REPORT ON AN AIRBORNE MAGNETIC AND ELECTROMAGNETIC SURVEY STOCK TOWNSHIP N. ONTARIO CANAMAX RESOURCES INC. PIPESTONE PROJECT (069-15) May, 1984 A. Watts Geophysicist
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>INTRODUCTION</td>
<td>1</td>
</tr>
<tr>
<td>SURVEY EQUIPMENT AND PROCEDURE</td>
<td>2</td>
</tr>
<tr>
<td>LOCATION AND ACCESS</td>
<td>3</td>
</tr>
<tr>
<td>GENERAL GEOLOGY AND EXPLORATION HISTORY</td>
<td>3</td>
</tr>
<tr>
<td>DISCUSSION OF RESULTS</td>
<td>3</td>
</tr>
<tr>
<td>LOCATION MAP</td>
<td>4</td>
</tr>
<tr>
<td>CONCLUSIONS AND RECOMMENDATIONS</td>
<td>5</td>
</tr>
</tbody>
</table>

APPENDIX

Schedule of Claims

Map I - Electromagnetic Profile Map

Map II - Magnetic Contour Map
Introduction

On November 3, 1983, Aerodat Limited flew a combined magnetic and electromagnetic survey over two claims in Stock Township as part of a larger survey for Canamax Resources Inc. of 181 University Avenue, Toronto, Ontario.

The purpose of the survey was to evaluate, by means of the above mentioned geophysical techniques, the structure and stratigraphy of an area known for its gold potential.

A total of approximately 2 miles (3.2 km) was flown over the 2-claim group in question.
SURVEY EQUIPMENT AND PROCEDURE

The survey was carried out with an Aerospatiale A-Star 350D helicopter at a nominal flight-line spacing of 100 metres. The survey was flown in a N-S direction utilising the Mini-Ranger radar positioning system for high precision flight-path navigation and recovery. This navigation system was used in conjunction with a Geocam 35mm strip film tracking camera, and a Hoffman HRA-100 radar altimeter.

For the magnetic survey a Geometrics G-803 proton precession unit was used. The sensitivity of the instrument is one gamma, and a .5 second sample rate was used. The magnetic sensor was towed a nominal 45 metres from the ground. The electromagnetic system was an Aerodat/Geonics 3 frequency system. Two vertical coaxial coil pairs were operated at 950 and 4500 Hz and a horizontal coplanar coil pair at 4100 Hz. The transmitter-receiver separation was 7 meters. In-phase and quadrature signals were measured simultaneously for the 3 frequencies with a time-constant of 0.1 seconds. The electromagnetic bird was towed 30 meters below the helicopter.
Location and Access

The claims are located close to the mining centre of Timmins and less than 5 km north of Highway 101 thus providing easy access by car or truck.

General Geology and Exploration History

The Destor-Porcupine Fault lies less than a kilometre south of the claim group. The Pominex Au zone in Macklem Township is located just over a kilometre to the southwest.

The claim group apparently falls within a broad trough of Archean sediments bounded to the north and south by the Pipestone and Destor-Porcupine Faults respectively. Numerous north-south diabase dykes are known to exist in the area as well as several roughly conformable ultra-mafic intrusions and NE trending Keweenawan diabase dikes.

Discussion of Results

Electromagnetic Survey

No discrete anomalies of bedrock origin are apparent in the EM profiles over these two claims. There is a broad overburden type, i.e. essentially quadrature, response correlatable across two lines in the north half of claim
P757897. This overburden feature could indirectly reflect a zone of weakness in bedrock such as a weathered contact or shear zone.

Magnetic Survey

The two claims are blanketed by a distinctive magnetic low. Contours to the east are oriented NS, probably as a result of one of many NS diabase dykes probably located immediately east of the claim group. No evidence of the Destor-Porcupine Fault is apparent in the magnetic data.

Conclusions and Recommendations

It is recommended that a ground magnetic survey be carried out over the claim group in order to resolve any subtle magnetic feature which may have been missed by the airborne survey.

