REPORT ON AN

AIRBORNE MAGNETIC
AND VLF-EM SURVEY

BLACK CREEK GOLD PROPERTY
BLACK TOWNSHIP
LARDER LAKE MINING DIVISION, ONTARIO

for

MELBA GOLD LIMITED
(731530 ONTARIO LIMITED)

by: TERRAQUEST LTD.
Toronto, Canada
August 2, 1988

RECEIVED
AUG 31 1988
MINING LANDS SECTION
TABLE OF CONTENTS

1. INTRODUCTION ... 1
2. THE PROPERTY .. 1
3. GEOLOGY ... 1
4. SURVEY SPECIFICATIONS ... 2
 4.1 Instruments ... 2
 4.2 Lines and Data ... 2
 4.3 Tolerances ... 2
 4.4 Photomosaics .. 3
5. DATA PROCESSING ... 3
6. INTERPRETATION ... 3
 6.1 General Approach ... 3
 6.2 Interpretation ... 4
7. SUMMARY .. 5

LIST OF FIGURES

Figure 1 ~ General Location Map
Figure 2 ~ Survey Area Map
Figure 3 ~ Sample Record
Figure 4 ~ Terraquest Classification of VLF-EM Conductor Axes

LIST OF MAPS IN JACKET

No. A-785.1-1 ~ Total Magnetic Field
No. A-785.1-2 ~ Vertical Magnetic Gradient
No. A-785.1-3 ~ VLF-EM Survey
No. A-785.1-4 ~ Interpretation
Introduction

This report describes the specifications and results of a geophysical survey carried out for Melba Gold Limited, Box 790, Kirkland Lake, Ontario, E2N 3K4 by Terraquest Ltd., 240 Adelaide Street West, Toronto, Canada. The field work was performed on June 20, 1988 and the data processing, interpretation and reporting from June 21 to August 2, 1988.

The purpose of a survey of this type is two-fold. First to prospect directly for anomalously conductive and magnetic areas in the earth’s crust which may be caused by, or at least related to, mineral deposits. A second is to use the magnetic and conductivity patterns derived from the survey results to assist in mapping geology, and to indicate the presence of faults, shear zones, folding, alteration zones and other structures potentially favourable to the presence of gold and base-metal concentration. To achieve this purpose the survey area was systematically traversed by an aircraft carrying geophysical instruments along parallel flight lines spaced at even intervals, 100 metres above the terrain surface, and aligned so as to intersect the regional geology in a way to provide the optimum contour patterns of geophysical data.

2. The Property

The property is located along the eastern side of Black Township, in the Larder Lake Mining Division of Ontario about 25 kilometres northwest of Kirkland Lake. The property can be accessed by bush road, leading less than two kilometres eastward to Highway 11.

The latitude and longitude are 48 degrees 19 minutes, and 80 degrees 17 minutes respectively, and the N.T.S. reference is 42A/8.

The claim numbers are shown in figure 2 and listed below:

<table>
<thead>
<tr>
<th>Claim Numbers</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>L 892093-892099</td>
<td>(7)</td>
</tr>
<tr>
<td>935288-935306</td>
<td>(19)</td>
</tr>
<tr>
<td>980242-980243</td>
<td>(2)</td>
</tr>
</tbody>
</table>

Total of 28 claims.

3. Geology

Map References

1. Map 295G (revised):
 Aeromagnetic series,
 Ramore Area
 Sheet 42A/8
 Scale 1:63,360
 G.S.C. 1970

2. Map 2205:
 Timmins-Kirkland Lake,
 Geological Compilation Series
 Scale 1:253,440
 O.D.M. 1973

3. Map 2213:
 Tolstoy and Black Townships
 Scale 1:31,680
 O.D.M. 1971

4. Map 2321:
 Bouguer Gravity
 Timmins-Matheson
 Scale 1:250,00
 O.D.M. 1975

5. Map 2322:
 Interpretation of Bouguer Gravity
 Timmins-Matheson
 Scale 1:250,000
 O.D.M. 1975

6. Map P.3052:
 Raymore Area
 Southwestern Part
 Scale 1:15,840
 O.G.S. 1986

7. Private Report: Black Creek Gold Property
 Black Township, Ontario
 by CH 4 International Ltd.
 Calgary February 1988

The survey area is underlain predominantly by a series of northwest trending tholeiitic basalts with minor associated turbidite metasediments. The basalts form an alternating series of iron-rich and magnesium-rich horizons. These have been intruded by a small plug of tholeiitic gabbro in the north central part of the property and beyond the property to the east. A north-northwest trending diabase dyke occurs in the middle of the property.
FIGURE 2. Claim Location Map
(exact locations not certified)

TERRAQUEST LTD.
North trending faults along Benoit Lake and Malloch Lake to the east form a narrow graben. Several outcrops within the graben indicate that the overburden is not thick.

Extensive gold mineralization has been observed within the metavolcanic sequence, both within and surrounding the property.

4. Survey Specifications

4.1 Instruments

The survey was carried out using a Cessna 206 aircraft, registration C-GGLS, which carries a magnetometer and a VLF electromagnetic detector.

The magnetometer is a high sensitivity, optically pumped cesium vapour magnetometer mounted in a stinger attached to the tail of the aircraft. Its specifications are as follows:

- Working range: 20,000-100,000 gammas
- Sensitivity: 0.001 gammas
- Sampling Rate: 0.2 seconds
- Model: BIW 2321H8
- Manufacturer: Scintrex, Concord Ontario.

The magnetometer processor is a PMAG 3000 and the data acquisition system is a PDAS 1000, both manufactured by Picodas Group Inc.

The signal to noise ratio of the magnetic response is improved by a real time compensation technique provided by Picodas Limited.

The sources of compensated noise are permanent, induced and petty current effects of the airframe and the heading effects. The system uses three fluxgate magnetometers to measure the aircraft attitude with respect for the earth magnetic field vector. A mathematical model is used to solve this interference effect.

The VLF-EM unit uses three orthogonal detector coils to measure (a) the total field strength of the time-varying EM field and (b) the phase between the vertical coil and both the “along line” coil (LINE) and the “cross-line” coil (ORTHO). The LINE coil is tuned to a transmitter station (Channel 1) that is ideally positioned at right angles to the flight lines, while the ORTHO coil transmitter (Channel 2) should be in line with the flight lines. Its specifications are:

- Model: TOTEM 2A
- Manufacturer: Herz Industries, Toronto, Canada
- Accuracy: 1%
- Reading interval: 0.5 second

The VLF sensor is mounted in the left wing tip extension.

Other instruments are:

- King KRA-10A radar altimeter
- PBAS 9000 portable field base station; fully IBM PCXT compatible with 5.25” and 3.5” floppy drives.
- Geocam video camera and recorder for flight path recovery, manufactured by Geotech Ltd., Markham, Ontario.

4.2 Lines and Data

- Line spacing: 100 metres
- Line direction: 035 degrees
- Terrain clearance: 100 m
- Average ground speed: 156 km/hr
- Data point interval:
 - Magnetic: 11 metres
 - VLF-EM: 11 metres
- Tie Line interval: 2 km
- Channel 1 (LINE): NLK Seattle, 24.8 kHz
- Channel 2 (ORTHO): NSS Annapolis, 21.4 kHz
- Line km over claim groups:
 - Magnetic survey: 117 line km
 - VLF-EM survey: 58 line km

4.3 Tolerances

Line spacing: Any gaps wider than twice the line spacing and longer than 10 times the line spacing were filled in by a new line.

