This report refers to samples processed as-received.
Table of Contents

1.0 INTRODUCTION 1

2.0 LOCATION AND ACCESS 1
 Property Description 1
 Prospecting Dates - Breakdown 2
 Key Location map 3
 Claim map 3

3.0 GENERALIZED PROPERTY GEOLOGY 4

4.0 PROSPECTING / GEOLOGICAL MAPPING 5-6

5.0 WORK CONDUCTED ON THE PROPERTY 7

6.0 RESULTS AND CONCLUSION 8
 Recommendations 8

Appendices

Appendix I Rock sample Description Assay certificates Back of Report
Appendix II Assay certificates Back of Report
Appendix III Diamond Indicator mineral analysis report Back of Report

Map 1 - Geology - Travers - Sample location, scale 1:5000
 - Hand stripped section of the Carbonatite plug (Diatreme) Back of Report
1.0 Introduction

Between March 5, 2002 and August 10, 2003 general prospecting, geological mapping along traverse lines, rock sampling and hand stripping was conducted on the Heron Bay property. The purpose of the work was to find gold, PGE mineralization on the property and to find Kimberlite indicator minerals similar to the Wawa area occurrences.

2.0 LOCATION AND ACCESS

The property is 8 km southeast of Marathon, Ontario (Figure 1). The CPR south of Marathon and west of Heron Bay passes through the center of the property. A boat can be launched at Heron Bay and the property can be accessed by Lake Superior.

PROPERTY DESCRIPTION

The property are seven claims consist of 52 unpatented mining claims in the PIC Twp. (Figure 2)

<table>
<thead>
<tr>
<th>Claim No.</th>
<th>Units</th>
<th>Work performed on claims:</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>1208950</td>
<td>16</td>
<td>1246788</td>
<td>2</td>
</tr>
<tr>
<td>1208951</td>
<td>9</td>
<td>1216786</td>
<td>8</td>
</tr>
<tr>
<td>1232949</td>
<td>1</td>
<td>1231874</td>
<td>8</td>
</tr>
<tr>
<td>1216786</td>
<td>8</td>
<td>1246786</td>
<td>8</td>
</tr>
<tr>
<td>1231874</td>
<td>8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1246788</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1246786</td>
<td>8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Type of Work</td>
<td>Name & Address</td>
<td>Dates Worked</td>
<td>Days/hours</td>
</tr>
<tr>
<td>--</td>
<td>-------------------------------------</td>
<td>--------------------</td>
<td>------------</td>
</tr>
<tr>
<td>Prospecting on snow shoes, blasting swamps to take 3 till sample for Diamond indicator minerals</td>
<td>Rudolf Wahl
Box 1022
Marathon, Ontario
POT - 2EO
CLN # 206079</td>
<td>March 5, 2002 to March 8, 2002</td>
<td>4 Days</td>
</tr>
<tr>
<td>Helper Prospecting blasting swamp to take 3 till sample for Diamond indicator minerals</td>
<td>Brett Malinowski
Box 1863
Marathon, Ontario
POT - 2EO
CLN # 393033</td>
<td>March 5, 2002 to March 8, 2002</td>
<td>4 Days</td>
</tr>
<tr>
<td>Prospecting, Geological mapping and Rock sampling</td>
<td>Rudolf Wahl
Box 1022
Marathon, Ontario
POT - 2EO
CLN # 206079</td>
<td>Sept. 4, 2002 to Sept. 8, 2002</td>
<td>5 Days</td>
</tr>
<tr>
<td>Helper Prospecting and Rock sampling</td>
<td>Brett Malinowski
Box 1863
Marathon, Ontario
POT - 2EO
CLN # 393033</td>
<td>Sept. 4, 2002 to Sept. 8, 2002</td>
<td>5 Days</td>
</tr>
<tr>
<td>Prospecting, Geological mapping and Rock sampling</td>
<td>Rudolf Wahl
Box 1022
Marathon, Ontario
POT - 2EO
CLN # 206079</td>
<td>Sept. 12, 2002 to Sept. 20, 2002</td>
<td>9 Days</td>
</tr>
<tr>
<td>Helper Prospecting and Rock sampling</td>
<td>Brett Malinowski
Box 1863
Marathon, Ontario
POT - 2EO
CLN # 393033</td>
<td>Sept. 12, 2002 to Sept. 20, 2002</td>
<td>9 Days</td>
</tr>
<tr>
<td>Prospecting, Geological mapping Basting, Hand stripping and Rock sampling</td>
<td>Rudolf Wahl
Box 1022
Marathon, Ontario
POT - 2EO
CLN # 206079</td>
<td>March 10, 2003 to March 20, 2003</td>
<td>11 Days</td>
</tr>
<tr>
<td>Helper Prospecting Hand stripping and Rock sampling</td>
<td>Brett Malinowski
Box 1863
Marathon, Ontario
POT - 2EO
CLN # 393033</td>
<td>March 10, 2003 to March 20, 2003</td>
<td>11 Days</td>
</tr>
<tr>
<td>Prospecting, Geological mapping, Rock sampling</td>
<td>Rudolf Wahl
Box 1022
Marathon, Ontario
POT - 2EO
CLN # 206079</td>
<td>April 2, 2003 to April 5, 2003</td>
<td>4 Days</td>
</tr>
<tr>
<td>Type of Work</td>
<td>Name & Address</td>
<td>Dates Worked</td>
<td>Days/hours</td>
</tr>
<tr>
<td>------------------------------</td>
<td>---------------------------------</td>
<td>------------------------</td>
<td>------------</td>
</tr>
</tbody>
</table>
| Helper Prospecting and Rock sampling | Brett Malinowski
Box 1863
Marathon, Ontario
POT - 2EO
CLN # 393033 | April 2, 2003 to April 5, 2003 | 4 Days |
| Prospecting, Geological mapping, Rock sampling | Rudolf Wahl
Box 1022
Marathon, Ontario
POT - 2EO
CLN # 206079 | April 10, 2003 to April 22, 2003 | 13 Days |
| Helper Prospecting and Rock sampling | Brett Malinowski
Box 1863
Marathon, Ontario
POT - 2EO
CLN # 393033 | April 10, 2003 to April 22, 2003 | 13 Days |
| Prospecting, Geological mapping, Rock sampling | Rudolf Wahl
Box 1022
Marathon, Ontario
POT - 2EO
CLN # 206079 | May 8, 2003 to May 17, 2003 | 10 Days |
| Helper Prospecting and Rock sampling | Brett Malinowski
Box 1863
Marathon, Ontario
POT - 2EO
CLN # 393033 | May 8, 2003 to May 17, 2003 | 10 Days |
| Prospecting, Geological mapping, Rock sampling | Rudolf Wahl
Box 1022
Marathon, Ontario
POT - 2EO
CLN # 206079 | Aug. 5, 2003 to Aug. 10, 2003 | 7 Days |
| Helper Prospecting and Rock sampling | Brett Malinowski
Box 1863
Marathon, Ontario
POT - 2EO
CLN # 393033 | Aug. 5, 2003 to Aug. 10, 2003 | 7 Days |

A total of 126 days in between March 5, 2002 and August 10, 2003 where used for prospecting, Rock sampling, Geological mapping, Blasting & Hand stripping on the Heron Bay Property.

Dated: 11-12-2003
Signed: (Rudolf Wahl)
WAHL'S PROSPECTING

HERON BAY PROPERTY
Pic Township
Thunder Bay M.D., Ontario

CLAIM MAP G-0630

Prep. by R. Wahl
Date Nov. 2003
Fig. No.

Drawn by R.W.
Scale 1": 900m
3.0 Regional Geology

The general geology of the property is located within the Schreiber-Marathon greenstone belt in the Superior Province of the Canadian Shield. More specifically, the property lies within an Archean metasedimentary - metavolcanic belt trending easterly from the Heron Bay area on Lake Superior. Plutonic rocks constitute a major portion of the map area. The Hemlo gold camp is also located within a portion of the Schreiber- Marathon greenstone belt, and lies approximately 28 km to the east of the property.

The general geology of the property is shown on the Heron Bay Sheet, Map 2439, which was mapped by and reported on by T.L. Muir, and associates or the Ontario Department of Mines, 1981.

The oldest rocks in the area, with the exception of the pukaskwa Gneissic Complex (Bennett et al, 1969) are the felsic, intermedate, and mafic volcanic rocks, two suites of volcanic rocks are present: a tholeitic suite consisting of iron-rich basalt and minor andesite, which lies in the southern part of the regional map area which is termed the Pulpwood-Playter Harbour sequence; and a calc-alkalic suite consisting of dacite to rhyolite pyroclastic breccia, lapilli tuff and crystal tuff as well as lesser andesite and basalt which lies in the northern part of the map area termed the Heron Bay Sequence.