Respectfully submitted,

A. Watts
CANAMAX RESOURCES INC.
PIPESTONE PROJECT 069-15
SCHEDULE OF CLAIMS

Porcupine Mining Division

P. 757897
P. 757898

Total 2 - claims
REPORT
ON AN
AIRBORNE MAGNETIC
AND ELECTROMAGNETIC
SURVEY

STOCK AND TAYLOR TOWNSHIPS
N. ONTARIO

CANAMAX RESOURCES INC.

PIPESTONE PROJECT (069-020)

May, 1984

A. Watts
Geophysicist

R. RECEIVED
JUN JUN 07 1984
MINING LANDS SECTION
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>INTRODUCTION</td>
<td>1</td>
</tr>
<tr>
<td>SURVEY EQUIPMENT AND PROCEDURE</td>
<td>2</td>
</tr>
<tr>
<td>LOCATION AND ACCESS</td>
<td>3</td>
</tr>
<tr>
<td>LOCATION MAP</td>
<td>4</td>
</tr>
<tr>
<td>GENERAL GEOLOGY AND EXPLORATION HISTORY</td>
<td>5</td>
</tr>
<tr>
<td>DISCUSSION OF RESULTS</td>
<td>6</td>
</tr>
<tr>
<td>CONCLUSIONS AND RECOMMENDATIONS</td>
<td>8</td>
</tr>
</tbody>
</table>

APPENDIX

- Schedule of Claims
- Map I - Electromagnetic Profile Map
- Map II - Magnetic Contour Map
INTRODUCTION

During the week of November 3, 1983, Aerodat Limited flew an airborne magnetic and electromagnetic survey over two groups of claims in Stock and Taylor Townships, during the course of regional airborne coverage in the general area, for Canamax Resources Inc. of 181 University Avenue, Toronto, Ontario.

As the claims fall in an area of known gold potential, the primary purpose of the survey was to enhance the geological understanding of the two claim groups, rather than to isolate specific target zones, e.g. EM conductors.

A total of approximately 17 miles (27km) was flown over the two claims groups; 4 miles over the 4-claim Stock-3 group, and 13 miles over the 13 claim Stock-4 group.
SURVEY EQUIPMENT AND PROCEDURE

The survey was carried out with an Aerospatiale A-Star 350D helicopter at a nominal flight-line spacing of 100 metres. The survey was flown in a N-S direction utilising the Mini-Ranger radar positioning system for high precision flight-path navigation and recovery. This navigation system was used in conjunction with a Geocam 35mm strip film tracking camera, and a Hoffman HRA-100 radar altimeter.

For the magnetic survey a Geometrics G-803 proton precession unit was used. The sensitivity of the instrument is one gamma, and a .5 second sample rate was used. The magnetic sensor was towed a nominal 45 metres from the ground. The electromagnetic system was an Aerodat/Geonics 3 frequency system. Two vertical coaxial coil pairs were operated at 950 and 4500 Hz and a horizontal coplanar coil pair at 4100 Hz. The transmitter-receiver separation was 7 meters. In-phase and quadrature signals were measured simultaneously for the 3 frequencies with a time-constant of 0.1 seconds. The electromagnetic bird was towed 30 meters below the helicopter.
Location and Access

The two claim groups are located in the NE corner of Stock Township, immediately west of the Driftwood River. The claims are easily accessed by taking the Taylor-Stock boundary road (Hwy 577) north from Highway 101.
General Geology and Exploration History

The claim groups are located within a thick sequence of Archean sediments which is bounded to the north and south by the Pipestone and Destor-Porcupine Faults respectively (see ODM Map P.38). A thick layer of clay overburden in the area has prevented any extensive surface prospecting in the past. Immediately north of the Pipestone Fault and the Stock-3 claim group, located within Archean mafic flows, occurs the Consolidated Montclerg Au prospect. This occurrence was discovered only as a result of a landslide uncovering mineralized bedrock along the banks of the Driftwood River in 1938. Since then approximately 50,000 feet has been carried out on the property over a strike length of approximately 1.5 km. Grades are apparently sub-marginal i.e. approx .1oz/ton. The gold is associated with pyrite and arsenopyrite in a stockwork of quartz stringers.
DISCUSSION OF RESULTS

