EM survey was conducted by D.G. Harder and T.R. Foster between March 20 and March 29, 1984.

An east-west baseline 2.9 km long was cut. A total of 24 cross-lines running north-south (360°) were compassed and flagged at intervals of 120 metres. Stations were 30 m apart. A total of 20 km were surveyed.
DETAILED DESCRIPTIONS OF CONDUCTORS

Inflections and cross-overs in the VLF-EM profiles have been placed in two categories:

(1) Probable Bedrock Conductors;
(2) Possible Bedrock Conductors.

Probable Bedrock Conductors:

A/ This anomaly occurs in the southern portion of the grid area stretching in a curvilinear fashion from Line 3+90W to 14+10E, a strike length of at least 1.8 km. Slightly assymetric profiles with high magnitude cross-overs indicate a narrow (less than 10 metres) steeply north-dipping sheet-like conductor. High field strength values correlate well with the cross-overs indicating high conductivity. Regional mapping (Geol. Comp. Series Map 2102) and local geology indicate that the anomaly is associated with a fault contact between mafic volcanic and sedimentary rocks. Concentrations of sulphidic laminated sediments are evident in the conductor area.

B/ This anomaly is generally similar to anomaly A, but is characterized by dip angles and corresponding field strength values of a lower magnitude. Profile symmetry indicates a steeply north-dipping sheet conductor. One outcrop of sheared, sulphidic metasediments was noted in the anomaly area on Line 13+50 West. This anomaly is also interpreted to correspond with the volcanic-sedimentary contact mentioned above.
and is probably a continuation of anomaly A, which has been displaced 170 metres in a sinistral sense by faulting.

C/ This is a linear, multilne anomaly which occurs immediately south of the baseline in the east-central portion of the property. A strike length of 500 to 600 metres is indicated. The anomaly is characterized by low to moderate dip angle values and moderately high corresponding field strength values. A steeply dipping sheet of narrow to moderate width is indicated. The anomaly is nearly parallel to geologic strike and may be related to concentrations of sulfidic sediments, iron formation or a shear zone within mafic volcanic tuffs or flows.

D/ This is a linear anomaly occurring south of and subparallel to anomaly C (above), in an area of rolling topography. Profiles characteristically show low to moderate dip angles and corresponding moderately high field strength values in the anomaly area. Being closely parallel to anomaly C, the profiles are somewhat distorted to the north of the anomaly but a narrow (less than 10 metres) steeply dipping sheet of moderately high conductivity is indicated. The anomaly may be related to similar causes as that of anomaly C.

E/ This is a three-line linear anomaly occurring in the central portion of the property immediately south of the baseline. It is subparallel to geologic strike and occurs
in an area of rolling topography. It is characterized by low to moderate dip angle magnitudes and low to moderate field strength values. A narrow (less than 10 metres) steeply dipping sheet of low to moderate conductivity is indicated. Outcrops of banded chert-iron sulphide iron formation occur along strike to the west of the anomaly indicating a possibly similar source for anomaly E.

F/ This anomaly describes two individual cross-overs occurring on Line 1+50W at 1+20S and Line 2+70W at 100S. These cross-overs may describe a single non-concordant zone of shearing or mineralization or two separate, laterally discontinuous zones of shearing or mineralization. Profiles are obscured to the north by anomaly E, but moderately high dip angle values and field strength peaks substantiate a bedrock source for these anomalies. A narrow, steeply north-dipping source is indicated.

G/ This anomaly occurs in the west-central portion of the property in an area of flat to gently rolling topography. It is characterized by low dip angle and corresponding field strength values. A narrow, steeply dipping source of weak to moderate conductivity is indicated. This anomaly may represent a western continuation of anomaly F (above) which has been displaced by left lateral faulting.
H/ This anomaly is described by an isolated cross-over on Line 6+30W at about 4+10S. It is of low dip angle magnitude and apparent low conductivity. It may be related to local shearing or sulphide mineralization within host mafic volcanic rocks.

I/ This anomaly is described by a single isolated cross-over occurring on Line 9+90W at approximately 400S. Dip angle values are moderately high but it was detected using the Annapolis transmitting station and field strength values could not be obtained. A narrow, steeply north-dipping source is indicated.

