2. 20472

Report of Work
(Line Cutting & IP Surveys)

For

EastWest Resources Corporation Inc.
(Vancouver, BC)

On

Reaume project
Porcupine Mining Division

Richard Daigle
Geoserve Canada Inc.

RECEIVED
AUG 02 2000
July 24, 2000
1.0 Table Of Contents

2.0 Summary ... Page 1
3.0 Introduction ... Page 3
4.0 2000 Work ..
 4.1 Line Cutting.. Page 4
 4.2 Induced Polarization Survey
 Procedure.. Page 5
 Results ... Page 5/6/7
5.0 Conclusion .. Page 8
6.0 Equipment and Theory ...
 6.1 Receiver... Page 9/10
 6.2 Integration Time... Page 10
 6.3 Transmitter.. Page 11/12
7.0 Theory.. Page 13
8.0 Certification .. Page 14

List of Figures & Maps
Figure 1(location map)................................. Page 2
Figure 2(property map)................................ Page 4
Figure 3 Compilation Map ... Page 15

Pockets
Sections L400E/ L200E/ L200W/ L600W/ L1400E/ L1700E
1: 10, 000 Compilation Plan

Supplementary (1999 IP Survey)
Section 800E .. Pocket
Section 900E .. Pocket
Section 1000E .. Pocket

(i)
2.0 Summary

The work completed by EastWest Resources Corp. on their Reaume Project in the summer of 2000 forms the main basis of this report. The property lies north and east of Timmins Ontario, 28 km northeast of the Kidd Creek Mine at the west limit of the known Mann Intrusive Complex. The thirty five claims owned by EastWest spread across Reaume, Duff and, Mann Townships, Porcupine Mining Division. The objective of the broad spaced grid lines established across part of their property (11 of 35 claims traversed) is an attempt to further delineate a sulphide zone on claim 1204690 and evaluate aero-em anomalies on claims 1228241. The remainder of traverses is basic exploration. EastWest applied the Induced Polarization method to evaluate targets. It is important to be aware of past work to further understand the results. In 1995 Noranda Exploration did approximately 60 km of mag and max-min on claims 1193104 and 1193105. In 1999 EastWest explored the original Zeverly Showing (Pt, Pd, Cr, pent, Ni, Cu) on present claim 1204690, Falconbridge option) originally establishing the grid referred to in this report. Also the author Mr. R. Daigle applied a similar induced polarization survey method on Mr Leonard Hill’s claims which adjoins south to the Zeverly Showing. EastWest is presently evaluating the Reaume Project for base metal and PGE investment.

(1)
Thirty Five Claims covering 4528 Hectares of Mineral Rights in Reaume, Duff & Mann Townships, Porcupine Mining Division, District of Cochrane, NE Ontario.
3.0 Introduction

EastWest Resources Corporation Inc. of Vancouver, BC, completed a wide-spaced survey across several claims on their *Reaume Project* (see Figure 1). The Reaume Property comprises thirty five contiguous claims owned by EastWest. The claims extend across Reaume, Duff and Mann Townships, Porcupine Mining Division, Northeast Ontario (see Figure 2). The claims are 49 km northeast of Timmins, Ontario. The property is accessible from Highway 11 between Cochrane and Iroquois Falls along an east-west bush road that bisects the Frederick House River at Three Rapids. This bush road also accesses the Tunis Power Station.

The property lies approximately 28 km northeast of the Kidd Creek Mine. The Reaume Property is geologically situated at the west limit of the Mann Intrusive Complex located in the south-western part of the Abitibi greenstone belt. The complex is among the largest stratiform intrusive bodies in the region with a true strike length of more than 40 km. The complex occurs within the the Stoughton-Roquemaure assemblage and contains mafic and ultramafic intrusive and extrusive igneous rocks. A clinopyroxenite unit within the Mann Intrusive Complex contains anomalous PGE mineralization (Good & Crocket, 1999). The property is well situated for potential VMS deposits. Past work dates back to the early 1900's. The first significant rush of exploration occurred in the 50's decade when asbestos was being sought by prospectors. Since then several major companies (Falconbridge, Noranda, Esso) randomly explored the area for base metal occurrences. In 1999 EastWest Resources Corp decided to explore the area using a deep penetrating Induced Polarization survey to delineate massive or disseminated sulfide bearing zones. Also to mention claims 1993104 & 1193105 (Duff Twp) were explored in 1995 by Noranda Explorations (Report of work, R J Daigle, 1995).

The survey lines cut in May & June, 2000 traverse eleven of the thirty five claim property. The results of the 2000 work completed forms the main basis of this report.
4.0 2000 Work

4.1 Line Cutting

The survey lines cut in May-June 2000 amount to 21.4 km. The lines were cut by Richard Daigle and crews who are all from Timmins, Ontario. The survey lines cut in 2000 is a continuation of the grid established by EastWest in 1999 (Report of Work, R.J. Daigle, 1999). The survey lines are tied-in using a GPS unit, therefore accurate positioning can be relied on.