Terrain clearance: Portions of line which were flown above 125 metres for more than one km were reflown if safety considerations were acceptable.

Diurnal magnetic variation: Less than ten gammas deviation from a smooth background over a period of two minutes or less as seen on the base station analogue record.

Manoeuvre noise: nil
FIGURE 3. Sample of analogue data
Photomosaics

For navigating the aircraft and recovering the flight path, mosaics of aerial photographs were made from existing air photos.

Each photograph forming the mosaic was adjusted to conform to the NTS map system before the mosaic was assembled.

5. Data Processing

Flight path recovery was carried out in the field using a video tape viewer to observe the flight path as recorded by the Geocam video camera system. The flight path recovery was completed daily to enable reflights to be selected where needed for the following day.

The magnetic data was levelled in the standard manner by tying survey lines to the tie lines. The IGRF has not been removed. The total field was contoured by computer using a program provided by Dataplotting Services Inc. To do this the final levelled data set is gridded at a grid cell spacing of 1/10th of an inch at map scale.

The vertical magnetic gradient is computed from the total field data using a method of transforming the data set into the frequency domain, applying a transfer function to calculate the gradient, and then transforming back into the spatial domain. The method is described by a number of authors including Grant, 1972 and Spector, 1968. The computer program for this purpose is provided by Paterson, Grant and Watson Ltd. of Toronto.

The VLF data was treated automatically so as to normalize the non conductive background areas to 100 (total field strength) and zero (quadrature). The algorithms to do this were developed by Terraquest and will be provided to anyone interested by application to the company.

All of these dataprocessing calculations and map contouring were carried out by Dataplotting Services Inc. of Toronto.

Grant, F.S., 1972: Review of Data Processing and Interpretation Methods in Gravity and Magnetics; Geophysics Vol 37-4

6. Interpretation

6.1 General Approach

To satisfy the purpose of the survey as stated in the introduction, the interpretation procedure was carried out on both the magnetic and VLF data. On a local scale the magnetic gradient contour patterns were used to outline geological units which have different magnetic intensity and patterns or "signatures". Where possible these are related to existing geology to provide a geological identity to the units. On a regional scale the total field contour patterns were used in the same way.

Faults and shear zones are interpreted mainly from lateral displacements of otherwise linear magnetic anomalies but also from long narrow "lows". The direction of regional faulting in the general area is taken into account when selecting faults. Folding is usually seen as curved regional patterns. Alteration zones can show up as anomalously quiet areas, often adjacent to strong, circular anomalies that represent intrusives. Magnetic anomalies that are caused by iron deposits of ore quality are usually obvious owing to their high amplitude, often in tens of thousands of gammas.

VLF anomalies are categorized according to whether the phase response is normal, reverse, or no phase at all. The significance of the differing phase responses is not completely understood although in general reverse phase indicates either overburden as the source or a conductor with considerable depth extent, or both. Normal phase response is theoretically caused by surface conductors with limited depth extent. In some cases, a change in the orientation of the conductor appears to affect the sense of the phase response.

Areas showing a smooth VLF-EM response somewhat above background (ie. 110 or so) are likely caused by overburden which is thick enough and conductive enough to saturate at these frequencies. In this case no response from bedrock is seen.
Figure 4

Terraquest Classification of VLF-EM Conductor Axes

<table>
<thead>
<tr>
<th>SYMBOL</th>
<th>CORRELATION</th>
<th>ASSOCIATION: Possible Origins</th>
</tr>
</thead>
<tbody>
<tr>
<td>a, A</td>
<td>Coincident with magnetic stratigraphy</td>
<td>Bedrock magnetic horizons: stratabound mineralogic origin or shear zone</td>
</tr>
<tr>
<td>b, B</td>
<td>Parallel to magnetic stratigraphy</td>
<td>Bedrock non-magnetic horizons: stratabound mineralogic origin or shear zone</td>
</tr>
<tr>
<td>c, C</td>
<td>No correlation with magnetic stratigraphy</td>
<td>Association not known: possible small scale stratabound mineralogic origin, fault or shear zone, overburden</td>
</tr>
<tr>
<td>d, D</td>
<td>Coincident with magnetic dyke</td>
<td>Dyke or possible fault: mineralogic or electrolytic</td>
</tr>
<tr>
<td>f, F</td>
<td>Coincident with topographic lineament or parallel to fault system</td>
<td>Fault zone: mineralogic or electrolytic</td>
</tr>
<tr>
<td>ob, OB</td>
<td>Contours of total field response conform to topographic depression</td>
<td>Most likely overburden: clayey sediments, swampy mud</td>
</tr>
<tr>
<td>cul, CUL</td>
<td>Coincident with cultural sources</td>
<td>Electrical, pipe or railway lines</td>
</tr>
</tbody>
</table>

Notes

1. Upper case symbols denote a relatively strong total field strength
2. Underlined symbols denote a relatively strong quadrature response
3. Mineralogic origins include sulphides, graphite, and in fault zones, gouge
4. Electrolytic origins imply conductivity related to porosity or high moisture content

240 Adelaide Street West, Toronto, Canada M5H 1W7, Telephone (416) 971-5400, Fax (416) 971-6449
The VLF-EM conductor axes have been identified and evaluated according to the Terraquest classification system (Figure 4). This system correlates the nature and orientation of the conductor axes with stratigraphic, structural and topographic features to obtain an association from which one or more origins may be selected. Alternate associations are indicated in parentheses.

6.2 Interpretation

The magnetic and VLF-EM data are shown in contoured format on maps at a scale of 1:10,000 in the back pocket. An interpretation map is also provided. The following notes are intended to supplement these maps.

The total magnetic field has a relief of approximately 900 gammas across the entire survey area, but only 450 gammas within the claim block itself. The total magnetic field is consistent with a general northwest trend of the lithologies. The vertical magnetic gradient improves the resolution of the magnetic anomalies and has been used to delineate the stratigraphy and structure.

The tholeiitic gabbro (Unit 5) east of the claim block correlates with the strongest magnetic responses with a relief of 800 to 900 gammas. The small plug of gabbro in the north central part of the claim block does not correlate with a similar magnetic response. This may be a function of (a) a different original magmatic composition, (b) the small total of the mass of the body, or (c) depletion of magnetic character by alteration.

These possibilities should be verified by ground mapping.

The outline of this gabbroic plug can not be outlined by magnetic mapping at this scale because the responses are overwhelmed by those from adjacent lithologies.

The diabase dyke (Unit 7) correlates with narrow, weak north- trending magnetic responses that are best outlined by the vertical magnetic gradient data. Similar responses to the south and west may also be related to diabase dykes.

Most of the remaining responses are associated with the tholeiitic basalts. The iron-rich member (Unit 3b) correlates with broad magnetic anomalies with reliefs of up to 400 gammas.

The magnesium-rich members (Unit 3a) correlates with weaker magnetic responses. Detailed magnetic mapping indicates that there are considerably more of these units than on the geological map.

The turbidite metasediments (Unit 1) correlate with weak magnetic responses and can not be resolved the magnesium-rich tholeiitic basalts.

The two north-trending faults toward the east end of the survey area are barely discernible by magnetic mapping, indicating minor lateral displacement. Numerous north-east trending faults have been interpreted from the magnetic data and coincide well with air photo, topographical lineaments. It is cautioned that some of the faults may represent fold axis. Northwest-southeast trending faults are suspected but are difficult to identify as they would parallel the magnetic trends.

