LOGISTICS AND INTERPRETATION REPORT
ON IP & PICSAMT SURVEYS
AT HALFMOON PROJECT (8152)
ROBB TOWNSHIP
ONTARIO, CANADA
ON BEHALF OF
EXPLORERS ALLIANCE CORPORATION
00-N458A
APRIL 2000
TABLE OF CONTENTS

ABSTRACT .. II

1. **INTRODUCTION** ... 1

2. **THE HALFMOON PROPERTY** .. 2

3. **CONTROLLED SOURCE EM SURVEY** ... 4

4. **RESISTIVITY / INDUCED POLARISATION SURVEY** ... 6

5. **SURVEY PRODUCTS** ... 8

6. **INTERPRETATION** .. 9

LIST OF FIGURES

GENERAL LOCATION OF THE HALFMOON PROJECT ... 1

INDEX OF CLAIMS AND SURVEY GRID AT HALFMOON ... 3

THE POLE-DIPOLE ARRAY ... 6

ELREC-10 TIMES GATES .. 7

TRANSMITTED SIGNAL AT C₁ - C₂ .. 7

DRILL TARGET DDH-2A .. 10

DRILL TARGET DDH-2B .. 11
ABSTRACT

This geophysical campaign is part of an ongoing base metal and gold exploration program by Explorers Alliance Corporation on their Halfmoon Property located 25 km north-west of Timmins, Ontario. Halfmoon is about 3 km west of the past producing Kam Kotia Mines.

IP (5.1 km of TD pole-dipole, A = 50 m, N = 1 to 8) and PICSAMT (3.1 km, frequency range from 8.75 to 4480 Hz) were carried out in April 2000 by Val d'Or Sagax crews. Survey specifications, instrumentation control, data acquisition, processing and interpretation were all successfully performed within our ISO9001 quality system framework.

The surveys were designed to test the sensitivity of the IP and CSEM method to the type of zinc-rich sulfide mineralisation encountered on Halfmoon. Although the CSEM technique did not show any definite response, the IP chargeability results accurately detected the mineralised zone intersected by several drill holes in the area. An additional chargeability response (PD-2) was detected at depth and at the north end of the surveyed area. Although a larger IP coverage would be recommended to better define the extension of those anomalies, this deeper northern anomaly could be drill tested.
1. INTRODUCTION

- PROJECT ID: Halfmoon (8152)
 (Val d'Or Sagax Reference: 00-N458a)

- GENERAL LOCATION: In the Abitibi Greenstone Belt,
 25 km north-west of Timmins, Ontario

- CLIENT: Explorers Alliance Corporation
 168 Algonquin Boulevard East
 Timmins, Ontario
 Canada P4N 1A9
 Telephone: (705) 267-3511

- REPRESENTATIVE: Mr Lionel Bonhomme
 bonhomme@vianct.on.ca

- SURVEY TYPES: Time Domain Induced Polarisation
 Controlled Source Electromagnetic (PICSAMT)

- SURVEY PERIOD: From April 11th to 18th, 2000

- GEOPHYSICAL OBJECTIVES:
 1. Delineate base metal sulphide mineralised zone (zinc-bearing).
 2. Provide effective exploration through thick overburden.
 3. Determine the IP and CSEM responses over known mineralised zones.
2. **THE HALFMOON PROPERTY**

- **LOCATION**
 Robb Township, North-eastern Ontario, Canada
 Centred on 48° 36' N and 81° 39' W
 NTS map number: 42A/12

- **NEAREST SETTLEMENT**
 Timmins: 25 km north-west on Highway 101

- **ACCESS**
 By Highway 101 then road 576 to the north toward Halfmoon.

- **GEOMORPHOLOGY**
 The ground is flat and low, mostly wooded.

- **ARTIFICIAL FEATURE**
 None

- **MINING CLAIMS**
 The present survey line grid covers 7 claim blocks of the Halfmoon property owned by Explorers Alliance Corporation, in the Robb Township.
 The claim numbers encompassed in the present surveys are depicted on page 3.