Electromagnetic Survey

As mentioned previously, much of Stock Township is overlain by a relatively thick (100'-200') layer of clay overburden. The conductive nature of this overburden manifests itself in the EM profiles as a continuous positive base-level shift on the quadrature component. A change in conductivity or thickness of the overburden will therefore result in either a positive anomaly if overburden is thickening or increases in conductivity, or else a negative anomaly if overburden is thinning or becoming less conductive. All these variations are evident in this set of data, with only two possible bedrock responses being obtained. These two responses are located close to the west boundary of claim P700867 (Stock-3).

These responses were picked as bedrock due to weak, but localized in-phase response. The responses fall close to Highway 577 and a set of farm-houses so a man-made source should not be discounted.

A strong in-phase response along an EW concession road, obviously culturally derived, is the only EM feature of note on the Stock-4 group of claims.
Magnetic Survey

Stock-4 Claim Group

The highly contorted and complex nature of the magnetic response over this claim group indicates the intensity of structural disruption to which the area has been subjected. The numerous NS magnetic Matachewan dikes crossing the claim group appear to be intensely faulted, especially towards the centre of the claim group. Much of the faulting is in an EW direction, i.e. sub-parallel to the Destor-Porcupine and Pipestone Fault systems, a point which could bear significance with regard to the concentration of Au mineralization.

Stock-3 Claim Group

The limited aeromagnetic coverage of this claim group prevents as obvious a portrayal of structure as on the previous claim group.

From the relatively undisturbed NS magnetic contours between claims 700867 and 700869 it appears that there is only a limited amount of structural disturbance on this claim group.

It should be noted that this claim group is located close to (200-300metres) to the Pipestone Fault and less than a kilometre east of the Montclerg Au occurrence.
CONCLUSIONS AND RECOMMENDATIONS

The airborne magnetic and EM survey over the Stock - 3 and -4 claim groups has outlined a possible bedrock conductive zone on the former and a significant amount of structural disturbance on the latter claim group.

It is recommended that a detailed ground magnetic survey be carried out on the Stock-4 property, centred on the EW road dividing Concessions V and VI, which appears to be the area of most intense disturbance on the claim group. A combined magnetic and EM ground survey should be carried on claims P700868 and 6788867 of Stock -3 in order to follow-up the airborne EM target centred on the NS boundary line between these two claims.

The above mentioned ground detailing should provide a focus for further evaluation, e.g. drilling, overburden sampling etc., of the two claim groups.

Respectfully submitted

A. Watts
CANAMAX RESOURCES INC.

PIPESTONE PROJECT (069-20)

SCHEDULE OF CLAIMS

Porcupine Mining Division

P. 700859
P. 700860
P. 700861
P. 700862
P. 700863
P. 700864
P. 700868
P. 700869
P. 700870
P. 758154
P. 758155
P. 764514
P. 764515
P. 764516
P. 764517
P. 764518

Larder Lake Mining Division

L. 700867

Total - 17 claims
Report of Work
(geophysical, geological, geochemical and expenditures)

Ontario Geochemical and Expenditures

Type of Survey(s)
Airborne Electromagnetic and Magnetic

Claim Holder(s)
Canamax Resources Inc.