Iron formation and thin intercalated tuff and sediment units are present in the tholeitic rocks to the south (T.L. Muir, 1982, O.G.S Report 218). Siltstone, wacke, and shale units are present within or adjacent to the intermediate to felsic pyroclastic rocks of the Heron Bay sequence. Minor andesite and basalt also occurs within this sequence. The property lies within the Heron Bay Sequence. This portion of intermediate pyroclastic rocks and intercalated metasediments is sandwiched between two massive plutons. The Gowan Lake Pluton, which lies to the north, covers the northeastern corner of the property and is a porphyritic biotite-hornblende quartz monzonite. The Heron Bay Pluton, to the south, consists of a porphyritic (plagioclase) biotite-hornblende granodiorite.

All of the above mentioned volcanic and sedimentary rock suites are intruded by Late Precambrian felsic dikes and sills, and all previously mentioned rocks except those of the Alkalic complex are intruded by more extensive diabase dikes. A common orientation of the diabase dikes is northerly.
4.0 Prospecting / Geological Mapping

Most of the Heron Bay property was geologically mapped and prospected with emphasis on prospecting in order to locate significant mineralization.

We located a Carbonatite - Diatrem plug in the northern part of the property. On claim 1246788, we blasted and hand stripped this unusual unit. The upper portion of the plug is strongly metasomatically altered (fenitized) to a reddish orange phlogopite (hematized feldspars). The carbonatite plug or diatreme is 3 meters wide and consists of angular to subrounded fragments of varying lithologies in a granular yellow brown carbonate rich matrix with rimmed calcite and quartz amygdules and empty vesicles. Fragments constitute up to 70% of the rock. Fragment types include:

(a) dark grey intermediate ash tuff
(b) quartz feldspar porphyritic rhyolite
(c) biotite mafic fragments
(d) light grey green sericitized - speckled black + white diorite
(e) grey aphanitic, fissile, soft sedimentary fragments

The fragments greatly ranged in size and shape from 2cm to 15cm and from angular to subrounded. The matrix contains glassy pieces of quartz and calcite.

Gabbro unit (Massive):

This unit was seen as a continuous 400 meter long dike in the southern part of claim #1231874. The rock weathers a rusty brown to dark brown colour. The dike is characterized by peculiar coarse cubic sulfide blebs and medium to coarse grained biotite phenocrysts. The plagioclase crystals within the matrix are commonly hematized. Fresh surfaces are dark grey to black with 1mm pyroxene crystals observable in hand specimen. Approximate thickness of the dike is three meters. A red colouration of plagioclase crystals and fracture fillings was common near dike contacts.

Schistose Gabbro Dike:

This unit may in fact be part of the Massive Gabbro unit, the massive gabbro, differing only in that it is strongly schistose. The unit was seen crosscutting the metavolcanics and metasediments. The dikes commonly parallel stratigraphy but appear to dip less steeply. Like the lamprophyres, the dikes display pinch and swell structures. The rock weathers light brown and have a pocketed, weathered surface. From hand specimen the rock is a black to dark grey colour, strongly foliated with 20% black biotite along foliation planes. The dikes are commonly 1-2 meters in thickness and contain varying amounts of pyrite and carbonate.
The volcanic succession which underlies the Heron Bay Property, forms part of the Heron Bay Sequence and is at least 2200 meters wide on the property (see Geology map). These rocks can be subdivided into four major sequences:

a) A northern sequence of mafic, pillowed flows that is pervasively silicified and carbonatized giving outcrops a more “felsic” appearance. These are probably “bleached” magnesium tholeiitic basalts.

b) A central zone of 1200 meters thick consisting of a succession of interbedded fine to medium-grained tuffs of intermediate composition with local interbedded volcaniclastic horizons.

c) A southern sequence of finer intermediate pyroclastics with interbedded fine grained mafic flows and tuffs associated volcaniclastic metasediments.

d) A southwestern sequence occurs best exposed along the lakeshore on the south-western portion of the property with interbedded felsic aphanitic light green flows and spherulitic flows.
5.0 Work conducted on the Heron Bay property.

The Heron Bay property consist of 7 unpatented mining claims totaling 52 units in the PIC Twp. Work was conducted on:

<table>
<thead>
<tr>
<th>CLAIM NUMBER</th>
<th>UNITS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1246788</td>
<td>2</td>
</tr>
<tr>
<td>1216786</td>
<td>8</td>
</tr>
<tr>
<td>1231874</td>
<td>8</td>
</tr>
<tr>
<td>1246786</td>
<td>8</td>
</tr>
<tr>
<td>TOTAL</td>
<td>26</td>
</tr>
</tbody>
</table>

5.1 Work completed

a. Flagged traverse lines and geological mapping (along the traverse lines) on the above mining claims.

b. Rock samples over mineralized out crops along traverse lines. All sample where taking with a Geo tool.

c. Blasting and hand stripping.

d. A total of 62 sample where obtained for assay, Including several for ICP.

e. A total of 2 sample where obtained for Microprobe analyses (for Kimberlite Indicator minerals)

f. Topographic features (trail, lakes, creeks and old grid lines) were also used for control mapping and prospecting.
6.0 **Results and Conclusion**

62 Rock samples and 2 till sample were collected. There is one significant concentrations of 775 ppb Au and 2.36% Cu in sample #558463 and there some interesting Kimberlite indicator minerals in the indicator mineral analysis test report from Kennecott Canada Exploration Inc.

6.1 **RECOMMENDATIONS**

a. Because of the favorable stratigraphy on the property in regard to Kimberlite and the indicator mineral analysis test report by Kennecott Canada Exploration Inc. Farther prospecting in regard to Kimberlite and Diamonds is warranted.

b. The property lies in the gold structure of Heron Bay and ties on to Teck Corp. to the WNW and SW. The important gold zones found to date are in the Felsic volcanics near the contact with metasediments. Farther prospecting in regard to Gold and PGE minerals is warranted.

Respectfully submitted

Marathon, Ontario
November 25, 2003

Rudolf Wahl
Prospector
Carbonatite - Diatreme Plug (Vent) Rock sample on claim # 1246788
Appendix I

Rock sample descriptions
<table>
<thead>
<tr>
<th>Sample #</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>558462</td>
<td>sheared light to dark gray mafic, pumped with Quartz veining and quartz blebs of 1 to 2 % Sulphide.</td>
</tr>
<tr>
<td>558463</td>
<td>sheared felsic fragmental, very chloritic, 1% disseminated py, bull quartz stockwork parallel to bedding with dissmeniated py, albite and Malachite staining.</td>
</tr>
<tr>
<td>558464</td>
<td>fine grained gabbro dike 2 m thick, tr py.</td>
</tr>
<tr>
<td>N558465</td>
<td>sheared light to dark gray mafic, pumped with Quartz veining and quartz blebs of ½ % Sulphide</td>
</tr>
<tr>
<td>N558466</td>
<td>coarse iron chlorite clots and stringers, 2% coarse albite, 1% calcite, trace muscovite, few specks of py in wall rock.</td>
</tr>
<tr>
<td>N558467</td>
<td>highly folded-sheared carbonated rock, red stained, 1 % sulphide</td>
</tr>
<tr>
<td>N558468</td>
<td>sheared light to dark gray mafic, pumped with Quartz veining and quartz blebs of 2 % Sulphide</td>
</tr>
<tr>
<td>N558469</td>
<td>siliceous, light green, cm-scale banded cherty rock, 1 % diss py.</td>
</tr>
<tr>
<td>N558470</td>
<td>fine grained gabbro dike 1 m thick, trace py.</td>
</tr>
<tr>
<td>N558471</td>
<td>sheared light to dark gray mafic, pumped with Quartz veining and quartz blebs of 4 % Sulphide</td>
</tr>
<tr>
<td>N558472</td>
<td>chl-amphibole-qtz-cab-py calc-silicate alteration, 1 ½ % py.</td>
</tr>
<tr>
<td>N558473</td>
<td>fine grained gabbro dike 2 m thick, trace py.</td>
</tr>
<tr>
<td>N558474</td>
<td>quartz sericitic schist, very deformed, carbonate 4 % fine grained sulphide</td>
</tr>
<tr>
<td>N558475</td>
<td>sheared and slightly carbonatised mafic volc, minor diss quartz-carb veinlets and trace py.</td>
</tr>
</tbody>
</table>
sheared felsic rock, quartz veining, 5 % py, carbonate