J/ This anomaly is a single cross-over on Line 9+90W at approximately 1+10S. An inflection on Line 8+70W indicates that this anomaly may extend eastward for a total strike length of approximately 150 metres. It may be that this anomaly is related to the same source formation or structure as that of anomaly G.

Possible Bedrock Conductors:

These are interpreted from profiles which show weak cross-overs or weak to strong inflections with or without a corresponding increase in horizontal field strength. They occur as less distinct later extensions of "probable bedrock conductors" or as isolated single of multi-line anomalies. The
isolated anomalies are often associated with flat, marshy areas or streams and are likely caused by moderately conductive unconsolidated materials.
DESCRIPTION OF MAGNETICS

The proton magnetometer readings were plotted with respect to a base level of 60,000 gammas. A steep magnetic gradient is indicated with readings varying between -3,770 and 10,300 gammas.

An overall strong east-west magnetic trend persists across the property through the middle row of claims, reflecting narrow bands of iron formation within the volcanics. A secondary northeast trend indication of drag folding and/or cross faulting is also quite evident. The most obvious break in the iron formation crosses the baseline at about 1+50W in a northeasterly direction.

The complex magnetic pattern suggests tight folding along an east-west axis. The overall structure appears to be anticlinal with asymmetrical limbs. If so, both limbs would appear to be dipping south. The magnetic relief in the southern half of the grid is relatively low, suggesting reflecting the underlying metasediments.
DISCUSSION OF RESULTS

The VLF-EM survey indicates several anomalous zones on the property, ten of which have been classified as "Probably Bedrock Conductors". Other anomalous zones have been classified as "Possible Bedrock Conductors"; these occur as isolated inflections in dip angle profiles or as possible lateral extensions of indicated conductors.

The majority of the Probable Bedrock Conductors are of narrow width and are probably related to steeply north dipping zones of mineralization and/or shearing. Strike length varies from 120 to 1,800 metres, and generally moderate to high conductivity is indicated by field strength measurements.

An interpreted left-lateral fault striking approximately 020° displaces what would otherwise be laterally continuous conductors by approximately 170 metres. This secondary trend is confirmed by the magnetics. Anomalies located west of this interpreted fault characteristically have lower dip angle and associated field strength values. A reconstruction of the anomalies indicates that they are related to three (3) main linear horizons or structural features which cross the property from east to west. These main features are subparallel to each other and are concordant or sub-concordant with the principal direction (090°) of foliation and local shearing.
Outcrops found on the property by the authors indicate that anomalies are related to concentrations of iron-sulphides and cherty metasediments, or "iron-formation," which lie south of and within a thick unit of mafic volcanic rocks. Local shearing or laterally discontinuous inter-flow sedimentary horizons may be the cause of some anomalies, particularly those of shorter strike length. The curvilinear nature of anomalies A and B, which are probably related to a major fault contact between volcanic and sedimentary rocks, may be due to similar folding (noted by the author in iron formation nearer to the baseline).

West of the property the iron formation at the major volcanic-sedimentary contact varies in width from 2 to 5 metres as evidenced by diamond drilling results (pers. comm., Mr. Greg Douglas, Hudson Bay Mining and Smelting). Results of assaying drill cores from this iron formation indicate that gold content of sulphides increases with decreasing pyrrhotite to pyrite ratio (pers. comm., Mr. Bob Jones, Eldor Resources Ltd.). Therefore, those iron-formation related VLF-EM anomalies associated with low magnetic anomalies may be more attractive targets for sulphide-related gold mineralization.

All of the stronger conductors on the property are worthy of follow-up. Of immediate interest are anomalies E, F and G, which are in the vicinity of the original showing. All three trend about 100° and are perpendicular to the
assumed cross faulting. Anomalies F and G are on the north flank of strong magnetic anomalies.

Anomaly C is interesting because it connects or lies between 2 strong magnetic anomalies, suggesting sulphide replacement of the magnetic iron formation.

Anomaly D, like F and G, lies on the north flank of a strong magnetic anomaly.

Anomalies A and B are interesting because of their strength and persistence. Anomaly A generally has little magnetic response except for a strong low along L8+10E, 9+30E and 10+50E. Anomaly B has a moderate magnetic response along 4 lines, L9+90W to L13+50W.