The VLF-EM survey shows numerous conductor axes trending to the northwest consistent with both the general trend of the lithology and the orientation of the VLF transmitter. The broad conductors to the southwest correlate with swampy areas and are probably related to conductive overburden. Note, however, that the larger lakes to the east do not appear to be associated with conductive overburden.

Several conductor axes are related to stratigraphy as they are either parallel to or coincident with the magnetic units. These bear potential for stratabound bedrock origins such as sulphides or graphite and should be followed up on the ground using EM or IP techniques.

Several conductor axes trend to the northeast and are generally consistent with the northeast trending magnetically mapped faults. Conductivity associated with structure may be related to (a) minerals such as sulphides, gouge, or graphite along the structure, or (b) an ionic effect created by water or porosity along the structure or to conductive overburden in an overlying topographic depression. Structures identified by magnetic mapping or VLF-EM conductivity should be investigated for potential epithermal-type mineralization.
SUMMARY

An airborne combined magnetic and VLF-EM survey has been done on the property at line intervals of 100 metres. The total field and vertical gradient magnetic data, VLF-EM data and interpretation maps are produced at a scale of 1:10,000.

The magnetic data has been used to modify and update the existing geology and has shown a number of new contacts and faults. A number of VLF-EM conductor axes were found of which most are associated with conductive overburden. Several possess potential for stratabound bedrock origins such as sulphide or graphite and have been recommended for ground follow up. Northeast trending conductor axes are probably related to structural sources which bear potential for epithermal-type mineralization.

TERRAQUEST LTD.

[Signature]

Charles Q. Barrie, M.Sc.
Geologist

[Seal]
REPORT ON AN

AIRBORNE MAGNETIC
AND VLF-EM SURVEY

BENOIT AND MELBA TOWNSHIPS
LARDER LAKE MINING DIVISION, ONTARIO

for

NORDEX EXPLOSIVES LTD.

by: TERRAQUEST LTD.

Toronto, Canada
August 19, 1988

RECEIVED

AUG 31 1988

MINING LANDS SECTION
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. INTRODUCTION</td>
<td>1</td>
</tr>
<tr>
<td>2. THE PROPERTY</td>
<td>1</td>
</tr>
<tr>
<td>3. GEOLOGY</td>
<td>1</td>
</tr>
<tr>
<td>4. SURVEY SPECIFICATIONS</td>
<td>2</td>
</tr>
<tr>
<td>4.1 Instruments</td>
<td>2</td>
</tr>
<tr>
<td>4.2 Lines and Data</td>
<td>2</td>
</tr>
<tr>
<td>4.3 Tolerances</td>
<td>3</td>
</tr>
<tr>
<td>4.4 Photomosaics</td>
<td>3</td>
</tr>
<tr>
<td>5. DATA PROCESSING</td>
<td>3</td>
</tr>
<tr>
<td>6. INTERPRETATION</td>
<td>3</td>
</tr>
<tr>
<td>6.1 General Approach</td>
<td>3</td>
</tr>
<tr>
<td>6.2 Interpretation</td>
<td>4</td>
</tr>
<tr>
<td>7. SUMMARY</td>
<td>5</td>
</tr>
</tbody>
</table>

LIST OF FIGURES

- Figure 1 ~ General Location Map
- Figure 2 ~ Survey Area Map
- Figure 3 ~ Sample Record
- Figure 4 ~ Terraquest Classification of VLF-EM Conductor Axes

LIST OF MAPS IN JACKET

- No. A-785.2-1 ~ Total Magnetic Field
- No. A-785.2-2 ~ Vertical Magnetic Gradient
- No. A-785.2-3 ~ VLF-EM Survey
- No. A-785.2-4 ~ Interpretation
Introduction

This report describes the specifications and results of a geophysical survey carried out for Nordex Explosives Ltd. of P.O. Box 790, Kirkland Lake, Ontario, P2N 3K4 by Terraquest Ltd., 240 Adelaide Street West, Toronto, Canada. The field work was performed between June 20 and 21, 1988 and the data processing, interpretation and reporting from June 22 to August 19, 1988.

The purpose of a survey of this type is two-fold. First to prospect directly for anomalously conductive and magnetic areas in the earth's crust which may be caused by, or at least related to, mineral deposits. A second is to use the magnetic and conductivity patterns derived from the survey results to assist in mapping geology, and to indicate the presence of faults, shear zones, folding, alteration zones and other structures potentially favourable to the presence of gold and base-metal concentration. To achieve this purpose the survey area was systematically traversed by an aircraft carrying geophysical instruments along parallel flight lines spaced at even intervals, 100 metres above the terrain surface, and aligned so as to intersect the regional geology in a way to provide the optimum contour patterns of geophysical data.

2. The Property

The property is located along the eastern half of Benoit township and the western half of Melba township, in the Larder Lake Mining Division of Ontario about 18 kilometres northwest of the town of Kirkland Lake. The property can be accessed directly from township roads to the west and from bush roads from the east.

The average latitude and longitude are 48 degrees 20 minutes, and 80 degrees 08 minutes respectively, and the N.T.S. reference is 42A/8.

The claim numbers are shown in figure 2 and listed below:

L 981292-981293 \(\text{L} \) \((2) \)
981836 \((1) \)
981840(1) \(\)\((2) \)
981843-981844 \((2) \)
983215-983234 \((20) \)
997417-997420 \((4) \)
998342 \((1) \)
1014825-1014859 \((35) \)
1014867-1014869 \((3) \)
1026070-1026075 \((6) \)

Additional claims

L 884080-884082 \((3) \)
982583-982586 \((4) \)
992204-992205 \((2) \)
992254-992255(2) \((14) \)

Total of 165 claims

Total of 11 additional claims

3. Geology

Map References

1. Map 295G: Ramore Magnetic Map
Scale 1:63,360
G.S.C. 1970

2. Map 2215: Benoit and Maisonville Townships
Scale 1:31,680 (map and report)
O.D.M. 1971

3. Map 2252: Melba and Bisley Townships
Scale 1:31,680 (map and report)
O.D.M. 1972

Scale 1:250,000
O.D.M. 1975

5. Map 2322: Timmins-Matheson Interpretation of Bouguer Gravity
Scale 1:250,000
O.D.M. 1975

6. Map P.3053: Ramore Area, Southeastern Part
Scale 1:15,840
O.G.S. 1986

Reports

3. Geology and Geochemistry of Melba and Bisley Townships, by L. Jensen. Thesis at Depart-
FIGURE 1. General Location
The survey area is underlain predominantly by west to northwest trending calc-alkalic and tholeiitic metavolcanics. The calc-alkalic metavolcanics range from mafic to intermediate in composition and occupy the central portion of the survey area. The tholeiitic metavolcanics occupy the northern and southern extremities and are subdivided into magnesium rich and iron rich members. The oldest and least representative rocks in the survey area are turbiditic sedimentary rocks belonging to the Porcupine Group and occur only in the immediate vicinity of the Melba Gold Mine in the north central part of the survey area.

Semi-conformable gabbroic intrusives occur along the western edge of the survey area and in the southeastern comer. Minor porphyritic granitoid rocks occur in the central part of the survey area, particularly around Melba Gold Mine. Numerous diabase dykes form a north trending swarm throughout the western half of the survey area.

The lithologies have been folded about anti-clinal and synclinal axes parallel to the stratigraphy. Faults trend variably to the north, northeast and northwest.

The gold at the Melba Gold Mine is associated with quartz calcite veins that trend to the northwest and may bear a genetic relationship with the porphyritic granitoid rocks.

4. Survey Specifications

4.1 Instruments

The survey was carried out using a Cessna 206 aircraft, registration C-GGLS, which carries a magnetometer and a VLF electromagnetic detector.