22108 Carbonatite plug (Diatreme) (unit 13g); oxidized upper part with 4-6 % matrix pyrite.

22109 Carbonatite plug (Diatreme) (unit 13g); oxidized upper part with 2-4 % matrix pyrite.

22110 Carbonatite plug (Diatreme) (unit 13g); oxidized upper part with 1-3 % matrix pyrite.

22111 Carbonatite plug (Diatreme) (unit 13g); oxidized upper part with 3 % matrix pyrite.

22112 Carbonatite plug (Diatreme) (unit 13g); oxidized upper part with 7 % matrix pyrite.

22113 Carbonatite plug (Diatreme) (unit 13g); oxidized center part with 1 % matrix pyrite.

22114 Carbonatite plug (Diatreme) (unit 13g); oxidized center part with 2 % matrix pyrite.

22115 Carbonatite plug (Diatreme) (unit 13g); oxidized center part with 1-3 % matrix pyrite.

22116 Carbonatite plug (Diatreme) (unit 13g); oxidized center part with 4 % matrix pyrite.

22117 Carbonatite plug (Diatreme) (unit 13g); oxidized lower part with 4 % matrix pyrite.

22118 Carbonatite plug (Diatreme) (unit 13g); oxidized lower part with 1-3 % matrix pyrite.

22119 Carbonatite plug (Diatreme) (unit 13g); oxidized lower part with 4 % matrix pyrite.

22120 Carbonatite plug (Diatreme) (unit 13g); oxidized lower part with 5 % matrix pyrite.
22121 fine grained gabbro, 1½ % sulphide
22122 fine grained gabbro, 2 % sulphide
22123 fine grained gabbro, 2½ % sulphide
22124 medium grained gabbro, 1 % sulphide
22125 medium grained gabbro, 2 % sulphide
22126 medium grained gabbro, 1½ % sulphide
22127 medium grained gabbro with quartz stringers, 1½ % sulphide
22128 medium to fine grained gabbro with quartz stringers, 1 % sulphide
22129 medium to fine grained gabbro, 1½ % sulphide
22130 medium grained gabbro, 1½ % sulphide
22131 medium grained gabbro with quartz stringers, 1 % sulphide
22132 medium grained gabbro with quartz stringers, 2½ % sulphide
22133 medium grained gabbro with quartz stringers, ½ % sulphide
22134 fine grained gabbro, 2 % sulphide
22135 fine grained gabbro, 1 % sulphide
22136 fine grained gabbro, 2 % sulphide
22137 sheared mafic with 2mm quartz veining, 2 % py
22138 sheared mafic with 2mm quartz veining, 1½ % py
22139 coarse grained gabbro unit 6 - 10 meter wide, 2 - 6 % sulphide
22140 coarse grained gabbro, 2 - 6 % sulphide
22141 coarse grained gabbro, 3 % sulphide
22142 sheared mafic with 4mm quartz veining, 1½ % py
22143 coarse grained gabbro, 2 % sulphide
22144 sheared, light folded mafic, quartz veining, 1 % py
22145 sheared, light folded mafic, quartz veining, 2 ½ % py
22146 sheared, light folded mafic, quartz veining, 1 % py
22147 coarse grained gabbro, 3 % sulphide
22148 sheared light to dark gray mafic, pumped with Quartz veining and quartz blebs of 1 % Sulphide
22149 sheared light to dark gray mafic, pumped with Quartz veining and quartz blebs of 2 % Sulphide
22351 sheared light to dark gray mafic, pumped with Quartz veining and quartz blebs of 1 ½ % Sulphide
22352 sheared light to dark gray mafic, pumped with Quartz veining and quartz blebs of 4 % Sulphide
22353 medium grained 1 meter wide gabbro dike, 1 ½ % sulphide
22354 sheared felsic rock, quartz veining, 2 % py, carbonate
22355 sheared felsic rock, quartz veining, 3 ½ % py, carbonate
02HM002 Indicator mineral till sample (Appendix III)
02HM004 Indicator mineral till sample (Appendix III)
Appendix II

Assay Results - Certificates
<table>
<thead>
<tr>
<th>SAMPLE</th>
<th>PREP CODE</th>
<th>Au ppb FA+AA</th>
<th>Cu ppm</th>
<th>Ag ppm Aqua R</th>
</tr>
</thead>
<tbody>
<tr>
<td>558462</td>
<td>205 294</td>
<td>70</td>
<td>------</td>
<td>< 0.2</td>
</tr>
<tr>
<td>558463</td>
<td>205 294</td>
<td>775</td>
<td>>10000</td>
<td>----</td>
</tr>
<tr>
<td>558464</td>
<td>205 294</td>
<td>20</td>
<td>------</td>
<td>-----</td>
</tr>
<tr>
<td>SAMPLE</td>
<td>PREP CODE</td>
<td>Cu %</td>
<td></td>
<td></td>
</tr>
<tr>
<td>----------</td>
<td>-----------</td>
<td>-----</td>
<td></td>
<td></td>
</tr>
<tr>
<td>558463</td>
<td>212</td>
<td>2.36</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

CERTIFICATION:

OVERLIMITS from A0224004
<table>
<thead>
<tr>
<th>SAMPLE</th>
<th>PREP CODE</th>
<th>Au ppb FA+AA</th>
</tr>
</thead>
<tbody>
<tr>
<td>N558465</td>
<td>205</td>
<td>< 5</td>
</tr>
<tr>
<td>N558466</td>
<td>205</td>
<td>< 5</td>
</tr>
<tr>
<td>N558467</td>
<td>205</td>
<td>< 5</td>
</tr>
<tr>
<td>N558468</td>
<td>205</td>
<td>< 5</td>
</tr>
<tr>
<td>N558469</td>
<td>205</td>
<td>< 5</td>
</tr>
<tr>
<td>N558470</td>
<td>205</td>
<td>< 5</td>
</tr>
<tr>
<td>N558471</td>
<td>205</td>
<td>< 5</td>
</tr>
<tr>
<td>N558472</td>
<td>205</td>
<td>< 5</td>
</tr>
<tr>
<td>N558473</td>
<td>205</td>
<td>< 5</td>
</tr>
<tr>
<td>N558474</td>
<td>205</td>
<td>< 5</td>
</tr>
<tr>
<td>N558475</td>
<td>205</td>
<td>< 5</td>
</tr>
<tr>
<td>N558476</td>
<td>205</td>
<td>10</td>
</tr>
</tbody>
</table>

CERTIFICATION: ________________________________
Certificate of Analysis

Date Received: 02-Apr-03
Date Completed: 04-Apr-03
Job #: 200340246
Reference: R. Wahl
Sample #: 13 Rock

<table>
<thead>
<tr>
<th>Accurassay #</th>
<th>Client Id</th>
<th>Au (ppb)</th>
<th>Pt (ppb)</th>
<th>Pd (ppb)</th>
<th>Rh (ppm)</th>
<th>Ag (ppm)</th>
<th>Co (ppm)</th>
<th>Cu (ppm)</th>
<th>Fe (ppm)</th>
<th>Ni (ppm)</th>
<th>Pb (ppm)</th>
<th>Zn (ppm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>18973</td>
<td>22108</td>
<td>7</td>
<td></td>
<td></td>
<td></td>
<td><1</td>
<td></td>
<td>172</td>
<td></td>
<td></td>
<td></td>
<td>44</td>
</tr>
<tr>
<td>18974</td>
<td>22109</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>125</td>
<td></td>
<td></td>
<td></td>
<td>46</td>
</tr>
<tr>
<td>18975</td>
<td>22110</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>18976</td>
<td>22111</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>75</td>
<td></td>
<td></td>
<td></td>
<td>29</td>
</tr>
<tr>
<td>18977</td>
<td>22112</td>
<td><5</td>
<td><15</td>
<td><10</td>
<td></td>
<td></td>
<td></td>
<td>92</td>
<td></td>
<td></td>
<td></td>
<td>159</td>
</tr>
<tr>
<td>18978</td>
<td>22113</td>
<td><5</td>
<td><15</td>
<td><10</td>
<td></td>
<td></td>
<td></td>
<td>67</td>
<td></td>
<td></td>
<td></td>
<td>130</td>
</tr>
<tr>
<td>18979</td>
<td>22114</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2</td>
<td>76</td>
<td></td>
<td></td>
<td>154</td>
</tr>
<tr>
<td>18980</td>
<td>22115</td>
<td><5</td>
<td>46</td>
<td>17</td>
<td>1</td>
<td>54</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>96</td>
</tr>
<tr>
<td>18981</td>
<td>22116</td>
<td><5</td>
<td><15</td>
<td><10</td>
<td><1</td>
<td>38</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>188</td>
</tr>
<tr>
<td>18982</td>
<td>22117</td>
<td>10</td>
<td>58</td>
<td>39</td>
<td>1</td>
<td>49</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>109</td>
</tr>
<tr>
<td>18983</td>
<td>Check</td>
<td>8</td>
<td>33</td>
<td><10</td>
<td><1</td>
<td>47</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>104</td>
</tr>
<tr>
<td>18984</td>
<td>22118</td>
<td><5</td>
<td><15</td>
<td>13</td>
<td><1</td>
<td>66</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>38</td>
</tr>
<tr>
<td>18985</td>
<td>22119</td>
<td>10</td>
<td>21</td>
<td><10</td>
<td>1</td>
<td>78</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>159</td>
</tr>
<tr>
<td>18986</td>
<td>22120</td>
<td><5</td>
<td>18</td>
<td><10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Wahl's Prospecting
Date Created: 03-05-21 01:05 PM
Job Number: 200340246
Date Received: 4/2/2003
Number of Samples: 13
Type of Sample: Rock
Date Completed: 4/4/2003
Project ID: R. Wahl