Of lower priority on anomalies H, I and J which are all only one-line conductors.
SUMMARY AND CONCLUSIONS

The most important style of mineralization in the Beardmore-Geraldton belt is related to deformation of the iron formation, commonly near the volcanic-sedimentary contact. This is common elsewhere in the Precambrian (e.g. Homestake Mine, Camflo Mine and the Central Patricia). More specifically, the gold is concentrated in quartz-sulphide bands. The presence of sulphides may be due to replacement or could represent a facies change. The most important sulphides are pyrite and arsenopyrite.

All conductors should be followed-up, especially in light of the high grade sulphidic intersection obtained in 1949. A soil B horizon geochemical survey is recommended as the bedrock is reasonably shallow. At the same time geological mapping and intensive prospecting should be carried out over the entire property. The geophysical survey should be completed on the northern seven claims. Stripping and trenching would complete Phase I.
COST ESTIMATES

PHASE I

Linecutting
10 km @ $350/km $ 3 500

Geophysics (7 northern claims)
VLF-EM, 10 km @ $125/km* 1 250
Magnetometer, 10 km @ $125/km* 1 250

Geological Mapping
30 km @ $200/km* 6 000

Prospecting
20 days @ $150/day* 3 000

Geochemical Survey
10 days @ $150/day* 1 500
500 samples @ $20/sample 10 000

Stripping and Trenching
6 500

Assays
100 rocks @ $20/rock 2 000

Engineer/interpretation of results
12 days @ $450/day* 5 400

Drafting and Printing
$ 2 000

Contingencies @ 15% $ 6 360

PHASE II

Diamond Drilling
800 metres @ $125/metre $100 000

Assays and Freight
200 samples @ $20/sample 4 000

Supervision and Logging
30 days @ $400/day* 12 000

Drafting and Printing Report 1 000

Contingencies @ 15% $17 550

Total of Phase I and Phase II $183 310

Respectfully Submitted,

[Signatures]

*Includes field costs.

MANWA EXPLORATION SERVICES LTD.

This report may not be reproduced in whole, in part, or in summary without the written permission of Manwa Exploration Services Ltd.
BIBLIOGRAPHY

Boyle, R.W.

Carter, M.W.

Ferguson, A.S., Groen, H.A., and Haynes, R.

Horwood, H.C., and Pye, E.G.
1951: Geology of Ashmore Township, Little Long Lac Area; Ontario Department of Mines, Volume 60, Part 5, 105p. Accompanied by Map 1951-2, scale 1 inch to 1000 feet.

Mackasey, W.O.

1975: Geology of Dorothea, Sandra, and Irwin Townships, District of Thunder Bay; Ontario Division of Mines, Geological Report 122, 83p. Accompanied by Map 2294, scale 1 inch to 1/2 mile.

Mackasey, W.O., Edwards, G.R., and Cape, D.F.

Mason, J.K., and McConnell, C.D.

Patterson, G.C., Mason, J.K., and Schnieders, B.R.
Patterson, G.C., Mason, J.K., and Schnieders, B.R.

Pye, E.G.
1951: Geology of Errington Township, Little Long Lac Area; Ontario Department of Mines, Volume 60, Part 6, 140p. Accompanied by Map 1951-7, scale 1 inch to 1000 feet.

Pye, E.G., Harris, F.R., Fenwick, K.G., and Baillie, J.
1965: Tashota-Geraldton Sheet, Thunder Bay and Cochrane Districts; Ontario Department of Mines, Geological Compilation Series, Map 2102, scale 1 inch to 4 miles or 1:253 440.
APPENDIX I: INSTRUMENT SPECIFICATIONS
APPENDIX I: INSTRUMENT SPECIFICATIONS

1) SABRE VLF-EM RECEIVER

Transmitting Stations: Seattle, Washington (24.8 kHz)
Annapolis, Maryland (21.4 kHz)

Parameters Measured: Dip Angle of null of field,
horizontal field strength corrected to 50% instrument gain

Dimensions: 8.5 in. x 9.5 in. x 2.5 in.

Power Source: 8 size AA alkylne batteries

1) GEOMETRICS MODEL G-816 PORTABLE PROTON MAGNETOMETER

This instrument measures the total intensity of the earth's magnetic field in gammas. The moving base station procedure was used and loops, comprising 2 lines 800 metres long, were surveyed along an east-west baseline. Values were plotted with respect to base level of 60 000 gammas.
APPENDIX II: SURVEY PROCEDURE - SABRE VLF-EM RECEIVER
APPENDIX II: SURVEY PROCEDURE - SABRE VLF-EM RECEIVER

The survey was conducted on compassed and chained grid lines turned off of a cut and picketed baseline. Lines were spaced 120 metres apart while the station spacing was 30 metres.