- **SURVEY GRID**
 A base line (100+00N) was established with a N 115° azimuth.
 Seven (7) cross lines (50+00E to 56+00E) are at 100m intervals and picketed every 25m.

- **GEological SETTINGS**
 The Property is located in the Abitibi Greenstone Belt with felsic volcanic rocks containing base metal sulphide mineralisation.
 It is located about 3 km west of the past producing Kam Kotia Mines.
Index of Claims and Survey Grid at Halfmoon
3. **CONTROLLED SOURCE EM SURVEY**

- **Type of Survey**: Frequency Domain Fixed Loop Electromagnetic
- **Personnel**:
 - Martin Dubois, Geologist, Crew Leader, Rx operator
 - Herbert Pribil, Tx operator
 - Mario Chouinard, Field Assistant
 - Gilles Bacon, T.Sc., Logistics & Instrumentation Control
 - Carole Picard, T.Sc., Data Processing & Plotting
 - Pierre Bérubé, P. Eng., QC & Interpretation
- **Survey Coverage**: 3.1 line-km
 - Line 50+00E to 56+00E
- **Survey Period**:
 - April 15th and 18th, 2000
 - Four (4) survey days.
 - No breakdown or weather day.
- **Receiver (Rx)**:
 - IRIS Magnetotelluric Receiver serial #027
 - Two magnetic inputs
 - Antennas: 2 CMS coils (Hz and Hr)
 - Sensitivity: 50 mV/nT
 - Spectrum: 1 - 10 000 Hz
 - Typical Noise at 1000 Hz: $2 \times 10^{-8} \, \text{A/m}$
- **Transmitter (Tx)**:
 - IRIS Tx-3000 serial #011
 - Power Supply: Honda 220V/5000W Motor Generator
 - Maximum Output: up to 3.0 kW, or 20 A or 800V
 - Loop: **200m x 300m**, double turn, 12 Ω
 - Centred at 53+00E, 108+00N
 - Output Current at 4480 Hz: **3.5 A**
 - Output Current from 8.75 Hz to 560 Hz: **14 A**
- **Frequencies Used (Hz)**: 8.75, 17.5, 35, 70, 140, 280, 560, 1120, 2240, 4480
APPLENT RESISTIVITY CALCULATION

\[\rho_s^p = K_p \left(\frac{H_r}{H_z} \right)^p \]

\[\rho_s^q = K_q \left(\frac{H_r}{H_z} \right)^q \]

\(P \) = real (in-phase) component
\(Q \) = quadrature (out-of-phase) component
\(K \) = is a function of the frequency and the distance from the loop

ISO 9001 QUALITY CONTROL EVIDENCES (QUALITY RECORDS AVAILABLE UPON REQUEST)

Before the survey:

- Maximum output capabilities of the Transmitter & Motor Generator were checked in VDS calibrated loads.
- Receiver and antennas were calibrated over the 8,75 to 4480 Hz frequency range.

During data acquisition:

- Quadrature readings showing a >10% error were repeated. (average error is 3 %)
- Enough pulses were stacked. (average is 6 pulses)

At the Base of Operations:

- Field QCs were inspected & validated
- In-phase readings were calculated, corrected for source-receiver geometry and some spurious values discarded
4. Resistivity / Induced Polarisation Survey

- **Type of Survey**
 - Time Domain Resistivity/Induced Polarisation
 - Pole-Dipole array, "d = 50m, "n" = 1 to 8
 - Location of C*: L40+00E, Station 70+00N (> 3.0 km distant)

- **Personnel**
 - Michel Coulombe, Geophysical Operator, Crew Leader
 - Gabriel Pilon, Field Assistant
 - Marcel Nault, Field Assistant
 - Michel Guimont, Field Assistant
 - Roger Desforges, Field Assistant
 - Martin Dubois, Geologist, Fieldwork Supervisor
 - Gilles Bacon, T.Sc., Logistics & Instrumentation Control
 - Carole Picard, T.Sc., Data Processing & Plotting
 - Dominique Bérubé, Geophysicist, QC & Interpretation

- **Survey Coverage**
 - 5.1 line-km

- **Survey Period**
 - April 11th and 12th, 2000
 - Two (2) survey days.
 - No breakdown.