<table>
<thead>
<tr>
<th>Accur. #</th>
<th>Client Tag</th>
<th>Au ppb</th>
<th>Ag ppm</th>
<th>As ppm</th>
<th>Ba ppm</th>
<th>Br ppm</th>
<th>Ca %</th>
<th>Co ppm</th>
<th>Cr ppm</th>
<th>Cs ppm</th>
<th>Fe ppm</th>
<th>Hf ppm</th>
<th>Hg ppm</th>
<th>Ir ppm</th>
<th>Mo ppm</th>
<th>Na %</th>
</tr>
</thead>
<tbody>
<tr>
<td>18986</td>
<td>22120</td>
<td><5</td>
<td><5</td>
<td><2</td>
<td>1100</td>
<td><1</td>
<td>3.7</td>
<td>19</td>
<td>231</td>
<td>3.3</td>
<td>5.07</td>
<td>4.7</td>
<td><1</td>
<td><5</td>
<td><5</td>
<td>2.84</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Ni ppm</th>
<th>Rb ppm</th>
<th>Sb ppm</th>
<th>Sc ppm</th>
<th>Se ppm</th>
<th>Sr %</th>
<th>Ta ppm</th>
<th>Th ppm</th>
<th>U ppm</th>
<th>W ppm</th>
<th>Zn ppm</th>
<th>La ppm</th>
<th>Ce ppm</th>
<th>Na ppm</th>
<th>Sm ppm</th>
</tr>
</thead>
<tbody>
<tr>
<td>18986</td>
<td>22120</td>
<td><100</td>
<td>68</td>
<td>0.2</td>
<td>16.4</td>
<td><3</td>
<td><1</td>
<td>4.4</td>
<td>1.4</td>
<td><3</td>
<td>147</td>
<td>52.6</td>
<td>99</td>
<td>51</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Eu ppm</th>
<th>Tb ppm</th>
<th>Yb ppm</th>
<th>Lu ppm</th>
<th>Mass g</th>
</tr>
</thead>
<tbody>
<tr>
<td>18986</td>
<td>22120</td>
<td>2.4</td>
<td>0.6</td>
<td>2</td>
</tr>
</tbody>
</table>
Friday, April 25, 2003

Wahl’s Prospecting
Box 1022
Marathon, ON, CA
P.O.T.B.E
Ph#: (807) 229-1165
Fax#: (807) 229-3155
Email: rwahl@renegadesisp.com

Date Received: 21-Apr-03
Date Completed: 25-Apr-03
Job #: 200340309
Reference:
Sample #: 2
Rock

<table>
<thead>
<tr>
<th>Accurassay</th>
<th>Client Id</th>
<th>Au (ppb)</th>
<th>Pt (ppb)</th>
<th>Pd (ppb)</th>
<th>Rh (ppb)</th>
</tr>
</thead>
<tbody>
<tr>
<td>22952</td>
<td>22121</td>
<td><5</td>
<td><15</td>
<td><10</td>
<td></td>
</tr>
<tr>
<td>22953</td>
<td>22122</td>
<td><5</td>
<td>20</td>
<td><10</td>
<td></td>
</tr>
<tr>
<td>22954 Check</td>
<td></td>
<td><5</td>
<td>15</td>
<td><10</td>
<td></td>
</tr>
</tbody>
</table>
Certificate of Analysis

Data Received: 28-Apr-03
Date Completed: 02-May-03
Job #: 200340343

Reference:
Sample #: 13
Rock

<table>
<thead>
<tr>
<th>Accurassay</th>
<th>Client Id</th>
<th>Au (ppb)</th>
<th>Pt (ppb)</th>
<th>Pd (ppb)</th>
<th>Rh (ppm)</th>
<th>Ag (ppm)</th>
<th>Co (ppm)</th>
<th>Cu (ppm)</th>
<th>Fe (ppm)</th>
<th>Ni (ppm)</th>
<th>Pb (ppm)</th>
<th>Zn (ppm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>24548</td>
<td>22123</td>
<td>17</td>
<td>77</td>
<td>33</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>50</td>
</tr>
<tr>
<td>24549</td>
<td>22124</td>
<td>7</td>
<td><15</td>
<td>18</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>57</td>
</tr>
<tr>
<td>24550</td>
<td>22125</td>
<td>8</td>
<td><15</td>
<td><10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>24551</td>
<td>22126</td>
<td>8</td>
<td><15</td>
<td><10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>24552</td>
<td>22127</td>
<td><5</td>
<td><15</td>
<td><10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>24553</td>
<td>22128</td>
<td>7</td>
<td><15</td>
<td><10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>24554</td>
<td>22129</td>
<td>6</td>
<td><15</td>
<td><10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>24555</td>
<td>22130</td>
<td>7</td>
<td><15</td>
<td><10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>24556</td>
<td>22131</td>
<td>5</td>
<td><15</td>
<td><10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>24557</td>
<td>22132</td>
<td>7</td>
<td><15</td>
<td><10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>31</td>
</tr>
<tr>
<td>24558</td>
<td>Check</td>
<td>22132</td>
<td><5</td>
<td><15</td>
<td>18</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>34</td>
</tr>
<tr>
<td>24559</td>
<td>22133</td>
<td>5</td>
<td><15</td>
<td>15</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>58</td>
</tr>
<tr>
<td>24560</td>
<td>22134</td>
<td>7</td>
<td>27</td>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>24561</td>
<td>22135</td>
<td><5</td>
<td><15</td>
<td>77</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

PROCEDURE CODES: Au, Pd, Ag, Zn
Certified By: [Signature]

A5917-0383-01/02/2003 00:15 PM
Page 1 of 1
Certificate of Analysis

Friday, May 30, 2003

Wahl's Prospecting
Box 1022
Marathon, ON, CA

Date Received : 26-May-03
Date Completed : 29-May-03
Job # 200340493
Reference :
Sample #: 14 Rock

Accurassay	Client Id	Au	Pt	Pd	Rh	Ag	Co	Cu	Fe	Ni	Pb	Zn
28567 | 22136 | 7 | 42 | <10 | <1 | 89 |
28568 | 22137 | 17 | | | 1 | 277 |
28569 | 22138 | 7 | | | | |
28570 | 22139 | <5 | 34 | 18 | <1 | 11 |
28571 | 22140 | 13 | <15 | <10 | 1 | 1904 |
28572 | 22141 | 17 | <15 | 18 | 2 | 1883 |
28573 | 22142 | <5 | | | | |
28574 | 22143 | 7 | <15 | 12 | <1 | 236 |
28575 | 22144 | 18 | | | | |
28576 | 22145 | 5 | | | | |
28577 Check | 22145 | 7 | | | | |
28578 | 22146 | 16 | | | | |
28579 | 22147 | 31 | <15 | <10 | 3 | 4738 |
28580 | 22148 | 28 | | | | |
28581 | 22149 | 20 | | | | |

PROCEDURE CODES: AL APP, LA 4Ag, LA 4Cu, LA APP, AL 4Pb

Certified By: [Signature]

Page 1 of 1
Certificate of Analysis

Date Received: 02-Sep-03
Date Completed: 09-Sep-03
Job #: 200341207
Reference:
Sample #: 5
Rock

<table>
<thead>
<tr>
<th>Accurassay #</th>
<th>Client Id</th>
<th>Au (ppb)</th>
<th>Pt (ppb)</th>
<th>Pd (ppb)</th>
<th>Rh (ppm)</th>
<th>Ag (ppm)</th>
<th>Co (ppm)</th>
<th>Cu (ppm)</th>
<th>Fe (ppm)</th>
<th>Ni (ppm)</th>
<th>Pb (ppm)</th>
<th>Zn (ppm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>51986</td>
<td>22351</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>51987</td>
<td>22352</td>
<td><5</td>
<td></td>
</tr>
<tr>
<td>51988</td>
<td>22353</td>
<td>18</td>
<td>53</td>
<td>21</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>51990</td>
<td>22355</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>69</td>
</tr>
<tr>
<td>51991</td>
<td>Check</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>29</td>
</tr>
</tbody>
</table>

The results included on this report relate only to the items tested. The Certificate of Analysis should not be reproduced except in full, without the written permission of the laboratory.
Appendix III

Diamond Indicator mineral analysis Report

02HM002 and 02HM004
KENNECOTT CANADA EXPLORATION INC.