The main emphasis of the established survey lines is an attempt to trace the massive sulphide zone intersected in 1951 on the Zeverly claims (present claim 1204690) and to isolate areo-em anomalies on the property being reported on (see Figure 3).
4.2 Induced Polarization Survey

Procedure
The Time Domain Induced Polarization Survey started June 28, 2000 and was completed July 18, 2000. A Pole Dipole Array was used with the infinity electrode located in three separate positions for the survey. The first infinity electrode was at local coordinate 0+00/ 2500 m S (southerly along the Duff-Mann Township line. Lines 400E, 200E and, 200W were read with this set-up. The second infinity was located at local grid coordinate 750W/ 1600 m S (along the Ice Chest Lake road) and read line 600W. The final infinity electrode located at 2500E/ 3000N(easterly along the access road) read lines 1400E and 1700E. Crews read n=1 to n=6 levels with a Dipole Spacing of 50m. An Androtex TDR6 Receiver in conjunction with the Scintrex TSQ-3 (3000W) transmitter was used for the survey. The mobile current electrode lagged for every traverse therefore inducing the current northerly.

Results
The 2000 survey results are presented on six 1:5000 sections. Both apparent IP effects (mV/V) and Resistivities (ohms/ 50m) are posted and contoured. All lines were read from grid south to north.

<table>
<thead>
<tr>
<th>Section</th>
<th>from</th>
<th>to</th>
<th>length</th>
</tr>
</thead>
<tbody>
<tr>
<td>L 400E</td>
<td>150 N</td>
<td>3150 N</td>
<td>3.000 km</td>
</tr>
<tr>
<td>L 200E</td>
<td>900 N</td>
<td>3400 N</td>
<td>2.500 km</td>
</tr>
<tr>
<td>L 200W</td>
<td>350 S</td>
<td>2900 N</td>
<td>3.250 km</td>
</tr>
<tr>
<td>L 600W</td>
<td>800 S</td>
<td>3100 N</td>
<td>3.900 km</td>
</tr>
<tr>
<td>L 1400E</td>
<td>1350 N</td>
<td>4200 N</td>
<td>2.850 km</td>
</tr>
<tr>
<td>L 1700E</td>
<td>1550 N</td>
<td>4150 N</td>
<td>2.600 km</td>
</tr>
</tbody>
</table>

18.1 km
The survey started on line 400E at the road with the infinity electrode 800 m east and 1600 m south. The mobile current lagging south induced an average current (Ig) of 2 amperes northerly for the entire section. A good water table favored good signal for the entire survey. The readings were all easily repeatable for all four traverses west of the Frederick House River.

The anomaly that occurs between 1600 N and 2100 N on section L 400E conforms to an underlay of mafic and ultramafic intrusive rocks. A chargeability anomaly flanks north of this unit under 2400 N and has a correlating narrow apparent resistivity low. This said area has an aero-em anomaly (see compilation map) and occurs west and south of the Zeverly sulphide zone. The anomaly seen between 1000N to 1100N on section L 400E is conformable to a possible source within chemical metasedimentary rocks. Section L 200E mirrors L 400E apart from higher apparent resistivities flanking north and south of the inferred mafic and ultramafic intrusive rocks. A new anomaly is not completely defined at the north limit of this section. Aero-em anomalies are seen near this area on the compilation map. Section L 200W has an anomaly at its south limit conformable to a possible source within chemical metasedimentary rocks. A similar type response is seen from 1100 to 1200N. Aero-Em anomalies only coincide with the south zone. The northerly response on section L 200W shows deep. This section infers the mafic and ultramafic intrusive rocks lie between 1800N and 2200N. Section L 600W was interrupted by a lake from 200S to 0+00. Crews had to restart the line grid north of the lake. Anomalies occur north and south of this said lake. The zone north of the lake correlates with a ground EM anomaly read in 1995 for Noranda Exploration. An anomalous zone under 1300N on this section is on strike with the similar anomaly described on lines 400E, 200E and 200W associated with chemical metasedimentary rocks.
Sections L 1400E and L 1700E were very problematical when reading at the grid south limits. This problem reoccurred in 1999 when reading on these Len Hill claims for Mr. Hill when verifying an HLEM anomaly. The source to the high noise (long time constants along the IP decay) is unexplained. The apparent resistivities can be said to be very low in this area. These two sections have broad anomalies near and under 3200N correlated with the mafic and ultramafic intrusive rocks.
5.0 Conclusion

The area at the south limit of Section L 600W shows an anomaly south of the lake that has no evidence of being tested. This anomaly occurs on claim 1193104 (cross lake option). This section L 600W also confirms aero-em anomaly (MNDM Erlis 1004, processed in 1997) correlation that also have no evidence of being tested.

The problem seen on Sections L 1400E and L 1700E displaying IP anomalies at the extreme along their south limits can perhaps be resolved by traversing in a different direction.

Additional work is left to the clients discretion.

Respectfully Submitted For Approval.

Richard J Daigle

Date
6.0 Equipment and Theory

6.1 Receiver

Androtex TDR-6; The TDR-6 induced polarization receiver is a highly cost-effective instrument for the detailed measurements of IP effects and apparent resistivity phenomenon. Up to six dipoles can be measured simultaneously, thus increasing production. A wide input voltage range, up to 30V, simplifies surveys over the narrow shallow conductors of large resistivity contrast. Input signal indicators are provided for each dipole. All data are displayed on a 2x16 character display LCD module and any selected parameters can be monitored on a separate analogue meter for noise evaluation during the stacking/averaging. Although the TDR-6 receiver is automatic it allows full control and communications with the operator at all times during measurements. Since the input signal synchronizes the receiver at each cycle, the transmitter timing stability is not critical and any standard time domain transmitter can be used. Data are stored in the internal memory with a capacity of up to 2700 readings (450 stations). The data format is directly compatible with Geosoft without the necessity of an instrument conversion program.