- **Special Features**
 - Results were processed on a daily basis using our proprietary Refusilo™ package in order to monitor both the efficiency of the survey parameters and the data quality.
 - Spectral IP processing using the Australian Geophysical Research (AGR) Spectral processing package.
IP RECEIVER (R_J)

IRIS Elrec-10 serial #111 (10 input channels)
Electrodes: stainless steel stakes

- **V_p** Primary voltage measurement:
 - Input impedance: 10 MΩ
 - Resolution: 0.001 mV
 - Typical accuracy: 0.3%

- **M_a** Apparent chargeability measurement:
 - Resolution: 0.1 mV/V
 - Typical accuracy: 0.6%
 - Arithmetic sampling mode, 20 time slices (M_1 to M_20)

- All windows are normalised with respect to a standard decay curve for QC in the field.

IP TRANSMITTER (T_x)

GDD Instruments TxII serial #207
Power supply: Kodiak 1800 W Motor Generator
Maximum output: up to 1.4kW or 10 A or 2000 V
Electrodes: stainless steel stakes
Resolution on output current display I: 1 mA
Waveform: bipolar square wave at 50% duty cycle
Pulse duration: 2 seconds

APPARENT RESISTIVITY CALCULATION

\[
\rho_a = 2\pi \cdot \frac{V_p}{I} \cdot n (n + 1) \cdot a \quad \text{(in } \Omega \cdot \text{m)}
\]

Cumulative error: 5% max, mainly related to chaining accuracy
Before the survey:

- Transmitter & Motor Generator were checked for maximum output in VDS calibrated loads.
- Receiver was checked with VDS SIMP™ certified calibrated Vp & M signal simulator.

During data acquisition:

- \(R_x\) & \(T_x\) cable insulation were verified every morning.
- Output current was always sufficient (average is 928 mA, minimum 310 mA)
- Contact resistance at \(R_x\) was always acceptable (average is 0.4 KΩ, maximum 4.4 KΩ)
- \(V_p\) level at \(R_x\) was high enough (n=8 average is 62.9 mV, minimum 27.0 mV)
- Enough pulses were stacked. (kept constant at 5 pulses for Spectral IP)

At the Base of Operations:

- Field QCs were inspected & validated
- Each IP decay curve was analysed with Refusito™:
 - 99.5% of observed gates were found to fit on a pure electrode polarisation relaxation curve.
 - Rejected gates were not included in the computation of the plotted \(M_a\).
- The average error on \(M_a\) at n=8 is 0.25 mV/V

5. Survey Products

The following colour plates are bounded at the end of this report or inserted into pockets. Our ISO9001 Quality System requires that every final map is inspected by at least two qualified persons before being approved and included within a final report. Moreover, the author have to submit his interpretation concept to the Engineering Committee for review and approval before completing the interpretation and writing the final report.

<table>
<thead>
<tr>
<th>Plate Number</th>
<th>Description</th>
<th>Scale</th>
</tr>
</thead>
<tbody>
<tr>
<td>L50+00E to</td>
<td>PICSAMT (CSEM) Survey</td>
<td>1 : 5 000</td>
</tr>
<tr>
<td>L56+00E</td>
<td>In-Phase and Out-of-Phase Apparent Resistivity Frequency Pseudosections (7 plates bounded at the end)</td>
<td></td>
</tr>
<tr>
<td>L50+00E to</td>
<td>Colour Apparent Resistivity & Chargeability Pseudosections and image2D™ True-depth Sections with four spectral parameters and Interpretation (7 plates bounded at the end)</td>
<td></td>
</tr>
<tr>
<td>L56+00E</td>
<td>8.2 Colour image2D™ Resistivity at 125m Depth</td>
<td>1 : 5 000</td>
</tr>
<tr>
<td>8.3 Colour image2D™ Chargeability at 125m Depth</td>
<td>1 : 5 000</td>
<td></td>
</tr>
<tr>
<td>10 Geophysical Interpretation</td>
<td>1 : 5 000</td>
<td></td>
</tr>
</tbody>
</table>
6. INTERPRETATION