The magnetometer is a high sensitivity, optically pumped cesium vapour magnetometer mounted in a stinger attached to the tail of the aircraft. It's specifications are as follows:

- Working range: 20,000-100,000 gammas
- Sensitivity: 0.001 gammas
- Sampling rate: 0.2 seconds
- Model: BIW 2321H8
- Manufacturer: Scintrex, Concord Ontario.

The magnetometer processor is a PMAG 3000 and the data acquisition system is a PDAS 1000, both manufactured by Picodas Group Inc.

The signal to noise ratio of the magnetic response is improved by a real time compensation technique provided by Picodas Limited. The sources of compensated noise are permanent, induced and petty current effects of the airframe and the heading effects. The system uses three fluxgate magnetometers to measure the aircraft attitude with respect for the earth magnetic field vector. A mathematical model is used to solve this interference effect.

The VLF-EM unit uses three orthogonal detector coils to measure (a) the total field strength of the time-varying EM field and (b) the phase between the vertical coil and both the “along line” coil (LINE) and the “cross-line” coil (ORTHO). The LINE coil is tuned to a transmitter station that is ideally positioned at right angles to the flight lines, while the ORTHO coil transmitter should be in line with the flight lines. It’s specifications are:

- Accuracy: 1%
- Reading Interval: 1/2 second
- Model: TOTEM 2A
- Manufacturer: Herz Industries, Toronto, Canada

The VLF sensor is mounted in the left wing tip extension.

Other instruments are:

- King KRA-10A radar altimeter
- UDAS-100 data processor with Digidata nine track tape recorder, manufactured by Urtec Ltd., Markham, Ontario.
- Geocam video camera and recorder for flight path recovery, manufactured by Geotech Ltd., Markham, Ontario.

4.2 Lines and Data

- Line spacing: 100 metres
- Line direction: 040 degrees
- Terrain clearance: 100 m
- Average ground speed: 193 km/hr
- Data point interval:
 - Magnetic: 11 metres
 - VLF-EM: 11 metres
FIGURE 3. Sample of analogue data
Tie Line interval: 2 km

Channel 1 (LINE): NAA Cutler, 24.0 kHz
Channel 2 (ORTHO): NSS Annapolis, 21.4 kHz

Line km over total survey area: 577 line km
Line km over claim groups: 252 line km

4.3 Tolerances

Line spacing: Any gaps wider than twice the line spacing and longer than 10 times the line spacing were filled in by a new line.

Terrain clearance: Portions of line which were flown above 125 metres for more than one km were reflown if safety considerations were acceptable.

Diurnal magnetic variation: Less than ten gammas deviation from a smooth background over a period of two minutes or less as seen on the base station analogue record.

Manoeuvre noise: nil

4.4 Photomosaics

For navigating the aircraft and recovering the flight path, semi-controlled mosaics of aerial photographs were made from existing air photos. Each photograph forming the mosaic was adjusted to conform to the NTS map system before the mosaic was assembled.

5. Data Processing

Flight path recovery was carried out in the field using a video tape viewer to observe the flight path as recorded by the Geocam video camera system. The flight path recovery was completed daily to enable reflights to be selected where needed for the following day.

The magnetic data was levelled in the standard manner by tying survey lines to the tie lines. The IGRF has not been removed. The total field was contoured by computer using a program provided by Dataplotting Services Inc. To do this the final levelled data set is gridded at a grid cell spacing of 1/10th of an inch at map scale.

The vertical magnetic gradient is computed from the total field data using a method of transforming the data set into the frequency domain, applying a transfer function to calculate the gradient, and then transforming back into the spatial domain. The method is described by a number of authors including Grant, 1972 and Spector, 1968. The computer program for this purpose is provided by Paterson, Grant and Watson Ltd. of Toronto.

The VLF data was treated automatically so as to normalize the non-conductive background areas to 100 (total field strength) and zero (quadrature). The algorithms to do this were developed by Terracoust and will be provided to anyone interested by application to the company.

All of these dataprocessing calculations and map contouring were carried out by Dataplotting Services Inc. of Toronto.

Grant, F.S., 1972: Review of Data Processing and Interpretation Methods in Gravity and Magnetics; Geophysics Vol 37-4

6. Interpretation

6.1 General Approach

To satisfy the purpose of the survey as stated in the introduction, the interpretation procedure was carried out on both the magnetic and VLF data. On a local scale the magnetic gradient contour patterns were used to outline geological units which have different magnetic intensity and patterns or “signatures”. Where possible these are related to existing geology to provide a geological identity to the units. On a regional scale the total field contour patterns were used in the same way.

Faults and shear zones are interpreted mainly from lateral displacements of otherwise linear magnetic anomalies but also from long narrow “lows”. The direction of regional faulting in the general area is taken into account when selecting faults. Folding is usually seen as curved regional patterns. Alteration zones can show up as anomalously quiet areas, often adjacent to strong, circular anomalies that represent intrusives. Magnetic anomalies that are caused by iron deposits of ore quality are usually obvious owing to their high amplitude, often in tens of thousands of gammas.
TERRAQUEST CLASSIFICATION OF VLF-EM CONDUCTOR AXES

<table>
<thead>
<tr>
<th>SYMBOL</th>
<th>CORRELATION</th>
<th>ASSOCIATION: Possible Origins</th>
</tr>
</thead>
<tbody>
<tr>
<td>a, A</td>
<td>Coincident with magnetic stratigraphy</td>
<td>Bedrock magnetic horizons: stratabound mineralogic origin or shear zone</td>
</tr>
<tr>
<td>b, B</td>
<td>Parallel to magnetic stratigraphy</td>
<td>Bedrock non-magnetic horizons: stratabound mineralogic origin or shear zone</td>
</tr>
<tr>
<td>c, C</td>
<td>No correlation with magnetic stratigraphy</td>
<td>Association not known: possible small scale stratabound mineralogic origin, fault or shear zone, overburden</td>
</tr>
<tr>
<td>d, D</td>
<td>Coincident with magnetic dyke</td>
<td>Dyke or possible fault: mineralogic or electrolytic</td>
</tr>
<tr>
<td>f, F</td>
<td>Coincident with topographic lineament or parallel to fault system</td>
<td>Fault zone: mineralogic or electrolytic</td>
</tr>
<tr>
<td>ob, OB</td>
<td>Contours of total field response conform to topographic depression</td>
<td>Most likely overburden: clayey sediments, swampy mud</td>
</tr>
<tr>
<td>cul, CUL</td>
<td>Coincident with cultural sources</td>
<td>Electrical, pipe or railway lines</td>
</tr>
</tbody>
</table>

NOTES

1. Upper case symbols denote a relatively strong total field strength
2. Underlined symbols denote a relatively strong quadrature response
3. Mineralogic origins include sulphides, graphite, and in fault zones, gouge
4. Electrolytic origins imply conductivity related to porosity or high moisture content

© : FIGURE 4

TERRAQUEST LTD.
Anomalies are categorized according to whether the phase response is normal, reverse, or no phase at all. The significance of the differing phase responses is not completely understood although in general reverse phase indicates either overburden as the source or a conductor with considerable depth extent, or both. Normal phase response is theoretically caused by surface conductors with limited depth extent. In some cases, a change in the orientation of the conductor appears to affect the sense of the phase response.

Areas showing a smooth VLF-EM response somewhat above background (i.e. 110 or so) are likely caused by overburden which is thick enough and conductive enough to saturate at these frequencies. In this case no response from bedrock is seen.