Address
Suite 1100-181 University Ave., Toronto, Ontario M5H 3M7

Survey Company
Aerodat Limited

Date of Survey (from & to)
31 11 83 9 1 11 83

Total Miles of line Cut

Name and Address of Author (of Geo-Technical report)
A. Watts, 306 Bogert Avenue, Willowdale, Ontario M2N 3M7

Credits Requested per Each Claim in Columns at right

Special Provisions
For first survey:
Enter 40 days. (This includes line cutting)

For each additional survey:
using the same grid:
Enter 20 days (for each)

Man Days
Complete reverse side and enter total(s) here

Expenditures (excludes power stripping)
Type of Work Performed
Performed on Claim(s)

Calculation of Expenditure Days Credits
Total Expenditures

Total Days Credits

Instructions
Total Days Credits may be apportioned at the claim holder's choice. Enter number of days credits per claim selected in columns at right.

Name and Address of Person Certifying
K. R. Clemens, 1100 - 181 University Ave., Toronto, Ontario M5H 3M7

Date Certified
April 9, 1984

Certification: Verifying Report of Work
I hereby certify that I have a personal and intimate knowledge of the facts set forth in the Report of Work annexed hereto, having performed the work or witnessed same during and/or after its completion and the annexed report is true.

Date
April 9/84

Record Holder or Agent (Signature)

Date Recorded
April 17, 1984

Certified by (Signature)

Date Approved as Recorded
April 17, 1984
Type of Survey(s). Airborne Magnetic and Electromagnetic

Township or Area. Stock Township

Claim Holder(s). Canamax Resources Inc.

Survey Company. Aerodat Limited

Author of Report. A. Watts

Address of Author. 306 Bogert Avenue, Toronto, Ontario

Covering Dates of Survey. November 3-7, 1983

Total Miles of Line Cut. (line cutting to office)

SPECIAL PROVISIONS

CREDITS REQUESTED

Geophysical

- Electromagnetic

- Magnetometer

- Radiometric

- Other

Geological

Geochemical

AIRBORNE CREDITS (Special provision credits do not apply to airborne surveys)

<table>
<thead>
<tr>
<th>Survey</th>
<th>DAYS per claim</th>
<th>PER CLAIM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Magnetometer</td>
<td>40</td>
<td></td>
</tr>
<tr>
<td>Electromagnetic</td>
<td>40</td>
<td></td>
</tr>
<tr>
<td>Radiometric</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

DATE: June 4, 1984 **SIGNATURE:** [Signature]

Res. Geol. Qualifications 2910

Previous Surveys

<table>
<thead>
<tr>
<th>File No.</th>
<th>Type</th>
<th>Date</th>
<th>Claim Holder</th>
</tr>
</thead>
</table>

MINING CLAIMS TRAVERSED

List numerically

<table>
<thead>
<tr>
<th>P.</th>
<th>(prefix)</th>
<th>(number)</th>
</tr>
</thead>
<tbody>
<tr>
<td>757897</td>
<td></td>
<td>757898</td>
</tr>
</tbody>
</table>

TOTAL CLAIMS: 2
GEOPHYSICAL TECHNICAL DATA

GROUND SURVEYS — If more than one survey, specify data for each type of survey

<table>
<thead>
<tr>
<th>Number of Stations</th>
<th>Number of Readings</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Station interval</th>
<th>Line spacing</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Profile scale</th>
<th>Contour interval</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Instrument

<table>
<thead>
<tr>
<th>Accuracy — Scale constant</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

Diurnal correction method

Base Station check-in interval (hours)

Base Station location and value

MAGNETIC

Coil configuration

<table>
<thead>
<tr>
<th>25° O H S</th>
</tr>
</thead>
<tbody>
<tr>
<td>P C</td>
</tr>
</tbody>
</table>

Instrument

Coil separation

Accuracy

Method:
- Fixed transmitter
- Shoot back
- In line
- Parallel line

Frequency

(specify V.L.F. station)

Parameters measured

ELECTROMAGNETIC

Instrument

Coil configuration

Coil separation

Accuracy

Method:
- Time Domain
- Frequency Domain

Parameters
- On time
- Off time
- Delay time
- Integration time

Frequency

Range

GRAVITY

Instrument

Scale constant

Corrections made

Base station value and location

Elevation accuracy

INDUCED POLARIZATION

Instrument

Method
- Time Domain
- Frequency Domain

Parameters
- On time
- Off time
- Delay time
- Integration time

Frequency

Range

Power

Electrode array

Electrode spacing

Type of electrode

SELF POTENTIAL
Instrument ______________________ Range ______________________
Survey Method ____________________________
Corrections made ____________________________