INDICATOR MINERAL ANALYSIS
TEST REPORT
02HM002
D073J Wahl's Prospecting

Prepared for:
Kennecott Canada Exploration Inc
354-200 Granville St
Vancouver BC V6C 1S4

Sean Whiteford
Laboratory Manager
February 12, 2003

Mineral Processing Laboratory
1300 West Walsh St. Thunder Bay, Ontario, Canada P7E 4X4
Telephone (807) 473-5558 Facsimile (807) 473-5660

This report refers to samples processed as-received.
This report may not be reproduced except in full, without the written permission of the
Mineral Processing Laboratory
KENCOTT CANADA EXPLORATION INC.
Mineral Processing Laboratory
1300 West Walsh St. Thunder Bay, Ontario, Canada P7E 4X4 Telephone (807) 473-5558 Facsimile (807) 473-5660

CERTIFICATE OF ANALYSIS
Method 2: Heavy Mineral Processing

Date Received: 21-Mar-02
Waybill: Kevin Kivi drop-off
Work Order #: 02HM002
Project: D073J Wahl's Prospecting
Lab Billing Code: D073J
Fraction: -0.500 +0.250mm Mag

<table>
<thead>
<tr>
<th>SAMPLE NO.</th>
<th>DATE PROC-START</th>
<th>WT RECEIVED (gm)</th>
<th>PORTION WT (gm)</th>
<th>FRACTION WT (gm)</th>
<th>POST MAG SEP WT (gm)</th>
<th>FINAL WT (gm)</th>
<th>DATE PROC-COMP</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>09-Apr-02</td>
<td>20700.0</td>
<td>2200.0</td>
<td>836.0</td>
<td>200.0</td>
<td>12.1</td>
<td>15-Apr-02</td>
</tr>
<tr>
<td>2</td>
<td>09-Apr-02</td>
<td>23300.0</td>
<td>1700.0</td>
<td>568.0</td>
<td>150.0</td>
<td>7.0</td>
<td>15-Apr-02</td>
</tr>
</tbody>
</table>

Mike Liedke
Processing Team Leader

Sash Whiteford
Laboratory Manager

Ian Hamilton
QA/QC Specialist

The quality of heavy mineral extraction from samples of disaggregated material (Method 2) is subject to monitoring through a rigorous internal quality assurance/quality control (QA/QC) scheme. Heavy mineral recovery is calculated for one sample in every batch. One batch consists of up to twenty-five samples, depending on individual sample weights. Therefore, at least 4% of samples are quality control samples.

Continual QA/QC monitoring involves comparison of heavy mineral recovery from each batch to statistically acceptable internal performance standards. Processing at the laboratory extracts, on average, 90.0% (±2.73% at the 95% confidence limit) of pyrope grains >0.25–0.50mm in size and 81.57% (±3.12% at the 95% confidence limit) of chrome diopside grains >0.25–0.50mm in size.

Printed: 12-02-2003
This report refers to samples processed as-received.
CERTIFICATE OF ANALYSIS

Method 4: Heavy Mineral Observation

Date Received: 21-Mar-02
Waybill: Kevin Kivi drop-off
Work Order: 02HM002
Project: D073J Wahl's Prospecting
Lab Billing Code: D073J
Fraction: -0.500 * 0.250mm Mag

<table>
<thead>
<tr>
<th>Sample No</th>
<th>PYR</th>
<th>ECL</th>
<th>CPX</th>
<th>OMP</th>
<th>ILM</th>
<th>CHR</th>
<th>OPX</th>
<th>OLI</th>
<th>REMARKS</th>
<th>OBSERVER</th>
<th>DATE OBS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
<td>CB</td>
<td>25-Apr-02</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
<td>CB</td>
<td>25-Apr-02</td>
</tr>
</tbody>
</table>

Grains must be confirmed with mineral chemical analysis.

Chris Bemer
Observation Team Leader

Seth Whiteford
Laboratory Manager

Ian Hamilton
QA/QC Specialist

The quality of kimberlite indicator mineral observation from heavy mineral concentrates (Method 4) is subject to monitoring through a rigorous internal quality assurance/quality control (QA/QC) scheme. Kimberlite indicator recovery is calculated for two samples in every batch. One batch consists of up to twenty-five samples, depending on individual sample weights. Therefore, at least 10% of samples are quality control samples.

Continual QA/QC monitoring involves comparison of kimberlite indicator mineral recovery from each batch to statistically acceptable internal performance standards. Observation at the laboratory extracts, on average, 83.2% (±2.6% at the 95% confidence limit) of pyrope grains >0.25–0.50mm in size and 98.46% (±1.88% at the 95% confidence limit) of chrome diopside grains >0.25–0.50mm in size.
CERTIFICATE OF ANALYSIS
Method 4: Heavy Mineral Classification and Description

Date Received: 21-Mar-02
Waybill: Kevin Khvidrc
Work Order #: 02HM002
Project: D073J Wahl's Prospecting
Lab Billing Code: D073J

<table>
<thead>
<tr>
<th>Client Sample</th>
<th>Grain Fraction</th>
<th>Grain No</th>
<th>Grain Type</th>
<th>Colour</th>
<th>Chromite Code</th>
<th>Form</th>
<th>Shape</th>
<th>Clarity</th>
<th>Lustre</th>
<th>Surface Feature</th>
<th>Travel</th>
<th>Remark</th>
<th>ObsDate</th>
<th>Observer</th>
</tr>
</thead>
<tbody>
<tr>
<td>VR50751A</td>
<td>0.500 +0.250mm Mag</td>
<td>1</td>
<td>CPX</td>
<td>Green</td>
<td>ANH</td>
<td>ANG</td>
<td>Transparent</td>
<td>VIT</td>
<td>Close</td>
<td>25-Apr-02</td>
<td>CB</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VR50751A</td>
<td>0.500 +0.250mm Mag</td>
<td>2</td>
<td>CPX</td>
<td>Green</td>
<td>ANH</td>
<td>ANG</td>
<td>Transparent</td>
<td>VIT</td>
<td>Close</td>
<td>25-Apr-02</td>
<td>CB</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VR50751A</td>
<td>0.500 +0.250mm Mag</td>
<td>3</td>
<td>CPX</td>
<td>Green</td>
<td>ANH</td>
<td>ANG</td>
<td>Transparent</td>
<td>VIT</td>
<td>Close</td>
<td>25-Apr-02</td>
<td>CB</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VR50751A</td>
<td>0.500 +0.250mm Mag</td>
<td>4</td>
<td>CPX</td>
<td>Green</td>
<td>ANH</td>
<td>ANG</td>
<td>Transparent</td>
<td>VIT</td>
<td>Close</td>
<td>25-Apr-02</td>
<td>CB</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VR50752A</td>
<td>0.500 +0.250mm Mag</td>
<td>1</td>
<td>CPX</td>
<td>Green</td>
<td>ANH</td>
<td>ANG</td>
<td>Transparent</td>
<td>VIT</td>
<td>Close</td>
<td>25-Apr-02</td>
<td>CB</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VR50752A</td>
<td>0.500 +0.250mm Mag</td>
<td>2</td>
<td>CPX</td>
<td>Green</td>
<td>ANH</td>
<td>ANG</td>
<td>Transparent</td>
<td>VIT</td>
<td>Close</td>
<td>25-Apr-02</td>
<td>CB</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*Pantone Color Selector (Coated)

The quality of kimberlite indicator mineral observation from heavy mineral concentrates (Method 4) is subject to monitoring through a rigorous internal quality assurance/quality control (QA/QC) scheme. Kimberlite indicator recovery is calculated for two samples in every batch. Each batch consists of up to twenty-five samples, depending on individual sample weights. Therefore, at least 10% of samples are quality control samples.

Continual QA/QC monitoring involves comparison of kimberlite indicator mineral recovery from each batch to statistically acceptable internal performance standards. Observation at the laboratory extracts, on average, 83.3% (1.86% at the 95% confidence limit) of pyrope grains >0.25-0.50mm in size and 98.46% (1.96% at the 95% confidence limit) of chrome diopside grains >0.25-0.50mm in size.
Two samples were submitted for indicator mineral processing and recovery. The as-received samples were processed according to registered methods and standard operating procedures. The results are summarized in the Certificates of Analysis. Standard operating procedures are listed below, sample abnormalities and possible damage caused during shipping are noted on the Certificate. (*) Denotes deviations from standard operating procedures.

HEAVY MINERAL SAMPLE PROCESSING

Sample processing at Kennecott Canada Exploration Inc. Mineral Processing Laboratory in Thunder Bay, ON consists of wet and dry processes including de-sliming, sieving, magnetic separation, heavy liquid separation and classifying (see Table 1 for a summary flowchart). This procedure reduces the sample size from 20 kilograms to a concentrate of approximately 50 grams.