The VLF-EM conductor axes have been identified and evaluated according to the Terraquest classification system (Figure 4). This system correlates the nature and orientation of the conductor axes with stratigraphic, structural and topographic features to obtain an association from which one or more origins may be selected. Alternate associations are indicated in parentheses.

6.2 Interpretation

The magnetic and VLF-EM data are shown in contoured format on maps at a scale of 1:10,000 in the back pocket. An interpretation map is also provided. The following notes are intended to supplement these maps.

The total magnetic field has a relief of approximately 800 gammas over the entire survey area, the stronger responses have been located at the northern and southern ends. At these locations the magnetic responses are consistent with the general trend of the lithologies. The magnetic relief across the central part of the survey area is approximately 250 gammas and shows prominent north, trending narrow magnetic trends consistent with the diabase dykes.

The vertical magnetic gradient format improves the resolution of the east-west trending anomalies at the north and south ends of the survey area, and the north-south trending anomalies across the centre of the map. These north-south trending anomalies dominate and overwhelm the other responses in the central part of the survey area. The contour level of the vertical magnetic gradient has been reduced to 0.05 gammas per metre in order to emphasize the east-west trending metavolcanics. This has been partially successful. It is recommended that a trend de-enhancement program may be useful to obliterate the effects of the north trending magnetic anomalies in order to enhance the east-west trends.

All of the north trending magnetic anomalies have been interpreted as diabase dykes (Unit 16). This is consistent with the 5% magnetite as reported by Jensen (1971). Several geologically mapped diabases do not appear to possess a significant magnetic response either because (a) they are too small, (b) they have a different original composition, or (c) they have been altered by metasomatism or metamorphism.

The iron rich tholeiitic basalts (Unit 6) correlate with the very strong magnetic responses whereas the magnesium rich tholeiitic basalts (Unit 5) correlate with weak to moderate magnetic responses. Generally these two units occur in proximity and the responses from the iron rich basalts overwhelm and dominate those from the magnesium rich basalts. The west trending magnesium rich tholeiitic basalts in the extreme northwest corner of the survey correlate with strong magnetic responses that trend to the north and northeast. These responses may be related to a sub-member of the magnesium rich tholeiitic basalts (Unit 5m) that is characterized by an increased concentration of magnetic minerals. Alternatively it may be related to a deeper or buried mafic intrusive.

The calc-alkalic mafic to intermediate metavolcanics (Unit 8) correlate with moderate strength magnetic responses. Magnetically active horizons with this unit (Unit 8m) are probably related to more mafic compositions or possibly to an increase in concentration of magnetite or pyrrhotite. It is cautioned that the interpreted 8m horizons across the central part of the survey area are highly subjective primarily due to the fact that (a) the magnetic contrast is very low and (b) there is considerable magnetic interference from the north trending diabase dykes.

Exposures of gabbro (Unit 13) correlate with weak to moderate magnetic responses and in general cannot be discriminated from the metavolcanic horizons. However, several localized zones exhibit strong magnetic responses and suggest that the gabbroic intrusives are not homogeneous. This variation may be related to initial composition or alteration.
The strong magnetic anomaly in the vicinity of Melba Gold Mine coincides with outcrops of metasediments (Unit 1), porphyritic granitoid rocks (Unit 15) and peripherally, the calc-alkalic mafic to intermediate metavolcanics (Unit 8). It is anticipated that the clastic metasediments, as described in the geological reports, would not possess a significant magnetic response. Similarly, the orientation of the magnetic responses is not consistent with the trend of the calc-alkalic metavolcanics (Unit 8). Therefore it is suggested that these strong responses are related to the porphyritic granitoid rocks (Unit 15) which intrude the metasediments. The strength and dimensions of this anomaly suggest a buried source at considerable depth with two separate lobbs extending to the south. The attenuated responses over these lobbs may be related to either a thinning of the intrusives at these locations or to an increasing depth beneath the surface. The narrow exposures of the porphyritic granitoid rocks are not by themselves sufficient to create these magnetic responses and are thought to be apophyses from a deeper granitoid plug.

Most of the magnetically interpreted faults trend to the northwest and show considerable continuity. Numerous northeast trending faults generally show less continuity despite the fact that northeast trending faults at the Melba Gold Mine have been reported to cross-cut the northwest trending faults. Several east-west trending faults have been identified by the displacements of the diabase dykes. Several north trending faults identified by displacement of the iron rich tholeiitic basalts are parallel to the diabase dykes and may be related to the same deformational event. Many of the magnetically interpreted faults correlate with air photo lineaments.

The VLF-EM survey has identified numerous weak to moderate strength conductive zones and a few strong conductor axes. Most of these are associated with structural sources, either faults or shear zones based on the general trend identified by the magnetic mapping. This type of conductivity may be related to (a) minerals such as sulphides, graphite or gouge within the structure, or (b) an ionic effect created by water or porosity along the structure or to conductive overburden in an overlying topographic depression. Structures identified by either magnetic mapping or VLF-EM methods bear potential for epithermal type mineralization. For example, the Melba Gold Mine correlates with coincident northwest trending magnetically interpreted fault and a VLF-EM conductor axis.

Several conductor axes appear to be related to the stratigraphy as they are either coincident or parallel to the magnetic units. These bear potential for stratabound bedrock origins such as sulphides, graphite or porous flowtops. These should be followed up on the ground using EM or IP methods.

7. Summary

An airborne combined magnetic and VLF-EM survey has been carried out at 100 metre line intervals with data reading stations at 11 metres along the flight lines. All data is produced on maps at a scale of 1:10,000.

The magnetic data has been used to modify and update the existing geology and has shown a number of new contacts and faults. Numerous VLF-EM conductor axes were found most of which were associated with structural sources, some of which bear potential for epithermal type mineralization. A few conductor axes are associated with the stratigraphy and have potential for sulphide or graphite origins and have been recommended for additional investigation.

TERRAQUEST LTD.

Charles Q. Barrie, M.S.
Geologist
Mining Survey Report

Ministry of Northern Development and Mines
Report of Work (Geophysical, Geological, Geochemical and Expenditures)

Type of Survey(s): Airborne Magnetic + UFL/EM

Claim Holder(s): Raven Resources Inc

Address: 139 Carter Ave, Kirkland Lake, ON P2N 2A1

Prospector's Licence No.: T 4869

Survey Company: Terraquest Ltd

Date of Survey (from to): 21-06-88 to 22-06-88

Total Miles of line Cut: 42,888

Credits Requested per Each Claim in Columns at right

<table>
<thead>
<tr>
<th>Mining Claim</th>
<th>Expended Days Cr.</th>
</tr>
</thead>
<tbody>
<tr>
<td>982583</td>
<td></td>
</tr>
<tr>
<td>982584</td>
<td></td>
</tr>
<tr>
<td>982585</td>
<td></td>
</tr>
<tr>
<td>982586</td>
<td></td>
</tr>
</tbody>
</table>

Special Provisions

For first survey:
- Enter 40 days. (This includes line cutting)

For each additional survey:
- Using the same grid: Enter 20 days (for each)

Man Days

- Complete reverse side and enter total(s) here

Type of Work Performed

<table>
<thead>
<tr>
<th>Mining Claim</th>
<th>Expended Days Cr.</th>
</tr>
</thead>
<tbody>
<tr>
<td>982583</td>
<td></td>
</tr>
<tr>
<td>982584</td>
<td></td>
</tr>
<tr>
<td>982585</td>
<td></td>
</tr>
<tr>
<td>982586</td>
<td></td>
</tr>
</tbody>
</table>

Calculation of Expenditure Days Credits

- Total Expenditures: $15
- Total Days Credits: 15

Total Number of Mining Claims Traversed (List in numerical sequence)

- 4

Certification Verifying Report of Work

I hereby certify that I have a personal and intimate knowledge of the facts set forth in the Report of Work annexed hereto, having performed the work or witnessed same during and/or after its completion and the annexed report is true.