Features

- Wide input signal range
- Automatic self-potential cancellation
- Stacking/averaging of Vp and M for high measurement accuracy in noisy environments
- High rejection of power line interference
- Continuity resistance test
- Switch selectable delay and integration time
- Multiwindow chargeability measurements
- Digital output for data logger
- Six channel input provided
- Compatible with standard time domain transmitters
- Alpha-numeric LCD display
- Audio indicator for automatic SP compensation
- Portable

Specifications

<table>
<thead>
<tr>
<th>Feature</th>
<th>Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dipole</td>
<td>n1 to n6 simultaneously</td>
</tr>
<tr>
<td>Input Impedance</td>
<td>10 megohm</td>
</tr>
<tr>
<td>Input Voltage (Vp)</td>
<td>range: 100µV to 30 Volts (automatic), accuracy: .25%, resolution: 10µV.</td>
</tr>
<tr>
<td>Self Potential (SP)</td>
<td>range: ±2V, accuracy: 1%, Automatic compensation ±1</td>
</tr>
<tr>
<td>Chargeability (M)</td>
<td>range: 300mV/V, accuracy: .25%, resolution: 1mV/V</td>
</tr>
<tr>
<td>Automatic Stacking</td>
<td>2 to 32 cycles</td>
</tr>
<tr>
<td>Delay Time</td>
<td>programmable</td>
</tr>
<tr>
<td>Integration Time</td>
<td>programmable for each gate (10 gates)</td>
</tr>
<tr>
<td>Total Chargeability Time</td>
<td>During integration time of all gates</td>
</tr>
<tr>
<td>Synchronization Signal</td>
<td>programmable from channel 1 to 6</td>
</tr>
<tr>
<td>Filtering</td>
<td>power lines: dual notch 60/180Hz or 50/150Hz, 100dB, other: Anti-alias, RF and spike rejection</td>
</tr>
<tr>
<td>Internal Test</td>
<td>Vp=1V, M=30mV/V</td>
</tr>
<tr>
<td>Ground resistance test</td>
<td>0 to 200 Kohm</td>
</tr>
<tr>
<td>Transmitting Time</td>
<td>1,2,4 and 8 sec pulse duration, ON/OFF.</td>
</tr>
<tr>
<td>Digital Display</td>
<td>Two line 16 alphanumeric LCD.</td>
</tr>
<tr>
<td>Analogue Meters</td>
<td>Six-monitoring input signal and course resistance testing.</td>
</tr>
</tbody>
</table>
• Controls
 Push button reset, toggle start-stop, rotary
 Rs-in-test, rotary (data scroll) display, rotary
 (data scroll) Dipole, keypad 16 key 4x4.

• Memory Capacity
 2700 readings, 450 stations (n1 to n6).

• Data Output
 serial I/O RS-232 (programmable baud rate), Geosoft compatible output format.

• Temperature Range
 Operating: -30°C to +50°C, storage -40°C to +60°C.

• Power Supply
 Four 1.5V D cells.

• Dimensions
 31x16x29 cm

• Weight
 6.2 kg (14.3lbs)

6.2 Integration Time

 Chargeability Decay Curve

<table>
<thead>
<tr>
<th>Gate</th>
<th>Delay Time</th>
<th>Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gate 1</td>
<td>80 mS</td>
<td>320 mS</td>
</tr>
<tr>
<td>Gate 2</td>
<td>80 mS</td>
<td>320 mS</td>
</tr>
<tr>
<td>Gate 3</td>
<td>80 mS</td>
<td>320 mS</td>
</tr>
<tr>
<td>Gate 4</td>
<td>80 mS</td>
<td>320 mS</td>
</tr>
<tr>
<td>Gate 5</td>
<td>160 mS</td>
<td>320 mS</td>
</tr>
<tr>
<td>Gate 6</td>
<td>160 mS</td>
<td>320 mS</td>
</tr>
<tr>
<td>Gate 7</td>
<td>160 mS</td>
<td>320 mS</td>
</tr>
<tr>
<td>Gate 8</td>
<td>320 mS</td>
<td></td>
</tr>
<tr>
<td>Gate 9</td>
<td>320 mS</td>
<td></td>
</tr>
<tr>
<td>Gate 10</td>
<td>320 mS</td>
<td></td>
</tr>
</tbody>
</table>

(10)
6.3 Transmitter

Scintrex TSQ-3: The Motor-Generator set consists of a reliable Briggs and Stratton four stroke engine, coupled to a brushless permanent magnet alternator. The transmitter design employs solid-state components both for power switching and control circuits. Output waveforms and frequencies are selectable; square wave continuous for frequency domain and square wave interrupted for time domain. The programmer is crystal controlled for high stability. While care still must be taken when working with high voltages, the TSQ-3 features overload, underload and thermal protection for maximum safety. Stabilization circuitry ensures that the output current (lg) is automatically controlled to within ±1% for up to 20% external load or ±10% input voltage variations. Voltage, current and circuit resistance are presented on a LED digital display. The system functions as follows; The motor turn turns the generator (alternator) which produces 800Hz, three phase, 230VAC. This energy is transformed upwards according to a front panel voltage setting in a large transformer housed in the TSQ-3. The resulting AC is then rectified is a rectifier bridge. Commutator switches then control the DC voltage output according to the waveform and frequency selected.