After samples are received, they are logged in and stored outdoors before processing. Processing commences with samples being placed into mixers and washed to remove the clay and silt fraction. This is accomplished by continually adding water in a process called de-sliming. The wet sample is then sieved using a 979-μm square aperture screen. The +0.979-mm oversize is discarded and the undersize fraction is dried in a large oven. The dry sample is screened using an automated sieve shaker, equipped with 0.5-mm and 0.25-mm square aperture sieves, or U.S.A. Sieve Series equivalent 35 and 60, respectively. The -0.25-mm undersize material is passed through a stacked splitter and a 1/8th split is taken, placed in a kraft bag and submitted to ALS-Chemex in Vancouver for analysis. ICP results are included in Appendix...
The +0.25 -0.5-mm and -0.979 + 0.5-mm fractions move forward in the processing stream separately. Subsequent to sieving, the sample is separated with a Reading Pilot Roll magnetic separator, which splits the sample into a paramagnetic and diamagnetic fraction. The magnetic fraction is then titrated in non-toxic sodium polytungstate \([\text{Na}_6(\text{H}_2\text{W}_{12}\text{O}_{40})]\) with specific gravity of 2.89 g/cm\(^3\). All kimberlitic indicator minerals sink in this liquid. The 'sinks' are the paramagnetic, heavy mineral concentrate that is sent to the microscopy laboratory for observation.

HM Method 2 Processing Quality Control Measures

Samples received are divided into sets or batches of one to twenty-five samples. For processing, each batch is assigned a set of three blanks, the middle blank is spiked with 10 laser etched Pyrope and 10 laser etched Clinopyroxene for each fraction analyzed. The blank samples are processed after all samples within the batch have been completed. The entire batch is submitted to the QA/QC office where each of the three blanks is observed. The blank concentrates are monitored for kimberlitic minerals to determine cross contamination if any. Retrieving laser-etched spikes and calculating recovery as a percent determine recovery for the batch. Lab recovery is calculated as a rolling 12-month average, lower limit is 3 standard deviations below the average. If recovery for the blank falls below the lower limit, the batch is deemed non-conforming. If processing recovery is non-conforming, the cause is investigated and corrected if possible.
TABLE 1. HEAVY MINERAL PROCESSING FLOWCHART

<table>
<thead>
<tr>
<th>Process</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>De-Water</td>
<td>Discard</td>
</tr>
<tr>
<td>Wet Screen</td>
<td>Oversize</td>
</tr>
<tr>
<td>Split into 2 samples greater than 100 g</td>
<td></td>
</tr>
<tr>
<td>Dry Screen</td>
<td>Reject</td>
</tr>
<tr>
<td>Magnetic Separation</td>
<td>Non-Magnetic Reject Storage</td>
</tr>
<tr>
<td>Heavy Liquid Separation</td>
<td>Final Reject Discard</td>
</tr>
<tr>
<td>Rinse and Dry Concentrate</td>
<td>Indicator Minerals Observation</td>
</tr>
</tbody>
</table>
HEAVY MINERAL CONCENTRATE MICROSCOPE EXAMINATION

Observation of heavy mineral concentrates was performed in Kennecott Canada Exploration Inc. Mineral Processing Laboratory in Thunder Bay (see Table 2). Trained Mineral Technicians examined each grain using binocular microscopes equipped with fibre-optic lights and attached Gerryts belts. Mineral Technicians removed all suspected kimberlitic grains, recorded the totals on an observation logsheet, and later transfer the data to the Laboratory Information Management System. Following observation suspected indicator minerals are examined by a mineralogist who confirms the grain identifications. Selected grains are then described, numbered and submitted for electron microprobe analysis. Grains selected from the 2000 till sampling program have been submitted for analysis. Results are pending.

HM method 4 Observation Quality Control Measures

Once a batch has completed processing, samples for observation are submitted to QA/QC for spiking. One in five samples are randomly selected for spiking with laser etched indicator minerals. At minimum, at least 1 sample per batch is spiked. In order, 1 sample is spiked with 10 Pyrope, 1 sample with 10 Clinopyroxene, 1 sample with random number between 2 and 10 Pyrope, 1 sample with 5 Clinopyroxene, and a fifth sample, again with a random number between 2 and 10 of Pyrope grains. The samples are submitted blind to the observers. In observation, all etched indicator minerals recovered are placed on sample grain cards and returned to QA/QC. The batch recovery is calculated as a percent. Lab recovery is calculated as a 12-month rolling average, lower limit is 3 standard deviations below the average. If recovery of one or more samples falls below the lower limit the batch is deemed non-conforming. In the event of a non-conforming pick, the observer is removed from client samples and given spiked training samples to observe. When the observer’s recovery rate meets laboratory standard, they may resume observing client samples.
TABLE 2. OBSERVATION AND SELECTION FLOWCHART

- Indicator Mineral Selection
- Description & Selection
- Mount Indicator Minerals
- Indicator Mineral Confirmation by EMP
- Picked Sample Storage
- Storage of Unselected Indicator Minerals

This report refers to samples processed as-received.
INDICATOR MINERAL ANALYSIS
TEST REPORT
02HM004
D073J Wahl's Prospecting

Prepared for:
Kennecott Canada Exploration Inc
354-200 Granville St
Vancouver BC V6C 1S4

Sean Whiteford
Laboratory Manager
February 12, 2003

Mineral Processing Laboratory
1300 West Walsh St Thunder Bay Ontario Canada P7E 4X4
Telephone (807) 473-5558 Facsimile (807) 473-5660

This report refers to samples processed as-received.
This report may not be reproduced except in full, without the written permission of the
Mineral Processing Laboratory
CERTIFICATE OF ANALYSIS
Method 4: Heavy Mineral Observation

Date Received: 09-Apr-02
Waybill: Wahl's Prospecting
Work Order: 02HM004
Project: D073J Wahl's Prospecting
Lab Billing Code: D073J
Fraction: -0.500 -0.250mm Mag

<table>
<thead>
<tr>
<th>Sample No</th>
<th>PYR</th>
<th>ECL</th>
<th>CPX</th>
<th>OMP</th>
<th>ILM</th>
<th>CHR</th>
<th>OPX</th>
<th>OLI</th>
<th>REMARKS</th>
<th>OBSERVER</th>
<th>DATE OBS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2002-03</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>CB</td>
<td>25-Apr-02</td>
</tr>
</tbody>
</table>

Grains must be confirmed with mineral chemical analysis.

Company: Kennecott Canada Exploration Inc
354-200 Granville St
Vancouver BC V6C 1S4
Attention: R. Wahl/Kevin Kivi
Telephone: (604) 669-1880
Facsimile: (604) 669-5255

The quality of kimberlite indicator mineral observation from heavy mineral concentrates (Method 4) is subject to monitoring through a rigorous internal quality assurance/quality control (QA/QC) scheme. Kimberlite indicator recovery is calculated for two samples in every batch. One batch consists of up to twenty-five samples, depending on individual sample weights. Therefore, at least 10% of samples are quality control samples.

Continual QA/QC monitoring involves comparison of kimberlite indicator mineral recovery from each batch to statistically acceptable internal performance standards. Observation at the laboratory extracts, on average, 93.2% (±2.86% at the 95% confidence limit) of pyrope grains >0.25-0.50mm in size and 98.48% (±1.88% at the 95% confidence limit) of chromite diopside grains >0.25-0.50mm in size.
CERTIFICATE OF ANALYSIS
Method 2: Heavy Mineral Processing

Date Received: 09-Apr-02
Waybill: Wahl’s Prospecting
Work Order #: 02HM004
Project: D073J Wahl’s Prospecting
Lab Billing Code: D073J
Fraction: -0.500 -0.250mm Mag

<table>
<thead>
<tr>
<th>SAMPLE NO.</th>
<th>DATE PROC-START</th>
<th>WT RECEIVED</th>
<th>PORTION WT</th>
<th>FRACTION WT</th>
<th>POST MAG</th>
<th>FINAL WT</th>
<th>DATE PROC-COMP.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2002-03</td>
<td>35600.0</td>
<td>10000.0</td>
<td>8754.0</td>
<td>2224.0</td>
<td>186.5</td>
<td>17-Apr-02</td>
</tr>
</tbody>
</table>

One control sample was found to be non-conforming.
Batch may contain non-conforming samples.

Mike Liedke Sean Whitford Ian Hamilton
Processing Team Leader Laboratory Manager QA/QC Specialist

The quality of heavy mineral extraction from samples of disaggregated material (Method 2) is subject to monitoring through a rigorous internal quality assurance/quality control (QA/QC) scheme. Heavy mineral recovery is calculated for one sample in every batch. One batch consists of up to twenty-five samples, depending on individual sample weights. Therefore, at least 4% of samples are quality control samples.