RADIOMETRIC
Instrument ____________________________
Values measured ____________________________
Energy windows (levels) ____________________________
Height of instrument ____________________________ Background Count ____________________________
Size of detector ____________________________
Overburden ____________________________ (type, depth – include outcrop map)

OTHERS (SEISMIC, DRILL WELL LOGGING ETC.)
Type of survey ____________________________
Instrument ____________________________
Accuracy ____________________________
Parameters measured ____________________________
Additional information (for understanding results) ____________________________

AIRBORNE SURVEYS
Type of survey(s) Airborne Magnetic and Electromagnetic
Instrument(s) Geometrics G-803 proton precession Mag & Aerodat/Geonics 3 frequency system
Accuracy EM - \pm 1 ppm, Mag \pm 1 gamma
Aircraft used Aerospatiale A-Star 350 D Helicopter
Sensor altitude EM - 30 m, Mag - 45 m
Navigation and flight path recovery method Mini-Ranger radar navigation and flight path recovery
Aircraft altitude 60 m Line Spacing 100 m
Miles flown over total area 1783 mi. (2853 km) Over claims only 2 mi. (3.2 km)
GEOCHEMICAL SURVEY – PROCEDURE RECORD

Numbers of claims from which samples taken

<table>
<thead>
<tr>
<th>Total Number of Samples</th>
<th>Type of Sample</th>
<th>Average Sample Weight</th>
<th>Method of Collection</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(Nature of Material)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Soil Horizon Sampled</th>
<th>Horizon Development</th>
<th>Sample Depth</th>
<th>Terrain</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Drainage Development</th>
<th>Estimated Range of Overburden Thickness</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

ANALYTICAL METHODS

Values expressed in:
- per cent []
- p. p. m. []
- p. p. b. []

Cu, Pb, Zn, Ni, Co, Ag, Mo, As, (circle)

Others

Field Analysis (_________________________ tests)
- Extraction Method
- Analytical Method
- Reagents Used

Field Laboratory Analysis
- No. (_________________________ tests)
- Extraction Method
- Analytical Method
- Reagents Used

Commercial Laboratory (_________________________ tests)
- Name of Laboratory
- Extraction Method
- Analytical Method
- Reagents Used

SAMPLE PREPARATION

(Includes drying, screening, crushing, ashing)

Mesh size of fraction used for analysis

<table>
<thead>
<tr>
<th>General</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

General
Ministry of Natural Resources

GEOPHYSICAL – GEOLOGICAL – GEOCHEMICAL
TECHNICAL DATA STATEMENT

Our Project 4069-20

TO BE ATTACHED AS AN APPENDIX TO TECHNICAL REPORT
FACTS SHOWN HERE NEED NOT BE REPEATED IN REPORT
TECHNICAL REPORT MUST CONTAIN INTERPRETATION, CONCLUSIONS ETC.

Type of Survey(s): Airborne Magnetic and Electromagnetic

Township or Area: Stock and Taylor Townships

Claim Holder(s): Canamax Resources Inc.

Survey Company: Aerodat Limited

Author of Report: A Watts

Address of Author: 306 Bogert Ave., Toronto, Ontario

Covering Dates of Survey: November 3 - 7, 1983

Total Miles of Line Cut:

MINING CLAIMS TRAVERSED
List numerically

<table>
<thead>
<tr>
<th>P. No.</th>
<th>Prefix</th>
<th>Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>700859</td>
<td></td>
<td></td>
</tr>
<tr>
<td>700860</td>
<td></td>
<td></td>
</tr>
<tr>
<td>700861</td>
<td></td>
<td></td>
</tr>
<tr>
<td>700862</td>
<td></td>
<td></td>
</tr>
<tr>
<td>700863</td>
<td></td>
<td></td>
</tr>
<tr>
<td>700864</td>
<td></td>
<td></td>
</tr>
<tr>
<td>700868</td>
<td></td>
<td></td>
</tr>
<tr>
<td>700869</td>
<td></td>
<td></td>
</tr>
<tr>
<td>700870</td>
<td></td>
<td></td>
</tr>
<tr>
<td>758154</td>
<td></td>
<td></td>
</tr>
<tr>
<td>758155</td>
<td></td>
<td></td>
</tr>
<tr>
<td>764514</td>
<td></td>
<td></td>
</tr>
<tr>
<td>764515</td>
<td></td>
<td></td>
</tr>
<tr>
<td>764516</td>
<td></td>
<td></td>
</tr>
<tr>
<td>764517</td>
<td></td>
<td></td>
</tr>
<tr>
<td>764518</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

SPECIAL PROVISIONS CREDITS REQUESTED

Geophysical

- Electromagnetic
- Magnetometer
- Radiometric
- Other

Geological

AIRBORNE CREDITS

(Special provision credits do not apply to airborne surveys)

<table>
<thead>
<tr>
<th>Survey Type</th>
<th>Days per Claim</th>
</tr>
</thead>
<tbody>
<tr>
<td>Magnetometer</td>
<td>40</td>
</tr>
<tr>
<td>Electromagnetic</td>
<td>40</td>
</tr>
<tr>
<td>Radiometric</td>
<td></td>
</tr>
</tbody>
</table>

DATE: June 4, 1984

SIGNATURE: A. Watts

Author of Report or Agent

Res. Geol. Qualifications

Previous Surveys

<table>
<thead>
<tr>
<th>File No.</th>
<th>Type</th>
<th>Date</th>
<th>Claim Holder</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

OFFICE USE ONLY

RECEIVED

JUN 07 1984

MINING LANDS SECTION

TOTAL CLAIMS: 16
GROUND SURVEYS

- **Number of Stations**:
- **Station interval**:
- **Profile scale**:
- **Contour interval**:

Instrument

- **Accuracy — Scale constant**:
- **Diurnal correction method**:
- **Base Station check-in interval (hours)**:
- **Base Station location and value**:

Coil Configuration

- **Coil separation**:
- **Accuracy**:
- **Method**:
 - [] Fixed transmitter
 - [] Shoot back
 - [] In line
 - [] Parallel line
- **Frequency (specify V.L.F. station)**:
- **Parameters measured**:

Gravity

- **Base station value and location**:
- **Elevation accuracy**:

Electromagnetic

- **Instrument**:
- **Scale constant**:
- **Corrections made**:

Induced Polarization

- **Method**:
 - [] Time Domain
 - [] Frequency Domain
- **Parameters — On time**:
 - Off time
 - Delay time
 - Integration time
- **Frequency**:
- **Range**:

Resistivity

- **Power**:
- **Electrode array**:
- **Electrode spacing**:
- **Type of electrode**:

GEOPHYSICAL TECHNICAL DATA

- **GROUND SURVEYS** — If more than one survey, specify data for each type of survey

<table>
<thead>
<tr>
<th>Number of Stations</th>
<th>Number of Readings</th>
</tr>
</thead>
<tbody>
<tr>
<td>Station interval</td>
<td>Line spacing</td>
</tr>
<tr>
<td>Profile scale</td>
<td></td>
</tr>
<tr>
<td>Contour interval</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Instrument</th>
<th>Accuracy — Scale constant</th>
<th>Diurnal correction method</th>
<th>Base Station check-in interval (hours)</th>
<th>Base Station location and value</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Instrument</th>
<th>Coil configuration</th>
<th>Coil separation</th>
<th>Accuracy</th>
<th>Method</th>
<th>Parameters measured</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Instrument</th>
<th>Scale constant</th>
<th>Corrections made</th>
<th>Base station value and location</th>
<th>Elevation accuracy</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Instrument</th>
<th>Method</th>
<th>Parameters — On time</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Frequency</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Range</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Integration time</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Instrument</th>
<th>Power</th>
<th>Electrode array</th>
<th>Electrode spacing</th>
<th>Type of electrode</th>
</tr>
</thead>
</table>
SELF POTENTIAL
Instrument ___________________________ Range ____________________________
Survey Method __
Corrections made __