Data obtained included the dip angle of the null of field and the horizontal field strength. This was done by using a three-step procedure:

1. The receiver was held in a horizontal position and the operator rotated until a minimum field strength reading was obtained, thus aligning the receiver coil axis parallel to the direction of the primary field. The operator consistently faced eastward.

2. The receiver was then raised into an upright (vertical) position and rotated about an imaginary horizontal axis until the field strength meter again read a minimum; the dip angle of this null position was recorded from the inclinometer.

3. The operator returned the receiver to the horizontal position and rotated 90 degrees, thus placing the coil axis in a position perpendicular to the direction of the primary field. The field strength damping button was then depressed and the field strength recorded.

Data presented is unfiltered. Field strength values are corrected to an arbitrarily chosen "base gain" setting.
of 50% or 500 on the instrument dial.

Presentation of Data

The accompanying plan illustrates the survey data by showing profiles of the dip angle and horizontal field strength. Survey lines are corrected for lateral errors made in establishing the grid, thus creating an idealized straight line for the purposes of plotting the profiles. Vertical errors in chaining between stations were noted when tying into the baseline after completing closed traverses. Although these are minimal, the actual station locations are shown and are not idealized vertically.

A few rock outcrops were visible above the snow; they were studied and are also shown on the geophysical plan to aid in interpretation of the data.
Ontario Ministry of Natural Resources
Report of Work (Geophysical, Geological, Geochemical and Expenditures)

Type of Survey(s) - GEO PHYSICAL
Claim Holder(s) - R. J. McGowan
Address - 370 - 625 Howe St., Vancouver, B.C. V6C 2T6
Survey Company - Manwa Exploration Services Ltd.

Date of Survey (from to) - Day | Mo. | Yr. | Day | Mo. | Yr.
Total Mls of Line Cut

Name and Address of Author (of Geo-Technical report) - Glenn Harder, Box 2028, Wawa, Ontario

Credits Requested per Each Claim in Columns at right

MINING LANDS SECTION

Special Provisions
For first survey:
- Electromagnetic
 - Enter 40 days (This includes line cutting)
- Magnetometer
 - Enter 20 days
- Radiometric
 - Other
- Geological
- Geochemical

Man Days
- Complete reverse side and enter total(s) here

Expenditures (excludes power stripping)

Type of Work Performed

Calculation of Expenditure Days Credits

Total Expenditures

Total Days Credits

Total number of mining claims covered by this report of work

For Office Use Only

Recorded Holder or Agent (Signature)

Certification Verifying Report of Work

I hereby certify that I have a personal and intimate knowledge of the facts set forth in the Report of Work annexed hereto, having performed the work or witnessed same during and/or after its completion and the annexed report is true.

Name and Postal Address of Person Certifying

MANWAY EXPLORATION SERVICES LTD., WAWA, ONTARIO
GEOCHEMICAL SURVEY - PROCEDURE RECORD

<table>
<thead>
<tr>
<th>Numbers of claims from which samples taken.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Number of Samples.</td>
</tr>
</tbody>
</table>

Type of Sample
- (Nature of Material)

Average Sample Weight
- p. p. m.
- p. p. b.

Method of Collection

<table>
<thead>
<tr>
<th>Soil Horizon Sampled.</th>
</tr>
</thead>
</table>

Horizon Development.

<table>
<thead>
<tr>
<th>Sample Depth</th>
</tr>
</thead>
</table>

Terrain

<table>
<thead>
<tr>
<th>Drainage Development.</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Estimated Range of Overburden Thickness.</th>
</tr>
</thead>
</table>

ANALYTICAL METHODS

<table>
<thead>
<tr>
<th>Values expressed in:</th>
</tr>
</thead>
</table>

- per cent
- p. p. m.
- p. p. b.