Continual QA/QC monitoring involves comparison of heavy mineral recovery from each batch to statistically acceptable internal performance standards. Processing at the laboratory extracts, on average, 90.0% (±2.73% at the 95% confidence limit) of pyrope grains >0.25-0.50mm in size and 81.57% (±3.12% at the 95% confidence limit) of chrome diopside grains >0.25-0.50mm in size.

This report refers to samples processed as-received.
CERTIFICATE OF ANALYSIS

Method 4: Heavy Mineral Classification and Description

<table>
<thead>
<tr>
<th>Client Sample</th>
<th>Fraction</th>
<th>Grain No</th>
<th>Grain Type</th>
<th>Colour</th>
<th>Chromite Code</th>
<th>Shape</th>
<th>Clarity</th>
<th>Lustre</th>
<th>Surface Feature</th>
<th>Travel</th>
<th>Remark</th>
<th>Obs Date</th>
<th>Observer</th>
</tr>
</thead>
<tbody>
<tr>
<td>2002-03</td>
<td>-0.500 +0.250mm Mag</td>
<td>1</td>
<td>CPX</td>
<td>Green</td>
<td>ANH</td>
<td>ANG</td>
<td>Transparent</td>
<td>VIT</td>
<td>Close</td>
<td></td>
<td></td>
<td>25-Apr-03</td>
<td>CB</td>
</tr>
<tr>
<td>2002-03</td>
<td>-0.500 +0.250mm Mag</td>
<td>2</td>
<td>CPX</td>
<td>Green</td>
<td>ANH</td>
<td>ANG</td>
<td>Transparent</td>
<td>VIT</td>
<td>Close</td>
<td></td>
<td></td>
<td>25-Apr-03</td>
<td>CB</td>
</tr>
<tr>
<td>2002-03</td>
<td>-0.500 +0.250mm Mag</td>
<td>3</td>
<td>CPX</td>
<td>Green</td>
<td>ANH</td>
<td>ANG</td>
<td>Transparent</td>
<td>VIT</td>
<td>Close</td>
<td></td>
<td></td>
<td>25-Apr-03</td>
<td>CB</td>
</tr>
<tr>
<td>2002-03</td>
<td>-0.500 +0.250mm Mag</td>
<td>4</td>
<td>CPX</td>
<td>Green</td>
<td>ANH</td>
<td>ANG</td>
<td>Transparent</td>
<td>VIT</td>
<td>Close</td>
<td></td>
<td></td>
<td>25-Apr-03</td>
<td>CB</td>
</tr>
<tr>
<td>2002-03</td>
<td>-0.500 +0.250mm Mag</td>
<td>5</td>
<td>CPX</td>
<td>Green</td>
<td>ANH</td>
<td>ANG</td>
<td>Transparent</td>
<td>VIT</td>
<td>Close</td>
<td></td>
<td></td>
<td>25-Apr-03</td>
<td>CB</td>
</tr>
<tr>
<td>2002-03</td>
<td>-0.500 +0.250mm Mag</td>
<td>6</td>
<td>CPX</td>
<td>Green</td>
<td>ANH</td>
<td>ANG</td>
<td>Transparent</td>
<td>VIT</td>
<td>Close</td>
<td></td>
<td></td>
<td>25-Apr-03</td>
<td>CB</td>
</tr>
<tr>
<td>2002-03</td>
<td>-0.500 +0.250mm Mag</td>
<td>7</td>
<td>CPX</td>
<td>Green</td>
<td>ANH</td>
<td>ANG</td>
<td>Transparent</td>
<td>VIT</td>
<td>Close</td>
<td></td>
<td></td>
<td>25-Apr-03</td>
<td>CB</td>
</tr>
<tr>
<td>2002-03</td>
<td>-0.500 +0.250mm Mag</td>
<td>8</td>
<td>ILM</td>
<td>Black</td>
<td>ANH</td>
<td>SANG</td>
<td>Opaque</td>
<td>METAL FROST</td>
<td>Close</td>
<td></td>
<td></td>
<td>25-Apr-03</td>
<td>CB</td>
</tr>
<tr>
<td>2002-03</td>
<td>-0.500 +0.250mm Mag</td>
<td>9</td>
<td>ILM</td>
<td>Black</td>
<td>ANH</td>
<td>SANG</td>
<td>Opaque</td>
<td>METAL</td>
<td>Close</td>
<td></td>
<td></td>
<td>25-Apr-03</td>
<td>CB</td>
</tr>
<tr>
<td>2002-03</td>
<td>-0.500 +0.250mm Mag</td>
<td>10</td>
<td>CHR</td>
<td>Black</td>
<td>ANH</td>
<td>SANG</td>
<td>Opaque</td>
<td>METAL FROST</td>
<td>Close</td>
<td></td>
<td></td>
<td>25-Apr-03</td>
<td>CB</td>
</tr>
<tr>
<td>2002-03</td>
<td>-0.500 +0.250mm Mag</td>
<td>11</td>
<td>CHR</td>
<td>Black</td>
<td>2A</td>
<td>EUH</td>
<td>Opaque</td>
<td>SMETAL FROST</td>
<td>Close</td>
<td></td>
<td></td>
<td>25-Apr-03</td>
<td>CB</td>
</tr>
<tr>
<td>2002-03</td>
<td>-0.500 +0.250mm Mag</td>
<td>12</td>
<td>CHR</td>
<td>Black</td>
<td>2A</td>
<td>EUH</td>
<td>Opaque</td>
<td>SMETAL</td>
<td>Close</td>
<td></td>
<td></td>
<td>25-Apr-03</td>
<td>CB</td>
</tr>
</tbody>
</table>

Pantone Color Selector (Coated)

Observation Team Leader
Laboratory Manager
QA/QC Specialist

The quality of Kimberlite indicator mineral observation from heavy mineral concentrates (Method 4) is subject to monitoring through a rigorous internal quality assurance/quality control (QA/QC) scheme. Kimberlite indicator recovery is calculated for two samples in every batch. One batch consists of up to twenty-five samples, depending on individual sample weights. Therefore, at least 10% of samples are quality control samples.

Continued QA/QC monitoring involves comparison of Kimberlite indicator mineral recovery from each batch to statistically acceptable quality control standards. Observation of the laboratory extracts, on average, 83.2% (±2.6% at the 95% confidence limit) of pyrope grains >0.25-0.50mm in size and 98.46% (±1.86% at the 95% confidence limit) of chrome diopside grains >0.25-0.50mm in size.
METHOD DESCRIPTION

One sample was submitted for indicator mineral processing and recovery. The as-received sample was processed according to registered methods and standard operating procedures. The results are summarized in the Certificates of Analysis. Standard operating procedures are listed below, sample abnormalities and possible damage caused during shipping are noted on the Certificate. (*) Denotes deviations from standard operating procedures.

HEAVY MINERAL SAMPLE PROCESSING

Sample processing at Kennecott Canada Exploration Inc. Mineral Processing Laboratory in Thunder Bay, ON consists of wet and dry processes including de-sludging, sieving, magnetic separation, heavy liquid separation and classifying (see Table 1 for a summary flowchart). This procedure reduces the sample size from 20 kilograms to a concentrate of approximately 50 grams.

After samples are received, they are logged in and stored outdoors before processing. Processing commences with samples being placed into mixers and washed to remove the clay and silt fraction. This is accomplished by continually adding water in a process called desliming. The wet sample is then sieved using a 979-μm square aperture screen. The +0.979-mm oversize is discarded and the undersize fraction is dried in a large oven. The dry sample is screened using an automated sieve shaker, equipped with 0.5-mm and 0.25-mm square aperture sieves, or U.S.A. Sieve Series equivalent 35 and 60, respectively. The -0.25-mm undersize material is passed through a stacked splitter and a $\frac{1}{8}^{th}$ split is taken, placed in a kraft bag and submitted to ALS-Chemex in Vancouver for analysis. ICP results are included in Appendix...
The +0.25 -0.5-mm and -0.979 + 0.5-mm fractions move forward in the processing stream separately. Subsequent to sieving, the sample is separated with a Reading Pilot Roll magnetic separator, which splits the sample into a paramagnetic and diamagnetic fraction. The magnetic fraction is then titrated in non-toxic sodium polytungstate \([\text{Na}_6\text{(H}_2\text{W})_{12}\text{O}_{46}]\) with specific gravity of 2.89 g/cm\(^3\). All kimberlitic indicator minerals sink in this liquid. The 'sinks' are the paramagnetic, heavy mineral concentrate that is sent to the microscopy laboratory for observation.