A WORD ABOUT THE CSEM TECHNIQUE

CSEM is a fixed-loop deep penetrating system that is quite sensitive to a wide range of mineral targets because

- It operates in the mid-range induction spectrum as opposed to HLEM (low-induction) and VLF-EM (high induction).
- It uses a relatively small transmitter loop (200m x 300m in this case) for best coupling with targets the size of a mineral deposit.
- Being a purely inductive technique, it is also free of static shift effects as encountered in magnetotellurics (CSAMT for instance).

In the profiling-sounding mode, readings are taken at about 10 frequencies to detect conductive targets up to 500 m depth. In-phase and Out-of-phase field ratios (Hr/Hz) are normalised by the Tx-Rx distance and the frequency to derive a set of two apparent resistivity pseudosections. These are interpreted with the help of numerical models.

CSEM TEST-SURVEY RESULTS

This survey was intended as a test of the CSEM sensitivity to the presence of zinc-rich sulfide occurrences like those discovered at Halfmoon. Unfortunately, the quadrature (out-of-phase) results which are the most sensitive to poorly conductive targets are devoided of anomalous signatures along all pseudosections. The shift in the colour spectrum to warmer shades in the northern direction is related to an increase in overburden thickness toward the lake.

The results therefore appear as discouraging as those of the other types of EM surveys tested in the area. The overall picture is quite similar to the galvanic apparent resistivity results from the IP survey.

Measurements done on core samples confirm the absence of resistivity contrast between the mineralisations and the host rocks, fully explaining the failure of all EM techniques to react to these targets.

RESISTIVITY & IP RESPONSES

The resistivity values show little variation throughout the whole surveyed grid. Ranging from values of about 200 to 400 Ω.m on the first separations (near surface) to values of about 1000 to 2000 Ω.m on the last separations (at depth). This resistivity increase at depth indicates that the bedrock was reached by the present survey.

The chargeability values generally show a low range of variation with anomalous areas reaching 1.5 to 4 mV/V over a background of about 0.5 mV/V. Two chargeability anomalies were identified on the Halfmoon grid and were labelled PD-1 and PD-2. They are shown along the survey lines on the Geophysical Interpretation Map and on the Pseudosections Plates. The characteristic of the IP anomalies are tabulated in the table on page 11.

The spectral parameters show no variation throughout the surveyed area probably indicating little variation in the rock characteristics (grain size and distribution).
Anomaly PD-1 corresponds very well with the mineralisation that was intersected by some of the drill holes just north of 101+00N. This anomaly shows a well defined response from line 52+00E to line 56+00E and is therefore open to the east. It can be traced very well with the chargeability response as well as the drill hole results, to name a few, HM99-32 intersects some semi-massive sulfides at 101+30N, R44-11 intersects some sulfides at about 101+25N, and especially on line 54+00E with holes EAL98-01 and HM98-19 that intersected some massive and semi-massive sulfide around 101+20N. There seems to be a very weak response on line 51+00E and no response on line 50+00E, but the IP coverage on this area is too limited to allow a confident conclusion about the extension of the mineralisation to the west. Drill hole HM99-35, on line 51+50E, did intersect some sulfide mineralisation just north of 101+00N, therefore the length of the lines in this area should be extended to the north and south as well as the survey area extended to the west to better determine the possible extension of this anomaly.