Specifications

- **Output Power**: 3000 VA maximum
- **Output Voltages**: 300,400,500,600,750,900,1050,1200,1350 & 1500V
- **Output Current**: 10 amperes maximum
- **Output Current Stability**: Automatic controlled to within ±1% for up to 20% external load variation or up to ±10% input voltage variation.
- **Stabilization Protection**: (Over-range) High Voltage shuts off automatically if the control range exceeds 20%.
- **Digital Display**: Light emitting diodes permit display up to 1999 with variable decimal point; switch selectable to read input voltage, output current, external circuit resistance, dual current range, switch selectable.
- **Current Reading Resolution**: 10mA on coarse range (1-10A) and 1mA on fine range (0-2A).
- **Time Domain Cycle**: t:t:t:t; ON:OFF:ON:OFF:automatic
- **Polarity Change**: 'Each 2t, automatic.
- **Pulse Duration**: Standard t=1,2,4,8,16 and 32 seconds, optional
- **Stability**: Crystal controlled to better than .1% with external clock option better than 20ppm over operating temperature range.
- **Efficiency**: .78
- **Operating Temperature**: Range; -30°C to +50°C
- **Overload Protection**: Automatic shut-off at 3000VA.
- **Underload Protection**: Automatic shut-off at current below 85mA.
- **Thermal Protection**: Automatic shut-off at internal temp. of 85°C.
- **Dimensions**: 350cm x 530cm x 320cm (transmitter).
- **Motor**: Briggs and Stratton, four stroke 8HP.
- **Alternator**: Permanent magnet type, 800Hz, three phase 230VAC at full load.
Output Power: 3000 VA maximum.

Dimensions: 520cm x 715cm x 560cm (generator assembly).

Weight: Transmitter: 25.0kg, Generator Assembly: 72.5kg.

Output DC interrupted squarewave used for survey.

8 second duty cycle

\[
\begin{array}{c}
\text{t1: 2Second On time} \\
\text{t2: 2Second Off time}
\end{array}
\]
7.0 Theory

IP Method

The phenomena of Induced Polarization (IP) was reported as early as 1920 by Schlumberger. The IP survey technique allows a variety of arrays (which all have advantages and disadvantages) and reads two separate elements: (1) The chargeability or IP effect (M) and Apparent Resistivity. The IP technique is useful for detecting sulphide bodies and is also useful as a structural mapping tool. The IP effect is the measurement of the residual voltage in rocks that remains after the interception of a primary voltage. It includes many types of dipolar charge distributions set up by the passage of current through consolidated or unconsolidated rocks. Among the causes are concentration polarization and electrokinetic effects in rocks containing electronic conductors such as metallic sulphides and graphite. The term overvoltage applies to secondary voltages set up by a current in the earth which decays when it is interrupted. These secondary effects are measure by a receiver via potential electrodes. The current flow is actually maintained by charged ions in the solutions. The IP effect is created when this ionic current flow is converted to electronic current flow at the surface of metallic minerals (or some clays, and platy silicates). The IP method is generally used for prospecting low grade (or disseminated) sulphide ores where metallic particles, sulfides in particular, give an anomalous response. Barren rock (with certain exceptions) gives a low response. In practice, IP is measured in one or two ways: (1) In a pure form, a steady current of some seconds (nominally 2 seconds) is passed and abruptly interrupted. The slowly decaying transient voltage existing in the ground are measured after interruption. This is known as the time domain method. The factor Vs/ Vp is the integrated product for a specified time, and several readings are averaged (suppressing noise and coupling effects). The resultant chargeability, M is essentially an unitless value but it is usually represented in mV/V. The second method entails a comparison of the apparent resistivity using sinusoidal alternating currents of 2 frequencies within the normal range of 0.1 to 10.0 cps. The factor used to represent the IP effect by this frequency domain method is the percent frequency effect (PFE) and is defined by (R1-R2)/R1x100% where R1 and R2 are the apparent resistivities at the low and high frequencies.

Use and Limitations

The effective depth of penetration of any IP survey is a function of the resistivity of the surface layer(s) with respect to the resistivity of the lower layer. All arrays have different effects from this resistivity contrast, some are less affected than others. When the surface layer is 0.01 of the lower layer, the effective penetration is very poor hence the term masking. Masking occurs most often in areas of thick clay cover. The size of the target therefore becomes important when detection is desirable under a conductive surface layer. The frequency domain methods are the most adversely affected by masking as inductive coupling can be much greater than the response.

Standard Definitions of Chargeability

The IP parameter, chargeability (M) varies with time. For practical reasons the entire decay curve is not sampled. Instead the secondary voltage is sampled one or more times at various intervals. Because the secondary voltage is received at extremely low levels in many prospecting situations, measurements of its amplitude at any given time is extremely susceptible to noise. Therefore, the secondary voltage is usually integrated for a period of time called a gate. This gate delay, of 80 mSeconds (used by the TDR-6) was chosen to allow time for normal electromagnetic effects and capacitive coupling effects between the transmitter and receiver to attenuate so that the secondary voltage consists only of the IP decay voltage. The TDR-6 total integration time of 1580 milliseconds (gate) is divided into ten individual gates. The time-constant of the IP dispersion curve, Cole-Cole dispersion (W H Pelton, 1977), obtained from the ten individual gates (windows) is directly related to the physical size of the metallic particles. This data is available at the clients request since all of the obtained field data is archived (downloaded) to computer.
8.0 Certification