<table>
<thead>
<tr>
<th>Cu, Pb, Zn, Ni, Co, Ag, Mo, As (circle)</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Field Analysis (tests)</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Extraction Method</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Analytical Method</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Reagents Used</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Field Laboratory Analysis</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>No. (tests)</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Extraction Method</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Analytical Method</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Reagents Used</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Commercial Laboratory (tests)</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Name of Laboratory</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Extraction Method</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Analytical Method</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Reagents Used</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>General</th>
</tr>
</thead>
</table>

MINING CLAIMS TRAVERSED

List numerically

<table>
<thead>
<tr>
<th>Mining Claim No.</th>
</tr>
</thead>
</table>

Type of Survey(s):
- Geophysical - Magnetic, VLF
- Geologic - Structural

<table>
<thead>
<tr>
<th>Township or Area</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Claim Holder(s):</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Survey Company</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Author of Report</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Address of Author</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Covering Dates of Survey</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Total Miles of Line Cut</th>
</tr>
</thead>
</table>

SPECIAL PROVISIONS

<table>
<thead>
<tr>
<th>Geophysical Days per claim</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Electromagnetic</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Magnetometer</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Radiometric</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>ENTER 40 days (includes line cutting) for first survey.</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>ENTER 20 days for each additional survey using same grid.</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Geophysical</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Magnetometer</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Other</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Geological</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Geochronal</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>AIRBORNE CREDITS (Special provision credits do not apply to airborne surveys)</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Magnetometer Electromagnetic Radiometric</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>DAYS per claim</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>ENTER 40 days (includes line cutting) for first survey.</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>ENTER 20 days for each additional survey using same grid.</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Geophysical</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Magnetometer</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Other</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Geological</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Geochronal</th>
</tr>
</thead>
</table>

DATE:

RECEIVED:

Res. Geol.

Qualifications:

Navigation Survey:

<table>
<thead>
<tr>
<th>Previous Surveys</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>File No.</th>
<th>Type</th>
<th>Date</th>
<th>Claim Holder</th>
</tr>
</thead>
</table>

TOTAL CLAIMS: 14
Geophysical Technical Data

Ground Surveys — If more than one survey, specify data for each type of survey

<table>
<thead>
<tr>
<th>Number of Stations</th>
<th>682</th>
</tr>
</thead>
<tbody>
<tr>
<td>Station interval</td>
<td>30 m</td>
</tr>
<tr>
<td>Profile scale</td>
<td></td>
</tr>
<tr>
<td>Contour interval</td>
<td></td>
</tr>
</tbody>
</table>

Magnetic

- **Instrument**: Geometrics proton magnetometer 6.816
- **Accuracy**: Scale constant: 15 gamma
- **Diurnal correction method**: Moving base station
- **Base Station check-in interval (hours)**: 2 hours
- **Base Station location and value**: 82.121 90.6 60.575 gamma

Electro-Magnetic

- **Instrument**: Sable VLF EM
- **Coil configuration**: T/degree
- **Coil separation**: 1 degree
- **Method**: ☐ Fixed transmitter ☐ Shoot back ☐ In line ☐ Parallel line
- **Frequency**: Seattle
- **Parameters measured**: Dip angle + Total field

Induced Polarization

- **Instrument**: (specify VLF station)
- **Parameters measured**: [提供更多参数]

Self Potential

- **Instrument**: (specify)
- **Survey Method**: (specify)
- **Corrections made**: (specify)

Radiometric

- **Instrument**: (specify)
- **Values measured**: (specify)
- **Energy windows (levels)**: (specify)
- **Height of instrument**: (specify)
- **Background Count**: (specify)
- **Size of detector**: (specify)
- **Overburden**: (specify)

Others (Seismic, Drill Well Logging etc.)

- **Type of survey**: (specify)
- **Instrument**: (specify)
- **Accuracy**: (specify)
- **Parameters measured**: (specify)
- **Additional information (for understanding results)**: (specify)

Airborne Surveys

- **Type of survey(s)**: (specify)
- **Instrument(s)**: (specify)
- **Accuracy**: (specify)
- **Aircraft used**: (specify)
- **Sensor altitude**: (specify)
- **Navigation and flight path recovery method**: (specify)
- **Aircraft altitude**: (specify)
- **Line Spacing**: (specify)
- **Miles flown over total area**: (specify)
- **Over claims only**: (specify)
Ontario Ministry of Natural Resources