Anomaly PD-2 is located just north of PD-1, north of 103+00N. It is not always very well defined being located at the edge of the survey area and at depth. It seems to originate from a larger source at depth and with a signature sometime affected by the PD-1 response, it is therefore more problematic to pin point an accurate target. Two drill hole targets are recommended on this anomaly but any additional geoscientific information should be evaluated to better identify reliable targets.

A first target is recommended on line 54+00E with a second target recommended on line 56+00E, although the IP coverage should be extended to the north and east before this last is investigated by DDH.
Description of the IP anomalies at Halfmoon

<table>
<thead>
<tr>
<th>Anomaly</th>
<th>Location</th>
<th>Contrast</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>PD-1</td>
<td>Line</td>
<td>Station</td>
<td>IP</td>
</tr>
<tr>
<td>52+00E</td>
<td>101+63N</td>
<td>1</td>
<td>- Chargeability response that corresponds to the sulfide mineralisation located by previous DDHs.</td>
</tr>
<tr>
<td>53+00E</td>
<td>101+38N</td>
<td>1</td>
<td>- Its extension is open to the east and weak to the west but possibly extending further west.</td>
</tr>
<tr>
<td>54+00E</td>
<td>100+88N</td>
<td>1</td>
<td>- Additional IP coverage is recommended to the east and west with line extending further north and south. Line of over 1 km in length are preferable.</td>
</tr>
<tr>
<td>55+00E</td>
<td>101+13N</td>
<td>2</td>
<td>-</td>
</tr>
<tr>
<td>56+00E</td>
<td>101+00N</td>
<td>1</td>
<td>-</td>
</tr>
<tr>
<td>PD-2</td>
<td>Line</td>
<td>Station</td>
<td>IP</td>
</tr>
<tr>
<td>51+00E</td>
<td>North End</td>
<td>?</td>
<td>- Chargeability anomaly located on the northern edge of the IP coverage.</td>
</tr>
<tr>
<td>52+00E</td>
<td>North End</td>
<td>103+00N</td>
<td>1</td>
</tr>
<tr>
<td>53+00E</td>
<td>North End</td>
<td>103+88N</td>
<td>1</td>
</tr>
<tr>
<td>54+00E</td>
<td>103+88N</td>
<td>1</td>
<td>-</td>
</tr>
<tr>
<td>55+00E</td>
<td>103+88N</td>
<td>1</td>
<td>-</td>
</tr>
<tr>
<td>56+00E</td>
<td>103+38N</td>
<td>1</td>
<td>-</td>
</tr>
</tbody>
</table>
The interpretation of the IP survey data embodied in this report is essentially a geophysical appraisal of the Halfmoon Property. As such, it incorporates only as much geoscientific information as the author has on hand at the time. Geologists thoroughly familiar with the area are in a better position to evaluate the geological significance of the various geophysical signatures. Moreover, as time passes and information provided by follow-up programs are compiled, exploration targets recognised in this study might be down- or up-graded.

Respectfully submitted,
Val d'Or Sagax inc.

Dominique Bérubé, B.Sc.
Geophysicist

Pierre Bérubé, Eng.
Geophysicist
Ontario Declaration of Assessment Work Performed on Mining Land

Mining Act, Subsection 6(2) and 6(3), R.O. 1990

- **Recorded holder (alias if necessary):** Explorers Alliance Corp
- **Address:** 168 Aboriginal Week East, Timmins, Ontario, CANADA M4R 3W4
- **Client Number:** 320645
- **Client Number:** 265-26-1-7511
- **Client Number:** 265-26-1-3121
- **Client Number:** 374482
- **Comm. Number:** 518189
- **Comm. Number:** 474156
- **Comm. Number:** 405-264-3260
- **Comm. Number:** 204-259-5746
- **Type of work performed:** Check (*) and report on only ONE of the following groups for this declaration.