I Richard Daigle residing at 1115 Maclean Dr, U15 in the city of Timmins, ON, Certify;

1. I have received an Electronic Technologist Certificate in 1979 from Radio College of Canada, Toronto, ON.

2. I have been computer literate and utilized geophysical equipment for twenty years.

3. Experienced Max-Min (HLEM) interpretations along with field operations under the supervision of John Betz, 1979-81.

5. Fulfilled geophysical contracts in NE Ontario, 1985-87.

7. I have been employed by M.C. Exploration Services Inc as Geophysical Evaluator for the past four years.

8. I have no direct interest in the property reported upon or the company worked for.

9. I am member of GAC, GAO and OACETTE.

DATE:
Timmins, ON

R. J. Daigle
<table>
<thead>
<tr>
<th>Claim</th>
<th>Units</th>
<th>Township</th>
<th>Due Date</th>
<th>Credit</th>
<th>Wk.Date</th>
<th>Reserve</th>
</tr>
</thead>
<tbody>
<tr>
<td>1201909</td>
<td>8</td>
<td>MANN</td>
<td>Sep 08, 00</td>
<td></td>
<td></td>
<td>$20</td>
</tr>
<tr>
<td>1204690</td>
<td>8</td>
<td>"</td>
<td>Sep 08, 00</td>
<td></td>
<td></td>
<td>$1471</td>
</tr>
<tr>
<td>1236265</td>
<td>16</td>
<td>"</td>
<td>Apr 07, 01</td>
<td></td>
<td></td>
<td>$0</td>
</tr>
<tr>
<td>1236266</td>
<td>6</td>
<td>"</td>
<td>Apr 07, 01</td>
<td></td>
<td></td>
<td>$0</td>
</tr>
<tr>
<td>1236267</td>
<td>8</td>
<td>"</td>
<td>Apr 07, 01</td>
<td></td>
<td></td>
<td>$0</td>
</tr>
<tr>
<td>1236268</td>
<td>1</td>
<td>"</td>
<td>Apr 07, 01</td>
<td></td>
<td></td>
<td>$0</td>
</tr>
<tr>
<td>1236269</td>
<td>4</td>
<td>"</td>
<td>Apr 07, 01</td>
<td></td>
<td></td>
<td>$0</td>
</tr>
<tr>
<td>1236270</td>
<td>12</td>
<td>"</td>
<td>Apr 07, 01</td>
<td></td>
<td></td>
<td>$0</td>
</tr>
<tr>
<td>1236292</td>
<td>16</td>
<td>"</td>
<td>Apr 07, 01</td>
<td></td>
<td></td>
<td>$0</td>
</tr>
<tr>
<td>1236381</td>
<td>4</td>
<td>"</td>
<td>May 11, 02</td>
<td></td>
<td></td>
<td>$0</td>
</tr>
<tr>
<td>1238576</td>
<td>1</td>
<td>"</td>
<td>May 11, 02</td>
<td></td>
<td></td>
<td>$0</td>
</tr>
<tr>
<td>1238577</td>
<td>1</td>
<td>"</td>
<td>May 11, 02</td>
<td></td>
<td></td>
<td>$0</td>
</tr>
<tr>
<td>1193104</td>
<td>16</td>
<td>DUFF</td>
<td>Dec 04, 00</td>
<td></td>
<td></td>
<td>$6281</td>
</tr>
<tr>
<td>1193108</td>
<td>4</td>
<td>"</td>
<td>Dec 04, 00</td>
<td></td>
<td></td>
<td>$0</td>
</tr>
<tr>
<td>1228240</td>
<td>1</td>
<td>"</td>
<td>Sep 02, 00</td>
<td></td>
<td></td>
<td>$0</td>
</tr>
<tr>
<td>1228241</td>
<td>8</td>
<td>"</td>
<td>Sep 02, 00</td>
<td></td>
<td></td>
<td>$0</td>
</tr>
<tr>
<td>1235970</td>
<td>4</td>
<td>"</td>
<td>May 12, 02</td>
<td></td>
<td></td>
<td>$0</td>
</tr>
<tr>
<td>1236293</td>
<td>8</td>
<td>"</td>
<td>Apr 07, 01</td>
<td></td>
<td></td>
<td>$0</td>
</tr>
<tr>
<td>1236380</td>
<td>6</td>
<td>"</td>
<td>May 11, 02</td>
<td></td>
<td></td>
<td>$0</td>
</tr>
<tr>
<td>1238575</td>
<td>4</td>
<td>"</td>
<td>Apr 26, 02</td>
<td></td>
<td></td>
<td>$0</td>
</tr>
<tr>
<td>1238578</td>
<td>15</td>
<td>"</td>
<td>Apr 26, 02</td>
<td></td>
<td></td>
<td>$0</td>
</tr>
<tr>
<td>1238579</td>
<td>9</td>
<td>"</td>
<td>Apr 26, 02</td>
<td></td>
<td></td>
<td>$0</td>
</tr>
<tr>
<td>1238580</td>
<td>8</td>
<td>"</td>
<td>Apr 26, 02</td>
<td></td>
<td></td>
<td>$0</td>
</tr>
<tr>
<td>1238582</td>
<td>2</td>
<td>"</td>
<td>Apr 26, 02</td>
<td></td>
<td></td>
<td>$0</td>
</tr>
<tr>
<td>1238583</td>
<td>16</td>
<td>"</td>
<td>Apr 26, 02</td>
<td></td>
<td></td>
<td>$0</td>
</tr>
<tr>
<td>1238648</td>
<td>4</td>
<td>"</td>
<td>Apr 26, 02</td>
<td></td>
<td></td>
<td>$0</td>
</tr>
<tr>
<td>1238649</td>
<td>1</td>
<td>"</td>
<td>Apr 26, 02</td>
<td></td>
<td></td>
<td>$0</td>
</tr>
<tr>
<td>1238650</td>
<td>4</td>
<td>"</td>
<td>May 12, 02</td>
<td></td>
<td></td>
<td>$0</td>
</tr>
<tr>
<td>1238766</td>
<td>5</td>
<td>"</td>
<td>May 12, 02</td>
<td></td>
<td></td>
<td>$0</td>
</tr>
<tr>
<td>1238769</td>
<td>16</td>
<td>"</td>
<td>May 19, 02</td>
<td></td>
<td></td>
<td>$0</td>
</tr>
<tr>
<td>1235972</td>
<td>16</td>
<td>REAUME</td>
<td>May 12, 02</td>
<td></td>
<td></td>
<td>$0</td>
</tr>
<tr>
<td>1235973</td>
<td>16</td>
<td>"</td>
<td>May 12, 02</td>
<td></td>
<td></td>
<td>$0</td>
</tr>
<tr>
<td>1238574</td>
<td>16</td>
<td>"</td>
<td>May 19, 02</td>
<td></td>
<td></td>
<td>$0</td>
</tr>
<tr>
<td>1238767</td>
<td>4</td>
<td>"</td>
<td>May 12, 02</td>
<td></td>
<td></td>
<td>$0</td>
</tr>
<tr>
<td>1238768</td>
<td>15</td>
<td>"</td>
<td>May 19, 02</td>
<td></td>
<td></td>
<td>$0</td>
</tr>
</tbody>
</table>
Ontario