Technical Assessment

Work Credits

AMENDED

Recorded Holder

R.J. McGOWAN

Township or Area

LEGAULT TOWNSHIP AND SOUTH OF LEGAULT TOWNSHIP

<table>
<thead>
<tr>
<th>Type of survey and number of Assessment days credit per claim</th>
<th>Mining Claims Assessed</th>
</tr>
</thead>
<tbody>
<tr>
<td>Geophysical</td>
<td></td>
</tr>
<tr>
<td>Electromagnetic</td>
<td>40 days</td>
</tr>
<tr>
<td>Magnetometer</td>
<td>20 days</td>
</tr>
<tr>
<td>Radiometric</td>
<td></td>
</tr>
<tr>
<td>Induced polarization</td>
<td></td>
</tr>
<tr>
<td>Other</td>
<td></td>
</tr>
</tbody>
</table>

Section 77 (19) See "Mining Claims Assessed" column

Geological

Geochemical

<table>
<thead>
<tr>
<th>Man days</th>
<th>Airborne</th>
<th>Special provision</th>
<th>Ground</th>
</tr>
</thead>
</table>

☐ Credits have been reduced because of partial coverage of claims.

☐ Credits have been reduced because of corrections to work dates and figures of applicant.

Special credits under section 77 (16) for the following mining claims

No credits have been allowed for the following mining claims

☐ not sufficiently covered by the survey ☐ Insufficient technical data filed
Mining Lands Section

Control Sheet

File No 2:6671

TYPE OF SURVEY

✓ GEOPHYSICAL

____ GEOLOGICAL

____ GEOCHEMICAL

____ EXPENDITURE

MINING LANDS COMMENTS:

__

__

__

__

OK.

__

LGD.

Signature of Assessor

Date

July 3/84
Mrs. A.M. Hayes
Mining Recorder
Ministry of Natural Resources
P.O. Box 5000
Thunder Bay, Ontario
P7C 5G6

Dear Madam:

RE: Geophysical (Magnetometer & Electromagnetic) Survey
submitted on Mining Claims TB 592529 et al in Legault Township and Area South of Legault Township

Enclosed is an amended statement of Assessment Work Credits. This statement replaces the one approved on July 10, 1984. The client has requested that linecutting be included and the additional credits have been granted with the electromagnetic survey. Please change your records and notify the claim holder accordingly.

Yours sincerely,

S.E. Yundt
Director
Land Management Branch

Whitney Block, Room 6643
Queen's Park
Toronto, Ontario
M7A 1N3
Phone:(416)965-4888

S. Hurst:mc

cc: R.J. McGowan
 Suite 370
 625 Howe Street
 Vancouver, B.C.
 V6C 2T6

cc: Glenn Harder
 Box 2028
 Wawa, Ontario
 PO Box 1KO

Enc.
Mrs. Audrey Hayes
Mining Recorder
Ministry of Natural Resources
P.O. Box 5000
Thunder Bay, Ontario
P7C 5G6

Dear Madam:

We have received reports and maps for a Geophysical (Electromagnetic & Magnetometer) Survey submitted under Special Provisions (credit for Performance and Coverage) on Mining Claims TB 592550 et al in the Township of Legault.

This material will be examined and assessed and a statement of assessment work credits will be issued.

Yours sincerely,

S.E. Yundt
Director
Land Management Branch
Whitney Block, Room 6643
Queen's Park
Toronto, Ontario
M7A 1W3
Phone: (416) 965-6918

R. Pichette:sc

cc: R.J. McGowan
370 - 625 Howe Street
Vanocuver, B.C.
V6C 2T6

cc: Manwa Exploration Services Ltd
Field Office
P.O.I. Box 2028
Wawa, Ont
PO5 1K0
Mr. E. Anderson
Director Land Management
Ministry of Natural Resources
Room 6643, Whitney Block
Queen's Park, Toronto
M7A 1W3

Dear Sir,

Enclosed are 2 copies of the geophysical report for R.J. McGowan on 14 claims in Legault Twp. and Smith 1 Legault Twp., Thunder Bay Division, as per enclosed sketch. The title of the report is "Geophysical Report on the Ladimer Prospect in the Bendview Area, Thunder Bay Div., Ontario," dated April 10, 1984, by D.G. Harder and T.R. Foster. VLF EM and Magnetometer maps are included. Technical data statements accompany the report. A work report has been filed or sent to Thunder Bay.

Thank you

Yours sincerely,

[Signature]

cc Vancouver office