<table>
<thead>
<tr>
<th>Work Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Geotechnical</td>
<td>prospecting, surveys, assays and work under section 10 (regs)</td>
</tr>
<tr>
<td>Physical</td>
<td>drilling, stripping, trenching and associated assays</td>
</tr>
<tr>
<td>Rehabilitation</td>
<td></td>
</tr>
</tbody>
</table>

- **Please remember to:**
 - Obtain a work permit from the Ministry of Natural Resources as required;
 - Provide proper notice to surface rights holders before starting work;
 - Complete and attach a Statement of Costs, form 0212;
 - Provide a map showing contiguous mining lands that are linked for assigning work;
 - Include two copies of your technical report.

Certification by Recorded Holder or Agent

- Do hereby certify that I have personal knowledge of the facts set forth in this Declaration of Assessment Work having caused the work to be performed or witnessed the same during or after its completion and, to the best of my knowledge, the annexed report is true.

Signature of Recorded Holder or Agent

Revised Copy

2.20754

DEC 1 2000
PORCUPINE MINING DIVISION

RECEIVED
DEC 05 2000
GEOSCIENCE ASSESSMENT OFFICE
Work can only be assigned to claims that are contiguous (adjacent) to the mining land where work was performed, at the time work was performed. A map showing the contiguous link must accompany this form.

<table>
<thead>
<tr>
<th>Mining Claim Number. Or If work was done on other eligible mining land, show on this column the location number indicated on the claim map</th>
<th>Number of Claim Units. For other mining land, list hectares.</th>
<th>Value of work performed on this claim or other mining land.</th>
<th>Value of work applied to this claim.</th>
<th>Value of work assigned to other mining claims.</th>
<th>Bank. Value of work to be distributed at a future date</th>
</tr>
</thead>
<tbody>
<tr>
<td>eg</td>
<td>TB 7827</td>
<td>10 ha</td>
<td>$26,825</td>
<td>N/A</td>
<td>$24,000</td>
</tr>
<tr>
<td>eg</td>
<td>1234567</td>
<td>12</td>
<td>0</td>
<td>$24,000</td>
<td>0</td>
</tr>
<tr>
<td>eg</td>
<td>1234568</td>
<td>2</td>
<td>$8,882</td>
<td>$4,000</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>997539</td>
<td>1</td>
<td>880</td>
<td>30</td>
<td>520</td>
</tr>
<tr>
<td>2</td>
<td>769269</td>
<td>1</td>
<td>2135</td>
<td>1033</td>
<td>1033</td>
</tr>
<tr>
<td>3</td>
<td>1190194</td>
<td>1</td>
<td>680</td>
<td>680</td>
<td>680</td>
</tr>
<tr>
<td>4</td>
<td>1190197</td>
<td>1</td>
<td>680</td>
<td>680</td>
<td>680</td>
</tr>
<tr>
<td>5</td>
<td>1190196</td>
<td>1</td>
<td>100</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>6</td>
<td>1190197</td>
<td>1</td>
<td>100</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>7</td>
<td>1212932</td>
<td>13</td>
<td>1240</td>
<td>1240</td>
<td>1240</td>
</tr>
<tr>
<td>Column Totals</td>
<td>8742</td>
<td>1240</td>
<td>1240</td>
<td>7502</td>
<td></td>
</tr>
</tbody>
</table>

I, [Print Full Name], do hereby certify that the above work credits are eligible under subsection 7 (1) of the Assessment Work Regulation 6/96 for assignment to contiguous claims or for application to the claim where the work was done.

Signature of Recorded Holder or Agent Authorized in Holding

6. Instructions for cutting back credits that are not approved.

Some of the credits claimed in this declaration may be cut back. Please check (√) in the boxes below to show how you wish to prioritize the deletion of credits:

- Credits are to be cut back from the Bank first, followed by option 2 or 3 or 4 as indicated.
- Credits are to be cut back starting with the claims listed last, working backwards; or
- Credits are to be cut back equally over all claims listed in this declaration; or
- Credits are to be cut back as prioritized on the attached appendix or as follows (describe):

Note: If you have not indicated how your credits are to be deleted, credits will be cut back from the Bank first, followed by option number 2 if necessary.
Statement of Costs for Assessment Credit

Personal information collected on this form is obtained under the authority of subsection 6(1) of the Assessment Work Regulation 621. Under section 6 of the Mining Act, the information is a public record. This information will be used to review the assessment work and correspond with the mining land holder. Questions about this collection should be directed to the Chief Mining Recorder, Ministry of Northern Development and Mines, 6th Floor, 13 Ramsey Lake Road, Sudbury, Ontario, P3E 6B5.