Name and Postal Address of Person Certifying: Michael Leahy

Date Certified: 22/06/88
Ministry of Northern Development

Land Management

Report of Work

(Geophysical, Geological, Geochemical and Expenditures)

Type of Survey(s)

<table>
<thead>
<tr>
<th>Claim Holder(s)</th>
<th>Airborne Magnetics and EM/VLF</th>
</tr>
</thead>
<tbody>
<tr>
<td>731530 Ontario Limited (Melba Gold Limited)</td>
<td>T-4994</td>
</tr>
</tbody>
</table>

Address

P.O. Box 283, Kirkland Lake, Ontario P2N 5M6

Survey Company

Terraquest Ltd.

Prospector's Licence No.

T-4994

Date of Survey (from & to)

<table>
<thead>
<tr>
<th>Day</th>
<th>No.</th>
<th>Mo.</th>
<th>Yr.</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>6</td>
<td>48</td>
<td></td>
</tr>
</tbody>
</table>

Total Miles of Line Tracked

329 km

Geophysical

- Electromagnetic
- Magnetometer
- Radio metric
- Other

Geological

Geochemical

Man Days

Complete reverse side and enter total(s) here.

Received

Mining Lands Section

Jul 26, 1988

Airborne Credits

<table>
<thead>
<tr>
<th>Claim(s) Covered</th>
<th>Geophysical</th>
<th>Days per Claim</th>
</tr>
</thead>
<tbody>
<tr>
<td>Electromagnetic</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Magnetometer</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Radio metric</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Other</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note: Special provisions credits do not apply to Airborne Surveys.

Expenditures (excludes power stripping)

Type of Work Performed

- Geophysical
- Geological
- Geochemical

Total Number of Mining Claims Traversed

- Total number of mining claims covered by this report of work: 28

Date Recorded

June 30, 1988

Certification Verifying Report of Work

I hereby certify that I have a personal and intimate knowledge of the facts set forth in the Report of Work annexed hereto, having performed the work or witnessed same during and/or after its completion and the annexed report is true.

Name and Postal Address of Person Certifying:

C. A. Ross, 90-2nd St., Kirkland Lake, Ont. P2N 5M6

Date Certified: June 30, 1988
<table>
<thead>
<tr>
<th>Type of Survey(s)</th>
<th>Township or Area</th>
<th>Mining Act</th>
</tr>
</thead>
<tbody>
<tr>
<td>Airborne Magnetics and EM/VLF</td>
<td>MELBA</td>
<td>Ontario</td>
</tr>
</tbody>
</table>

Claim Holder(s):
73150 Ontario Limited (Melba Gold Limited)

Prospector's Licence No.
T-4994

Address:
P.O. Box 293, Kirkland Lake, Ontario P2N 3M6

Survey Company:
Terraquest Limited

Date of Survey:

<table>
<thead>
<tr>
<th>Start Date</th>
<th>End Date</th>
<th>Total Miles of Line Flown</th>
</tr>
</thead>
<tbody>
<tr>
<td>6-1-00</td>
<td>11-30-00</td>
<td></td>
</tr>
</tbody>
</table>

Name and Address of Author (of Geo-Technical report):
Charles Barry, M.Sc., Terraquest Ltd., 20 Adelaide St., Toronto, M5H 1W7

Credits Requested per Each Claim in Columns at right:

Special Provisions

- For first survey:
 - Enter 40 days. (This includes line cutting)

- For each additional survey:
 - Using the same grid:
 - Enter 20 days (for each)

Man Days

- Geophysical
 - Electromagnetic
 - Magnetometer
 - Radiometric
 - Other
 - Geological
 - Geochemical

Expenditures (excludes power stripping):

- Type of Work Performed
- Performed on Claim(s)

Calculation of Expenditure Days Credits

<table>
<thead>
<tr>
<th>Total Expenditures</th>
<th>Total Days Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>$</td>
<td>15</td>
</tr>
</tbody>
</table>

Instructions:

- Total Days Credits may be apportioned at the claim holder's choice. Enter number of days credits per claim selected in columns at right.

Date Approved as Recorded:

Name and Address of Person Certifying:
C. A. Ross

Certified by (Signature):

I hereby certify that I have a personal and intimate knowledge of the facts set forth in the Report of Work annexed hereto, having performed the work or witnessed same during and/or after its completion and the annexed report is true.
Report of Work
(Geophysical, Geological, Geochemical and Expenditures)

Ontario Ministry of Northern Development Mines

Type of Survey(s) Geophysical
Claim Holder(s) A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
Address T P. O. Box 213, Kirkland Lake, ON P 2N 2M 6
Survey Company TERRA QUEST LTD.

Name and Address of Author (of Geo-Technical report) CHARLES BARRIE, M.S. 777 TERRA QUEST LTD., 240 Adelaide St. W., Toronto M 5H 1 W

Credits Requested per Each Claim in Columns at right

Special Provisions
For first survey:
Enter 40 days. (This includes line cutting)
For each additional survey:
using the same grid:
Enter 20 days (for each)

Man Days
Complete reverse side
and enter total(s) here

Airborne Credits
Note: Special provisions credits do not apply to Airborne Surveys.

Expenditures (excludes power stripping)
Type of Work Performed

Calculation of Expenditure Days Credits
Total Expenditures Total Days Credits

Instructions
Total Days Credits may be apportioned at the claim holder's choice. Enter number of days credits per claim selected in columns at right.

Certification Verifying Report of Work
I hereby certify that I have a personal and intimate knowledge of the facts set forth in the Report of Work annexed hereto, having performed the work or witnessed same during and/or after its completion and the annexed report is true.

Name and Postal Address of Person Certifying
C. A. Ross

Date Certified
Date Recorded

Certified by (Signature)
Ontario Ministry of Northern Development & Mines

Report of Work
(geophysical, geological, geochemical and expenditures)

Type of Survey(s)

<table>
<thead>
<tr>
<th>Geophysical</th>
<th>Days per Claim</th>
</tr>
</thead>
<tbody>
<tr>
<td>Electromagnetic</td>
<td></td>
</tr>
<tr>
<td>Magnetometer</td>
<td></td>
</tr>
<tr>
<td>Radiometric</td>
<td></td>
</tr>
<tr>
<td>Other</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Geological</th>
</tr>
</thead>
<tbody>
<tr>
<td>Days per Claim</td>
</tr>
<tr>
<td>Electromagnetic</td>
</tr>
<tr>
<td>Magnetometer</td>
</tr>
<tr>
<td>Radiometric</td>
</tr>
<tr>
<td>Other</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Geochemical</th>
</tr>
</thead>
<tbody>
<tr>
<td>Days per Claim</td>
</tr>
<tr>
<td>Electromagnetic</td>
</tr>
<tr>
<td>Magnetometer</td>
</tr>
<tr>
<td>Radiometric</td>
</tr>
</tbody>
</table>

Credits Requested per Each Claim in Columns at right

<table>
<thead>
<tr>
<th>Mining Claim</th>
<th>Expended Days Cr.</th>
<th>Prefix</th>
<th>Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>1025998</td>
<td>v</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1014856</td>
<td>v</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1026000</td>
<td>v</td>
<td></td>
<td></td>
</tr>
<tr>
<td>997417</td>
<td>v</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1014838</td>
<td>v</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1014839</td>
<td>v</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1025986</td>
<td>v</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1025987</td>
<td>v</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1025988</td>
<td>v</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1025989</td>
<td>v</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Expenditures (Excludes power stripping)

Type of Work Performed

<table>
<thead>
<tr>
<th>Claim Holders</th>
<th>Mining Claim</th>
<th>Expended Days Cr.</th>
<th>Prefix</th>
<th>Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>731530 Ontario Limited (Melba Gold Limited)</td>
<td>1025998</td>
<td>v</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1014856</td>
<td>v</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1026000</td>
<td>v</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>997417</td>
<td>v</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1014838</td>
<td>v</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1014839</td>
<td>v</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1025986</td>
<td>v</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1025987</td>
<td>v</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1025988</td>
<td>v</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1025989</td>
<td>v</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Total Expenditures

<table>
<thead>
<tr>
<th>Total Expenditures</th>
<th>Total Days Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>$</td>
<td>15</td>
</tr>
</tbody>
</table>

Total number of mining claims covered by this report of work.