RADIOMETRIC
Instrument ___________________________
Values measured __
Energy windows (levels) ___
Height of instrument ___________________________ Background Count ___________
Size of detector __
Overburden ___
(type, depth — include outcrop map)

OTHERS (SEISMIC, DRILL WELL LOGGING ETC.)
Type of survey ___________________________
Instrument _____________________________
Accuracy ___
Parameters measured ___

Additional information (for understanding results) _________________________________

AIRBORNE SURVEYS
Type of survey(s) Airborne Magnetic and Electromagnetic __________________________
Instrument(s) Geometrics G-803 proton precession Mag and Aerodat/Geonics 3 frequency system
(specify for each type of survey)
Accuracy EM +1 ppm, Mag +1 gamma
(specify for each type of survey)
Aircraft used Aerospatiale A-Star 350 D Helicopter _________________________________
Sensor altitude EM - 30 m, Mag - 45 m __
Navigation and flight path recovery method Mini-Ranger radar navigation and
flight path recovery __
Aircraft altitude 60 m ___________________________ Line Spacing 100 m
Miles flown over total area 1783 mi. (2853 km) Over claims only 17 mi. (27.2 km)
GEOCHEMICAL SURVEY – PROCEDURE RECORD

Numbers of claims from which samples taken

Total Number of Samples

Type of Sample

Average Sample Weight

Method of Collection

Soil Horizon Sampled

Horizon Development

Sample Depth

Terrain

Drainage Development

Estimated Range of Overburden Thickness

ANALYTICAL METHODS

Values expressed in: per cent □
p. p. m. □
p. p. b. □

Cu, Pb, Zn, Ni, Co, Ag, Mo, As-(circle)

Others

Field Analysis (__________ tests)

Extraction Method

Analytical Method

Reagents Used

Field Laboratory Analysis

No. (__________ tests)

Extraction Method

Analytical Method

Reagents Used

Commercial Laboratory (__________ tests)

Name of Laboratory

Extraction Method

Analytical Method

Reagents Used

SAMPLE PREPARATION

(Includes drying, screening, crushing, ashing)

Mesh size of fraction used for analysis

General

<table>
<thead>
<tr>
<th>Code</th>
<th>Entry</th>
</tr>
</thead>
<tbody>
<tr>
<td>700</td>
<td>✓</td>
</tr>
<tr>
<td>659</td>
<td>✓</td>
</tr>
<tr>
<td>810</td>
<td>✓</td>
</tr>
<tr>
<td>861</td>
<td>✓</td>
</tr>
<tr>
<td>962</td>
<td>✓</td>
</tr>
<tr>
<td>863</td>
<td>✓</td>
</tr>
<tr>
<td>864</td>
<td>✓</td>
</tr>
<tr>
<td>868</td>
<td>✓</td>
</tr>
<tr>
<td>869</td>
<td>✓</td>
</tr>
<tr>
<td>970</td>
<td>✓</td>
</tr>
<tr>
<td>758</td>
<td>✓</td>
</tr>
<tr>
<td>154</td>
<td>✓</td>
</tr>
<tr>
<td>155</td>
<td>✓</td>
</tr>
<tr>
<td>764</td>
<td>✓</td>
</tr>
<tr>
<td>514</td>
<td>✓</td>
</tr>
<tr>
<td>515</td>
<td>✓</td>
</tr>
<tr>
<td>516</td>
<td>✓</td>
</tr>
<tr>
<td>517</td>
<td>✓</td>
</tr>
<tr>
<td>518</td>
<td>✓</td>
</tr>
<tr>
<td>757</td>
<td>✓</td>
</tr>
<tr>
<td>897</td>
<td>✓</td>
</tr>
<tr>
<td>757</td>
<td>✓</td>
</tr>
<tr>
<td>898</td>
<td>✓</td>
</tr>
</tbody>
</table>
June 4, 1984