HM Method 2 Processing Quality Control Measures

Samples received are divided into sets or batches of one to twenty-five samples. For processing, each batch is assigned a set of three blanks, the middle blank is spiked with 10 laser etched Pyrope and 10 laser etched Clinopyroxene for each fraction analyzed. The blank samples are processed after all samples within the batch have been completed. The entire batch is submitted to the QA/QC office where each of the three blanks is observed. The blank concentrates are monitored for kimberlitic minerals to determine cross contamination if any. Retrieving laser-etched spikes and calculating recovery as a percent determine recovery for the batch. Lab recovery is calculated as a rolling 12-month average, lower limit is 3 standard deviations below the average. If recovery for the blank falls below the lower limit, the batch is deemed non-conforming. If processing recovery is non-conforming, the cause is investigated and corrected if possible.
TABLE 1: HEAVY MINERAL PROCESSING FLOWCHART

This report refers to samples processed as-received.

12-02-2003 11:24 AM
This report may not be reproduced except in full without written permission of the Mineral Processing Laboratory
HEAVY MINERAL CONCENTRATE MICROSCOPE EXAMINATION

Observation of heavy mineral concentrates was performed in Kennecott Canada Exploration Inc. Mineral Processing Laboratory in Thunder Bay (see Table 2). Trained Mineral Technicians examined each grain using binocular microscopes equipped with fibre-optic lights and attached Gerryts belts. Mineral Technicians removed all suspected kimberlitic grains, recorded the totals on an observation logsheet, and later transfer the data to the Laboratory Information Management System. Following observation suspected indicator minerals are examined by a mineralogist who confirms the grain identifications. Selected grains are then described, numbered and submitted for electron microprobe analysis. Grains selected from the 2000 till sampling program have been submitted for analysis. Results are pending.

HM method 4 Observation Quality Control Measures

Once a batch has completed processing, samples for observation are submitted to QA/QC for spiking. One in five samples are randomly selected for spiking with laser etched indicator minerals. At minimum, at least 1 sample per batch is spiked. In order, 1 sample is spiked with 10 Pyrope, 1 sample with 10 Clinopyroxene, 1 sample with random number between 2 and 10 Pyrope, 1 sample with 5 Clinopyroxene, and a fifth sample, again with a random number between 2 and 10 of Pyrope grains. The samples are submitted blind to the observers. In observation, all etched indicator minerals recovered are placed on sample grain cards and returned to QA/QC. The batch recovery is calculated as a percent. Lab recovery is calculated as a 12-month rolling average, lower limit is 3 standard deviations below the average. If recovery of one or more samples falls below the lower limit the batch is deemed non-conforming. In the event of a non-conforming pick, the observer is removed from client samples and given spiked training samples to observe. When the observer’s recovery rate meets laboratory standard, they may resume observing client samples.
TABLE 2. OBSERVATION AND SELECTION FLOWCHART

1. Indicator Mineral Selection
2. Description & Selection
3. Mount Indicator Minerals
4. Indicator Mineral Confirmation by EMP
5. Picked Sample Storage
6. Storage of Unselected Indicator Minerals

This report refers to samples processed as-received.
Work Report Summary

Transaction No: W0340.01973
Status: APPROVED
Recording Date: 2003-DEC-16
Approval Date: 2003-DEC-22
Work Done from: 2003-MAR-05 to: 2003-AUG-10
Client(s): 206079 WAHL, RUDOLF

Work Report Details:

<table>
<thead>
<tr>
<th>Claim#</th>
<th>Perform</th>
<th>Approve</th>
<th>Applied</th>
<th>Applied Approve</th>
<th>Assign</th>
<th>Assign Approve</th>
<th>Reserve</th>
<th>Reserve Approve</th>
<th>Due Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>TB 1208950</td>
<td>$0</td>
<td>$0</td>
<td>$6,400</td>
<td>$6,400</td>
<td>$0</td>
<td>0</td>
<td>$0</td>
<td>$0</td>
<td>2005-FEB-10</td>
</tr>
<tr>
<td>TB 120951</td>
<td>$0</td>
<td>$0</td>
<td>$3,600</td>
<td>$3,600</td>
<td>$0</td>
<td>0</td>
<td>$0</td>
<td>$0</td>
<td>2005-FEB-10</td>
</tr>
<tr>
<td>TB 1216786</td>
<td>$7,300</td>
<td>$7,300</td>
<td>$3,200</td>
<td>$3,200</td>
<td>$4,100</td>
<td>4,100</td>
<td>$0</td>
<td>$0</td>
<td>2004-SEP-24</td>
</tr>
<tr>
<td>TB 1231874</td>
<td>$7,300</td>
<td>$7,300</td>
<td>$3,200</td>
<td>$3,200</td>
<td>$800</td>
<td>800</td>
<td>$3,300</td>
<td>$3,300</td>
<td>2004-OCT-21</td>
</tr>
<tr>
<td>TB 1232949</td>
<td>$0</td>
<td>$0</td>
<td>$400</td>
<td>$400</td>
<td>$0</td>
<td>0</td>
<td>$0</td>
<td>$0</td>
<td>2005-MAR-25</td>
</tr>
<tr>
<td>TB 1246786</td>
<td>$7,487</td>
<td>$7,487</td>
<td>$3,200</td>
<td>$3,200</td>
<td>$0</td>
<td>0</td>
<td>$4,287</td>
<td>$4,287</td>
<td>2005-DEC-20</td>
</tr>
<tr>
<td>TB 1246788</td>
<td>$6,300</td>
<td>$6,300</td>
<td>$800</td>
<td>$800</td>
<td>$5,500</td>
<td>5,500</td>
<td>$0</td>
<td>$0</td>
<td>2006-FEB-12</td>
</tr>
</tbody>
</table>

$28,387 $28,387 $20,800 $20,800 $10,400 $10,400 $7,587 $7,587

External Credits:

- Reserve: $0

- Reserve: $7,587 Reserve of Work Report# W0340.01973

- $7,587 Total Remaining

Status of claim is based on information currently on record.
Dear Sir or Madam

Subject: Approval of Assessment Work

We have approved your Assessment Work Submission with the above noted Transaction Number(s). The attached Work Report Summary indicates the results of the approval.

At the discretion of the Ministry, the assessment work performed on the mining lands noted in this work report may be subject to inspection and/or investigation at any time.

If you have any question regarding this correspondence, please contact STEVEN BENETEAU by email at steve.beneteau@ndm.gov.on.ca or by phone at (705) 670-5855.

Yours Sincerely,

Ron C. Gashinski
Senior Manager, Mining Lands Section

Cc: Resident Geologist
Rudolf Wahl
(Claim Holder)

Assessment File Library
Rudolf Wahl
(Assessment Office)
Those wishing to stake mining claims should consult with the Provincial Mining Recorders’ Office of the Ministry of Northern Development and Mines for additional General Information and Limitations. Information on the status of the lands shown hereon, This map is not intended for navigational, survey, or land title determination purposes as the information shown on this map is compiled from various sources. Completeness and accuracy are not guaranteed. Additional information may also be obtained through the Provincial Mining Recorders’ Office, local Land Titles or Registry Office, or the Ministry of Natural Resources. The information shown is derived from digital data available in the Provincial Mining Recorders’ Office at the time of downloading from the Ministry of Northern Development and Mines web site.

This map may not show unregistered land tenure and interests in Toll Free Map Datum: NAD 93 (15th meridian) including certain patents, leases, easements, right of ways, right of use, mining royalty, or other forms of disposition of rights and interests from the Crown. Also certain land tenure and land uses prohibiting free entry to stake mining claims may not be illustrated.

Willet Ontario Miller Centre 933 Ramsey Lake Road
Fax: 1 (877) 670-1444
Topographic Data Source: Land Information Ontario
Mining Land Tenure Source: Provincial Mining Recorders’ Office

MINE TERRY-LAH-2139
Jan 21, 2001
Surface Rights Only Withdrawn from Staking. Order W-TB-13/03.
Hand stripped section of the Carbonatite plug (Diatreme) and sample location on claim #1246786.

Scale: 50 cm = 90 m

SYMBOLS
- C.D. railway
- Outcrop: large, small
- Swamp
- MAR: Sand
- Rock sample location and assay number
- Break in slope

ABBREVIATIONS
- qv: quartz vein
- py: pyrite
- c: calcite
- h: hornblende
- s: sericite

LEGEND
- **ARCHEAN**
 1.3a: Porphyritic Syenite
 1.3b: Gabbro magnetite bearing
 1.3c: Lamprophyre Dike
 1.3g: Carbonatite plug
 1.3h: Diatreme (dike)
 1.3i: Tuffite Sequence
 2.3a: Felsic to intermediate tuff and silty volcaniclastic rocks
 2.3b: Felsic to intermediate agglomerate-conglomerate
 2.3g: Crustal tuff
 2.3h: Lappilliluff

WAIL PROSPECTING

HERON BAY PROPERTY
Pic Township
Thunder Bay M.D., Ontario
GEOLOGY AND ROCK SAMPLE LOCATIONS

Drawn by R. Wahl | December 2003 | Scale 1:5000

© Dole Nov., 2003 | FIG No.