Date

<table>
<thead>
<tr>
<th>Recorded Holder or Agent (Signature)</th>
<th>Date Approved as Recorded</th>
</tr>
</thead>
<tbody>
<tr>
<td>June 30/88</td>
<td>Branch Director</td>
</tr>
</tbody>
</table>

Certification Verifying Report of Work

I hereby certify that I have a personal and intimate knowledge of the facts set forth in the Report of Work annexed hereto, having performed the work or witnessed same during and/or after its completion and the annexed report is true.

Name and Postal Address of Person Certifying

<table>
<thead>
<tr>
<th>Certification</th>
<th>Date Approved as Recorded</th>
</tr>
</thead>
<tbody>
<tr>
<td>C. A. Ross</td>
<td>Branch Director</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Date Certificated</th>
<th>Certified by (Signature)</th>
</tr>
</thead>
<tbody>
<tr>
<td>June 30/88</td>
<td>Branch Director</td>
</tr>
</tbody>
</table>

Note: Please type or print.

- If number of mining claims traversed exceeds 30, attach a list of claims.
- Only days credited in the "Expenditures" sections may be entered in the "Expended Days Cr." columns.
- Do not use shaded areas below.

Instructions:

- Total Days Credits may be apportioned at the claim holder's choice. Enter number of days credits per claim selected in columns at right.

Expenditures

Type of Survey(s)

<table>
<thead>
<tr>
<th>Mining Claim</th>
<th>Expended Days Cr.</th>
<th>Prefix</th>
<th>Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>1025998</td>
<td>v</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1014856</td>
<td>v</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1026000</td>
<td>v</td>
<td></td>
<td></td>
</tr>
<tr>
<td>997417</td>
<td>v</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1014838</td>
<td>v</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1014839</td>
<td>v</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1025986</td>
<td>v</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1025987</td>
<td>v</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1025988</td>
<td>v</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1025989</td>
<td>v</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Mining Claim</th>
<th>Expended Days Cr.</th>
<th>Prefix</th>
<th>Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>1025998</td>
<td>v</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1014856</td>
<td>v</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1026000</td>
<td>v</td>
<td></td>
<td></td>
</tr>
<tr>
<td>997417</td>
<td>v</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1014838</td>
<td>v</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1014839</td>
<td>v</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1025986</td>
<td>v</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1025987</td>
<td>v</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1025988</td>
<td>v</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1025989</td>
<td>v</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Total Miles of Line Traversed

<table>
<thead>
<tr>
<th>Miles of Line Traversed</th>
<th>Township or Area</th>
</tr>
</thead>
<tbody>
<tr>
<td>30</td>
<td>Prova</td>
</tr>
</tbody>
</table>

Survey Company

Address

P.O. Box 283, Kirkland Lake, Ontario, P2N 3M6

Prospector's Licence No.

T-4994

Name and Address of Author (of Geo-Technical report)

Charles Barrie, M. Sc., Terraquest Ltd., 240 Adelaide St. W., Toronto M5H 1W7
Report of Work

(geophysical, geological, geochemical and expenditures)

AIRBORNE MAGNETICS AND EM/VLF

<table>
<thead>
<tr>
<th>Township or Area</th>
<th>MELBA</th>
</tr>
</thead>
</table>

Claim Holder(s) NORDEX EXPLOSIVES LTD.

Prospector's Licence No. T-4977

Address

P.O. BOX 790, KIRKLAND LAKE, ONTARIO P2N 2B4

Survey Company

TERRAQUEST LTD.

Survey Company

Date of Survey

Day	Mo.	Yr.
20 | 6 | 88

Total Miles of line flown

Name and Address of Author (of Geo-technical report)

CHARLES BARRE, M.Sc, 9% TERRAQUEST LTD. 240 ADLINGSF KIRKLAND LAKE, ONTARIO P2N 2B4

Credits Requested per Each Claim in Columns at right

Mining Claims Traversed (List in numerical sequence)

<table>
<thead>
<tr>
<th>Mining Claim</th>
<th>Expended Days Cr.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prefix</td>
<td>Number</td>
</tr>
<tr>
<td>L</td>
<td>998342</td>
</tr>
<tr>
<td>1014867</td>
<td></td>
</tr>
<tr>
<td>1014868</td>
<td></td>
</tr>
<tr>
<td>1026071</td>
<td></td>
</tr>
<tr>
<td>1026072</td>
<td></td>
</tr>
<tr>
<td>1026073</td>
<td></td>
</tr>
<tr>
<td>1026074</td>
<td></td>
</tr>
<tr>
<td>1026075</td>
<td></td>
</tr>
</tbody>
</table>

Expenditures (Excludes Power Stripping)

Type of Work Performed

<table>
<thead>
<tr>
<th>Performed on Claim(s)</th>
</tr>
</thead>
</table>

Calculation of Expenditure Days Credits

<table>
<thead>
<tr>
<th>Total Expenditures</th>
<th>Total Days Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>$10,000.00</td>
<td>15</td>
</tr>
</tbody>
</table>

Instructions:

Total Days Credits may be apportioned at the claim holder's choice. Enter number of days credits per claim selected in columns at right.

Date Recorded

June 30, 1988

Recorded Holder or Agent (Signature)

C. A. Ross

Certification Verifying Report of Work

I hereby certify that I have a personal and intimate knowledge of the facts set forth in the Report of Work annexed hereto, having performed the work or witnessed same during and/or after its completion and the annexed report is true.

Name and Postal Address of Person Certifying

C. A. Ross

Date Certified

June 30, 1988
Report of Work

Ministry of Northern Development

Type of Survey(s)

Claim Holder(s)

Geophysical, Geological, Geochemical and Expenditure

Mineral Act

PROSPECTOR'S LICENSE NO.

T- 4977

Address

P.O. BOX 790 KIRKLAND LAKE, ONTARIO P1N 3K4

Survey Company

TERRAQUEST LTD.