Work Type

<table>
<thead>
<tr>
<th>Work Type</th>
<th>Units of Work</th>
<th>Cost Per Unit of work</th>
<th>Total Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>CSEM.</td>
<td>3Km</td>
<td>$1250/Km</td>
<td>3750</td>
</tr>
<tr>
<td>IP</td>
<td>4.175</td>
<td>$850/Km</td>
<td>3570</td>
</tr>
<tr>
<td>Re mapping</td>
<td>Flat Rate</td>
<td></td>
<td>850</td>
</tr>
</tbody>
</table>

Associated Costs (e.g. supplies, mobilization and demobilization).

Transportation Costs

Food and Lodging Costs

Total Value of Assessment Work

Note:
- Work older than 5 years is not eligible for credit.
- A recorded holder may be required to verify expenditures claimed in this statement of costs within 45 days of a request for verification and/or correction/certification. If verification and/or correction/certification is not made, the Minister may reject all or part of the assessment work submitted.

Certification verifying costs:

I, [Name] (please print full name), do hereby certify, that the amounts shown are as accurate as may reasonably be determined and the costs were incurred while conducting assessment work on the lands indicated on the accompanying Declaration of Work form as [Name] (recorded holder, agent, or false company position with signing authority), I am authorized to make this certification.

Signature

Date

[Signature]

[Date]
January 3, 2001

FALCONBRIDGE LIMITED
SUITE 1200, 95 WELLINGTON STREET WEST
TORONTO, ONTARIO
M5J-2V4

Dear Sir or Madam:

Subject: Transaction Number(s): W0060.00491 Approval

We have reviewed your Assessment Work submission with the above noted Transaction Number(s). The attached summary page(s) indicate the results of the review. WE RECOMMEND YOU READ THIS SUMMARY FOR THE DETAILS PERTAINING TO YOUR ASSESSMENT WORK.

If the status for a transaction is a 45 Day Notice, the summary will outline the reasons for the notice, and any steps you can take to remedy deficiencies. The 90-day deemed approval provision, subsection 6(7) of the Assessment Work Regulation, will no longer be in effect for assessment work which has received a 45 Day Notice. Allowable changes to your credit distribution can be made by contacting the Geoscience Assessment Office within this 45 Day period, otherwise assessment credit will be cut back and distributed as outlined in Section #6 of the Declaration of Assessment work form.

Please note any revisions must be submitted in DUPLICATE to the Geoscience Assessment Office, by the response date on the summary.

If you have any questions regarding this correspondence, please contact JIM MCAULEY by e-mail at james.mcauley@ndm.gov.on.ca or by telephone at (705) 670-5858.

Yours sincerely,

Lucille Jerome
Acting Supervisor, Geoscience Assessment Office
Mining Lands Section
Work Report Assessment Results

Submission Number: 2.20754

Date Correspondence Sent: January 03, 2001

Assessor: JIM MCAULEY

<table>
<thead>
<tr>
<th>Transaction Number</th>
<th>First Claim Number</th>
<th>Township(s) / Area(s)</th>
<th>Status</th>
<th>Approval Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>W0060.00491</td>
<td>997539</td>
<td>ROBB</td>
<td>Approval</td>
<td>January 03, 2001</td>
</tr>
</tbody>
</table>