Mr. F. W. Matthews,
Room 6450 - Whitney Block,
Queen's Park,
Toronto, Ontario
M7A 1W3

Dear Sir:

Re: Reports of Work - Airborne Magnetic and Electromagnetic Survey, Stock & Taylor Townships Our Projects 069-20 and 069-15

Enclosed are a total of six technical reports in the above connection. Four of the reports apply to our project 069-20 which comprises 16 mining claims in Stock Township, Porcupine Mining Division and one mining claim in Taylor Township, Larder Lake Mining Division.

The remaining two reports apply to our project 069-15 (5 mining claims), Stock Township, Porcupine Mining Division.

"Reports of Work" where submitted to the respective Mining Recorders on April 9 and April 27, 1984.

Yours truly,

Elizabeth A. Barclay

E

encl.

cc: A. Watts
cce: K. R. Clemiss
cce: Timmins Office
June 4, 1984

Mr. F. W. Matthews,
Room 6450 - Whitney Block,
Queen's Park,
Toronto, Ontario
M7A 1W3

Dear Sir:

Re: Reports of Work - Airborne Magnetic and Electromagnetic Survey, Stock & Taylor Townships
Our Projects 069-20 and 069-15

Enclosed are a total of six technical reports in the above connection. Four of the reports apply to our project 069-20 which comprises 16 mining claims in Stock Township, Porcupine Mining Division and one mining claim in Taylor Township, Larder Lake Mining Division.

The remaining two reports apply to our project 069-15 (5 mining claims), Stock Township, Porcupine Mining Division.

"Reports of Work" where submitted to the respective Mining Recorders on April 9 and April 27, 1984.

Yours truly,

Elizabeth A. Barclay

cc: A. Watts
cc: K. R. Clemiss
cc: Timmins Office
Mr. Bruce Hanley
Mining Recorder
Ministry of Natural Resources
60 Wilson Avenue
Timmins, Ontario
P4N 2S7

Dear Sir:

We have received reports and maps for an Airborne Geophysical (Electromagnetic & Magnetometer) Survey submitted on Mining Claims P 700859 et al in the Township of Stock.

This material will be examined and assessed and a statement of assessment work credits will be issued.

Yours sincerely,

S.E. Yundt
Director
Land Management Branch

Whitney Block, Room 6643
Queen's Park
Toronto, Ontario
M7A 1W3
Phone: (416) 965-1380

A. Barr:sc

cc: Canamax Resources Inc
Suite 1100
181 University Ave
Toronto, Ontario
M5H 3M7
Mr. Bruce Hanley
Mining Recorder
Ministry of Natural Resources
60 Wilson Avenue
Timmins, Ontario
P4N 2S7

Dear Sir:

We have received reports and maps for an Airborne Geophysical (Electromagnetic & Magnetometer) Survey submitted on Mining Claims P 700859 et al in the Township of Stock.

This material will be examined and assessed and a statement of assessment work credits will be issued.

Yours sincerely,

S.E. Yundt
Director
Land Management Branch

Whitney Block, Room 6643
Queen's Park
Toronto, Ontario
M7A 1W3
Phone: (416) 965-1380

A. Barr

cc: Canamax Resources Inc
Suite 1100
181 University Ave
Toronto, Ontario
M5H 3N7
Mining Lands Section
Control Sheet

File No 2.6837

TYPE OF SURVEY
✓ GEOPHYSICAL
___ GEOLOGICAL
___ GEOCHEMICAL
___ EXPENDITURE

MINING LANDS COMMENTS:

__

__

__

__

__

__

Signature of Assessor

24/03/84
Date