Date of Survey

2A 16 88

Total Miles of line of Plane

Name and Address of Author (Geotechnical report)

**CHARLES DARRIE, M.S. **

TERRAQUEST LTD. 240 ADELAIDE ST. N. TORONTO, M6H 1W7

Credits Requested per Each Claim in Columns at right

<table>
<thead>
<tr>
<th>Special Provisions</th>
<th>Geophysical Days per Claim</th>
<th>Airborne Credits</th>
<th>Days per Claim</th>
</tr>
</thead>
<tbody>
<tr>
<td>For first survey:</td>
<td>Electromagnetic 1045393</td>
<td>Electromagnetic 1045405</td>
<td>40</td>
</tr>
<tr>
<td>Enter 40 days. (This</td>
<td>Magnetometer 1045394</td>
<td>Magnetometer 1045410</td>
<td>40</td>
</tr>
<tr>
<td>includes line cutting)</td>
<td>Radiometric 1045395</td>
<td>Radiometric 1045411</td>
<td></td>
</tr>
<tr>
<td>For each additional survey:</td>
<td>Other 1045396</td>
<td>Other 1045412</td>
<td></td>
</tr>
<tr>
<td>using the same grid:</td>
<td>Geological 1045397</td>
<td>Geological 1045404</td>
<td></td>
</tr>
<tr>
<td>Enter 20 days (for each)</td>
<td>Geochemical 1045398</td>
<td>Geochemical 1045403</td>
<td></td>
</tr>
</tbody>
</table>

Expenditures (excludes power stripping)

<table>
<thead>
<tr>
<th>Type of Work Performed</th>
<th>Mining Claim Prefix</th>
<th>Expended Days Cr.</th>
<th>Expended Days Cr. Prefix</th>
<th>Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Airborne Credits</td>
<td>L</td>
<td>1045419</td>
<td>L</td>
<td>1045420</td>
</tr>
<tr>
<td>Total Days Cr.</td>
<td>1045421</td>
<td>1045422</td>
<td>1045423</td>
<td></td>
</tr>
<tr>
<td>Man Days</td>
<td>1045424</td>
<td>1045425</td>
<td>1045426</td>
<td></td>
</tr>
<tr>
<td>Complete reverse side</td>
<td>1045427</td>
<td>1045428</td>
<td>1045429</td>
<td></td>
</tr>
<tr>
<td>enter total(s) here</td>
<td>1045430</td>
<td>1045431</td>
<td>1045432</td>
<td></td>
</tr>
</tbody>
</table>

For Office Use Only

<table>
<thead>
<tr>
<th>Total Days Cr. Recorded</th>
<th>Date Recorded</th>
<th>Mining Recorder</th>
</tr>
</thead>
<tbody>
<tr>
<td>1045413</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1045414</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1045415</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1045416</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1045417</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1045418</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Total number of mining claims covered by this report of work.

39

Certification Verifying Report of Work

I hereby certify that I have a personal and intimate knowledge of the facts set forth in the Report of Work annexed hereto, having performed the work or witnessed same during and/or after its completion and the annexed report is true.

Name and Postal Address of Person Certifying

C. A. Ross

Date Certified

June 30/88
Report of Work

Document No. W8808: 399

Type of Survey: Air Survey

Ref: #1-88, Benoit Top

COVID-19 Survey Method:

Permit No.: 144875

Journal Date: 12-29-88

Time: 10:10 AM

Claim Holders:

John K. Jasbergerson

Address: Byron St, Ariz, Sturgeonville ON 14A7X

Survey Company: Terra Quest

Date of Survey: Jan 6, 1988

Name and Address of Author: Charles Barrie, Terra Quest

Credits Requested per Each Claim in Columns at Right:

Special Provisions:

- For first survey: Enter 40 days. (This includes line cutting)
- For each additional survey: using the same grid: Enter 20 days (for each)

Geophysical:

<table>
<thead>
<tr>
<th>Prefix</th>
<th>Mining Claim Traversed</th>
<th>Expans Days Cr.</th>
</tr>
</thead>
<tbody>
<tr>
<td>L</td>
<td>17055675621</td>
<td>4</td>
</tr>
<tr>
<td>884081</td>
<td>17055675621</td>
<td>4</td>
</tr>
<tr>
<td>884082</td>
<td>17055675621</td>
<td>4</td>
</tr>
<tr>
<td>884083</td>
<td>17055675621</td>
<td>4</td>
</tr>
<tr>
<td>992201</td>
<td>17055675621</td>
<td>4</td>
</tr>
<tr>
<td>992205</td>
<td>17055675621</td>
<td>4</td>
</tr>
<tr>
<td>992204</td>
<td>17055675621</td>
<td>4</td>
</tr>
<tr>
<td>992254</td>
<td>17055675621</td>
<td>4</td>
</tr>
<tr>
<td>992255</td>
<td>17055675621</td>
<td>4</td>
</tr>
</tbody>
</table>

Geophysical Days per Claim:

- Electromagnetic
- Magnetometer
- Radiometric
- Other
- Geological
- Geochemical

Airborne Survey Days per Claim:

- Electromagnetic
- Magnetometer
- Radiometric

Expenditures (Excludes power stripping):

Total Days Credits

- Total Expenditures
- + 15

Instructions:

- Total Days Credits may be determined by the claim holder's choice. Enter number of days credit per claim selected.

Certification Verifying Report of Work:

Verifying Agent:

Date Certified: Sept 17, 1988

Data Certified:

Location: Byron St, Ariz, Sturgeonville ON 14A7X
The Mining Act

Type of Survey(s)

AIR SURVEY REF: #8-255 BENET TSP

Claim Holder(s)

JOHN K. JASBERSON

Address

BRONON ST. ARIZ STAFFAVILE AZ 85759

Survey Company

TERRA QUEST

Name and Address of Author (of Geo-Technical report)

CHARLES BARRIE, TERRA QUEST

Credits Requested Per Each Claim in Columns at right

Special Provisions

For first survey:
- Enter 40 days. (This includes line cutting)
- For each additional survey:
 - Enter 20 days (for each)

Man Days

Complete reverse side

Airborne Credits

- Electromagnetic
- Magnetometer
- Radiometric
- Other

Expenditures (excludes power stripping)

Type of Work Performed

Performed on Claim(s)

Calculation of Expenditure Days Credits

Total Expenditures

$10,000 + 15 = 15 Days Credits

Instructions

Total Days Credits may be apportioned at the claim holder's choice. Enter number of days credits per claim selected in columns at right.

For Office Use Only

Total Days Credit Recorded: 8

Certification

I hereby certify that I have a personal and intimate knowledge of the facts set forth in the Report of Work annexed hereto, having performed the work or witnessed same during and/or after its completion and the annexed report is true.

John K. Jasberson

Date Certified: Sept 27, 1988

3rd party signature

Branch Director
NOTES:
400' frontage on Butler Lake withdrawn from disposition for proposed summer resort development, July 6, 1986
FILE 164586
Pioneer Township

COUNTY OF

DISTRICT OF

LEGEND

PATENTED LAND
CROWN LAND SALE
LEASES
LOCATED LAND
LICENSE OF OCCUPATION
MINING RIGHTS ONLY
SURFACE RIGHTS ONLY
ROADS
IMPROVED ROADS
KINGS HIGHWAYS
RAILWAYS
POWER LINES
MARSH OR MUSKEG
PATENTED S.R.O.
CANCELLED

NOTES

400' Surface rights reservation around all lakes & rivers.

Gravel Reserve Shown Thus:

400' frontage on Bullock Lake withdrawn from disposition for proposed summer resort development.

File G66386

MINISTRY OF NATURAL RESOURCES
SURVEYS AND MAPPING BRANCH
AIRBORNE MAGNETIC SURVEY
VERTICAL MAGNETIC GRADIENT
Calculated From Total Field

BENOIT M.
MELBA TWP. ONTARIO

LEGEND
Terrain Clearance
Line Spacing
Property Boundary

VERTICAL MAGNETIC
0.500 gammas/metre
0.100 gammas/metre
0.025 gammas/metre
0.000 metres

X