Section:
14 Geophysical EM
14 Geophysical IP

Correspondence to:
Resident Geologist
South Porcupine, ON

Assessment Files Library
Sudbury, ON

Recorded Holder(s) and/or Agent(s):
Lionel Bonhomme
TIMMINS, ONTARIO, CANADA

FALCONBRIDGE LIMITED
TORONTO, ONTARIO

JOHN PETER HUOT
TIMMINS, ONTARIO
EXPLORERS ALLIANCE CORP.
HALFMOON PROJECT (8152)
ROBB Township, Ontario

PICSAMT (CSEM) SURVEY
Apparent Resistivity
Frequency Pseudosection

Interpretation: P. Berube, P.Eng.
Survey by: Val d'Or Sagax Inc.
Survey Date: April 2000
Project 00-N45BA

LINE 50+00E
LINE 51+00E

EXPLORERS ALLIANCE CORP.
HALFMOON PROJECT (8153)
ROBB Township, Ontario

PICSAMT (CSEM) SURVEY
Apparent Resistivity
Frequency Pseudosection

Instrumentation: 3 kW IRIS
Log Contours
Scale 1: 5000
50 0 50 100 150 200 250 300 350 (metres)

Interpretation: P. Berube, P.Eng.
Survey by: Val d'Or Sagax Inc.
Survey Date: April 2000
Project 00-N458A
Boucle / Loop 1
(5500E, 10800N)

Interpretation

IN-PHASE

98+00 N 100+00 N 102+00 N

(5000 E, 10800 N)

EXPLORERS ALLIANCE CORP.
HALFMOON PROJECT (8152)
ROBB Township, Ontario

PICSAMT (CSEM) SURVEY
Apparent Resistivity
Frequency Pseudosection

Instrumentation: 3 kW IRIS
Log Contours
Scale 1: 5000

2000 1000 500 200 100 50 20 10

OUT-OF-PHASE

2000 1000 500 200 100 50 20 10
Interpretation: P. Berube, P.Eng.
Survey by: Val d'Or Sagax Inc.
Survey Date: April 2000
Project 00-N458A

Instrumentation: 3 kW IRIS
Log Contours
Scale 1: 5000

EXPLORERS ALLIANCE CORP.
HALFMOON PROJECT (8152)
ROBB Township, Ontario

PICSAMT (CSEM) SURVEY
Apparent Resistivity
Frequency Pseudosection
LINE 56+00E

Instrumentation: 3 kW IRIS

Log Contours

Scale 1: 5000

EXPLORERS ALLIANCE CORP.
HALFMoon PROJECT (8152)
ROBB Township, Ontario

PICSAM (CSEM) SURVEY
Apparent Resistivity
Frequency Pseudosection

Interpretation: F. Berube, P.Eng.
Survey by Val d'Or Sagax Inc.
Survey Date: April 2000
Printed: Citronex
INDUCED POLARIZATION SURVEY
Pole-Dipole Array

Transmitter: TX-6 (500), 1.4 kW
Receiver: Elvec-10 (IRIS)

Scale 1: 5000

Interpreted by: Dominique Bielick, B.Sc.
Surveyed by: Michel Gouin, B.Sc.

Halfmoon Project (8152)
Robb Township
Ontario, Canada

Line 5000E
INDUCED POLARIZATION SURVEY
Pole-Dipole Array

Transmitter: TX-II (COD), 1.4 kW
Receiver: Orac-10 (IRIS)

Interpretation: Oomlam B'rume, B.Sc.
Verified by: Martin Dubois, B.Sc.
Interpreted by: April 2000
Surveyed by: Michel Coulombe

Scale 1:5000

APPARENT RESISTIVITY PSEUDO SECTION

Contour: Logarithmic

APPARENT CHARGEABILITY PSEUDO SECTION

Contour: 0.5

Interpretation
INDUCED POLARIZATION SURVEY
Pole-Dipole Array

- Apparent Resistivity Pseudo Section
- Apparent Chargeability Pseudo Section

Interpretation

Explorer Alliance Corporation

Halfmoon Project (8152)
Robb Township
Ontario, Canada

Line 5300E