Declaration of Assessment Work
Performed on Mining Land

Mining Act, Subsection 86(2) and 86(3), R.S.O. 1980

Personal information collected on this form is obtained under the authority of subsections 65(2) and 66(3) of the Mining Act. Under section 8 of the Mining Act, this form corresponds with the mining land holder. Questions about this collection should be directed to Mines, 3rd Floor, 933 Ramsey Lake Road, Sudbury, Ontario, P3E 6B5.

1. Recorded holder(s) (Attach a list if necessary)

<table>
<thead>
<tr>
<th>Name</th>
<th>Client Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>EASTWEST RESOURCE CORP.</td>
<td>128645</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Address</th>
<th>Telephone Number</th>
<th>Fax Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Suite 402, 985 West Bender St.</td>
<td>604-681-3154</td>
<td>604-681-5930</td>
</tr>
<tr>
<td>Vancouver BC, V6C-1L6</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

2. Type of work performed: Check (✓) and report on only ONE of the following groups for this declaration.

<table>
<thead>
<tr>
<th>Work Type</th>
<th>Office Use</th>
</tr>
</thead>
<tbody>
<tr>
<td>Physical: drilling stripping, trenching and associated assays</td>
<td></td>
</tr>
<tr>
<td>Rehabilitation</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Work Type</th>
<th>Commodity</th>
<th>Total $ Value of Work Claimed</th>
<th>NTS Reference</th>
<th>Mining Division</th>
<th>Resident Geologist District</th>
</tr>
</thead>
<tbody>
<tr>
<td>LINE CUTTING IP SURVEY</td>
<td></td>
<td></td>
<td></td>
<td>Porcupine</td>
<td>--</td>
</tr>
</tbody>
</table>

Global Positioning System Data (If available)

<table>
<thead>
<tr>
<th>Township/section</th>
<th>M or G-Plan Number</th>
<th>Township/section</th>
<th>M or G-Plan Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Duff & Mann Twp.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Please remember to:
- obtain a work permit from the Ministry of Natural Resources as required;
- provide proper notice to surface rights holders before starting work;
- complete and attach a Statement of Costs, form 0212;
- provide a map showing contiguous mining lands that are linked for assigning work;
- include two copies of your technical report.

3. Person or companies who prepared the technical report (Attach a list if necessary)

<table>
<thead>
<tr>
<th>Name</th>
<th>Telephone Number</th>
<th>Fax Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Richard Daigle</td>
<td>905-235-2772</td>
<td>same</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Name</th>
<th>Telephone Number</th>
<th>Fax Number</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

4. Certification by Recorded Holder or Agent

I, RICHARD DAIGLE, do hereby certify that I have personal knowledge of the facts set forth in this Declaration of Assessment Work having caused the work to be performed or witnessed the same during or after its completion and, to the best of my knowledge, the annexed report is true.

Signature of Recorded Holder or Agent: __________________________
Date: ______/_____/______

Agent’s Address: P.O. Box 6162, Sudbury, ON P0N 1K0
Telephone Number: 905-235-2772
Fax Number: same
Schedule for Declaration of Assault Work on Mining Land

<table>
<thead>
<tr>
<th>Mining Claim Number. Or if work was done on other eligible mining land, show in this column the location number indicated on the claim map.</th>
<th>Number of Claim Units. For other mining land, list hectares.</th>
<th>Value of work performed on this claim or other mining land.</th>
<th>Value of work applied to this claim.</th>
<th>Value of work assigned to other mining claims.</th>
<th>Bank. Value of work to be distributed at a future date.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1201909</td>
<td>8</td>
<td>3756</td>
<td>3200</td>
<td>746</td>
</tr>
<tr>
<td>2</td>
<td>1204690</td>
<td>8</td>
<td>3216</td>
<td>3200</td>
<td>—</td>
</tr>
<tr>
<td>3</td>
<td>1236265</td>
<td>6</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>4</td>
<td>1236266</td>
<td>6</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>5</td>
<td>1236267</td>
<td>8</td>
<td>3731</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>6</td>
<td>1236268</td>
<td>1</td>
<td>8916</td>
<td>—</td>
<td>8916</td>
</tr>
<tr>
<td>7</td>
<td>1236269</td>
<td>4</td>
<td>1031</td>
<td>1031</td>
<td>1031</td>
</tr>
<tr>
<td>8</td>
<td>1236270</td>
<td>12</td>
<td>292</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>9</td>
<td>1236271</td>
<td>4</td>
<td>266</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>10</td>
<td>1236292</td>
<td>16</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>11</td>
<td>1238574</td>
<td>4</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>12</td>
<td>1238576</td>
<td>1</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>13</td>
<td>1238577</td>
<td>1</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>14</td>
<td>1193104</td>
<td>16</td>
<td>1436</td>
<td>6400</td>
<td>—</td>
</tr>
<tr>
<td>15</td>
<td>1193105</td>
<td>4</td>
<td>2111</td>
<td>1600</td>
<td>511</td>
</tr>
<tr>
<td>16</td>
<td>1228240</td>
<td>1</td>
<td>1166</td>
<td>400</td>
<td>766</td>
</tr>
<tr>
<td>17</td>
<td>1228241</td>
<td>8</td>
<td>2126</td>
<td>3200</td>
<td>—</td>
</tr>
<tr>
<td>18</td>
<td>1235590</td>
<td>4</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>19</td>
<td>1236293</td>
<td>8</td>
<td>3461</td>
<td>—</td>
<td>3461</td>
</tr>
<tr>
<td>20</td>
<td>1236360</td>
<td>6</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>21</td>
<td>1238575</td>
<td>4</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>22</td>
<td>1238578</td>
<td>15</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>23</td>
<td>1238579</td>
<td>9</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>24</td>
<td>1238580</td>
<td>8</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>25</td>
<td>1238582</td>
<td>2</td>
<td>626</td>
<td>—</td>
<td>570</td>
</tr>
<tr>
<td>26</td>
<td>1238583</td>
<td>16</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>27</td>
<td>1238584</td>
<td>4</td>
<td>1496</td>
<td>—</td>
<td>1074</td>
</tr>
<tr>
<td>28</td>
<td>1238591</td>
<td>1</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>29</td>
<td>1238592</td>
<td>1</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>30</td>
<td>1238593</td>
<td>1</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>31</td>
<td>1238594</td>
<td>1</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>32</td>
<td>1238595</td>
<td>1</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>33</td>
<td>1238596</td>
<td>1</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>34</td>
<td>1238597</td>
<td>1</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>35</td>
<td>1238598</td>
<td>1</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>36</td>
<td>1238599</td>
<td>1</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
</tbody>
</table>

Total

25670 18000 3916 7670
<table>
<thead>
<tr>
<th>Work Type</th>
<th>Units of work</th>
<th>Cost Per Unit of work</th>
<th>Total Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>Line Cutting</td>
<td>21.4 Km</td>
<td>$300.00</td>
<td>$6,420.00</td>
</tr>
<tr>
<td>IP Survey</td>
<td>18.1 Km</td>
<td>$1050.00</td>
<td>$19,005.00</td>
</tr>
<tr>
<td>Property Visits</td>
<td>May 17/80 & July 28/80</td>
<td>$250.00</td>
<td>$500.00</td>
</tr>
<tr>
<td>Report</td>
<td></td>
<td>$1200.00</td>
<td>$1200.00</td>
</tr>
</tbody>
</table>

Associated Costs (e.g. supplies, mobilization and demobilization).

Transportation Costs

Food and Lodging Costs

Total Value of Assessment Work $27,125.00

Calculations of Filing Discounts:
1. Work filed within two years of performance is claimed at 100% of the above Total Value of Assessment Work.
2. If work is filed after two years and up to five years after performance, it can only be claimed at 50% of the Total Value of Assessment Work. If this situation applies to your claims, use the calculation below:

\[\text{TOTAL VALUE OF ASSESSMENT WORK} \times 0.50 = \text{Total $ value of worked claimed.} \]

Note:
- Work older than 5 years is not eligible for credit.
- A recorded holder may be required to verify expenditures claimed in this statement of costs within 45 days of a request for verification and/or correction/clarification. If verification and/or correction/clarification is not made, the Minister may reject all or part of the assessment work submitted.

Certification verifying costs:

RICHARD DAIGLE do hereby certify, that the amounts shown are as accurate as may reasonably be determined and the costs were incurred while conducting assessment work on the lands indicated on the accompanying Declaration of Work form as AGENT I am authorized to make this certification.

Date: July 31/80
August 25, 2000

EAST WEST RESOURCE CORPORATION
905 WEST PENDER
APT 402
VANCOUVER, BC
V6C-1L6

Dear Sir or Madam:

Subject: Transaction Number(s): Submission Number: 2.20472

We have reviewed your Assessment Work submission with the above noted Transaction Number(s). The attached summary page(s) indicate the results of the review. WE RECOMMEND YOU READ THIS SUMMARY FOR THE DETAILS PERTAINING TO YOUR ASSESSMENT WORK.

If the status for a transaction is a 45 Day Notice, the summary will outline the reasons for the notice, and any steps you can take to remedy deficiencies. The 90-day deemed approval provision, subsection 6(7) of the Assessment Work Regulation, will no longer be in effect for assessment work which has received a 45 Day Notice. Allowable changes to your credit distribution can be made by contacting the Geoscience Assessment Office within this 45 Day period, otherwise assessment credit will be cut back and distributed as outlined in Section #6 of the Declaration of Assessment work form.

Please note any revisions must be submitted in DUPLICATE to the Geoscience Assessment Office, by the response date on the summary.

If you have any questions regarding this correspondence, please contact BRUCE GATES by e-mail at bruce.gates@ndm.gov.on.ca or by telephone at (705) 670-5856.

Yours sincerely,

ORIGINAL SIGNED BY
Steve B. Beneteau
Acting Supervisor, Geoscience Assessment Office
Mining Lands Section
Work Report Assessment Results

Submission Number: 2.20472
Date Correspondence Sent: August 25, 2000
Assessor: BRUCE GATES

<table>
<thead>
<tr>
<th>Transaction Number</th>
<th>First Claim Number</th>
<th>Township(s) / Area(s)</th>
<th>Status</th>
<th>Approval Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>W0060.00323</td>
<td>1201909</td>
<td>DUFF, MANN</td>
<td>Approval</td>
<td>August 24, 2000</td>
</tr>
</tbody>
</table>

Section:
14 Geophysical IP

Correspondence to:
Resident Geologist
South Porcupine, ON

Recorded Holder(s) and/or Agent(s):
Richard Daigle
SOUTH PORCUPINE, ONTARIO, CANADA

Assessment Files Library
Sudbury, ON
EAST WEST RESOURCE CORPORATION
VANCOUVER, BC
Topo

Interpretation

Chargeability
mV/V

Filter
n=1
n=2
n=3
n=4
n=5
n=6

Resistivity
ohm/meters

Filter
n=1
n=2
n=3
n=4
n=5
n=6

INSTRUMENTS
BRGM Elerec 6, Time Domain Receiver
1760mSec Total Integration Time, 80mS Delay.
MT= (80+80+80+80+160+160+160+320+320+320) mSec
Pheonix IPT1, 3.0Kw Transmitter
8Second Total Duty Cycle, 2Sec On/Off Time.

INTERPRETATION
Low Effect
Poorly Chargeable mV/V, IP effect
Low Apparent Resistivity, rho

Moderately Low Effect

Moderately High Effect

High Effect
Good Chargeability mV/V, IP effect
High Apparent Resistivity, rho

Scale 1:5000

Reaume Project
Induced Polarization Survey
1999 SURVEY

Geoserve Canada Inc June 2000.
Topo Interpretation Chargeability mV/V Interpretation Resistivity ohm/meters Interpreted.

Pole-Dipole Array

Filter
* n1
** n2
*** n3
**** n4

Profiles
Cont. Intervals
Resistivity ; 500 ohm/meter
Chargeability ; 1.0 mV/V
Metal Factor ; 1 %

INSTRUMENTS
BRGM Elerc 6, Time Domain Receiver
1760mSec Total Integration Time, 80mS Delay.
MT= (80+80+80+160+160+160+320+320+320) mSec
Phoenix IPT1, 3.0Kw Transmitter
8Second Total Duty Cycle, 2Sec On/Off Time.

INTERPRETATION
Low Effect
Poorly Chargeable mV/V, IP effect
Low Apparent Resistivity, rho

Moderate Low Effect
Moderately High Effect
High Effect
Good Chargeability mV/V, IP effect
High Apparent Resistivity, rho

Scale 1:5000

Reame Project
Induced Polarization Survey
1999 SURVEY

Geoserve Canada Inc June 2000.
Topo

Interpretation

Chargeability

mV/V

Resistivity

ohm/meters

Interpretation

filter

n=1

n=2

n=3

n=4

n=5

n=6

filter

n=1

n=2

n=3

n=4

n=5

n=6

Filter

Cont. Intervals

Profiles

Resistivity ; 500 ohm/meter

Chargeability ; 1.0 mV/V

Metal Factor ; 1 %

INSTRUMENTS

BRGM Elec 6, Time Domain Receiver

1760mSec Total Integration Time, 320mS Delay.

MT (80+80+80+160+160+160+320+320) mSec

Phoenix IPT1, 3.0kw Transmitter

8Second Total Duty Cycle, 2Sec On/Off Time.

INTERPRETATION

Low Effect

Poorly Chargeable mV/V, IP effect

Low Apparent Resistivity, rho

Moderately Low Effect

Moderately High Effect

High Effect

Good Chargeability mV/V, IP effect

High Apparent Resistivity, rho

Scale 1:5000

50 100 150 200 250 300

(meters)

Reaume Project

Induced Polarization Survey

1999 SURVEY