Regarding
Transient Electromagnetic
3-D Borehole Transient Electromagnetic (BHTEM) Survey,
over the Northern Claims Area,
Keefer Twp., ON, on behalf of
DENTON RESOURCES LTD.,
Toronto, ON.
TABLE OF CONTENTS

1 INTRODUCTION ......................................................................................................................... 1
  1.1 REPORT SUMMARY ............................................................................................................... 1

2 GENERAL SURVEY DETAILS.................................................................................................... 2
  2.1 LOCATION...................................................................................................................... 2
  2.2 ACCESS ............................................................................................................................. 3
  2.3 SURVEY GRID ...................................................................................................................... 3
  2.4 SURVEY CLAIMS................................................................................................................... 4

3 SURVEY WORK.......................................................................................................................... 5
  3.1 GENERALITIES ..................................................................................................................... 5
  3.2 SURVEY SPECIFICATIONS ...................................................................................................... 5
  3.3 PERSONNEL ......................................................................................................................... 5
  3.4 INSTRUMENTATION................................................................................................................ 7
  3.5 PARAMETERS ...................................................................................................................... 7
  3.6 MEASUREMENTS & REPEATABILITY ........................................................................................ 8
  3.7 DATA PRESENTATION............................................................................................................ 8

4 SURVEY RESULTS AND INTERPRETATION.......................................................................... 10
  4.1 PROPERTY OVERVIEW ........................................................................................................ 10
  4.2 RESULTS AND INTERPRETATION ........................................................................................... 11

5 CONCLUSIONS AND RECOMMENDATIONS........................................................................... 13

LIST OF APPENDICES

APPENDIX A: STATEMENT OF QUALIFICATIONS
APPENDIX B: PRODUCTION SUMMARY
APPENDIX C: SURVEY PROCEDURES AND GENERAL THEORY
APPENDIX D: INSTRUMENT SPECIFICATIONS
APPENDIX E: LIST OF PROFILES AND MAPS
APPENDIX F: PROFILES AND PLAN MAPS

LIST OF FIGURES AND TABLES

Figure 1: General Location of the Property .................................................................................. 2
Figure 2: UTM Referenced Property Location, Survey area and Claim Divisions.............................. 3
Figure 3: Claim divisions over Keefer and Denton Properties .......................................................... 4
Figure 4: Geologic and HLEM Interpretation Plan Map ................................................................... 11
Figure 5: Borehole (BH02-02) and loop location map ...................................................................... 6
Figure 6: 4-Axis Borehole TEM Profile Format ................................................................................. 8
Figure 7: Lin-Log Borehole TEM Profile Format ............................................................................... 9
Figure 8: Borehole TEM Interpreted Section ..................................................................................... 12

Table I: Claims Encompassed by BHTEM Surveys ......................................................................... 4
Table II: Borehole TEM Coverage .................................................................................................. 5
Table III: Borehole Location & Specifications .................................................................................. 6
Table IV: Borehole TEM Loop Location & Specifications ................................................................. 6
Table V: System Parameters for Borehole TEM Surveys ................................................................. 7
Table VI: Coil Conventions for Borehole TEM Survey .................................................................... 7
Table VII: Borehole TEM Profile Specifications ............................................................................. 8
1 INTRODUCTION

At the request of DENTON RESOURCES Ltd, QUANTEC GEOSCIENCE Ltd. has prepared the following Geophysical Assessment Report, which briefly summarizes the results of 3-D Borehole TEM Profiling Survey conducted over the Northern Claim Area, Keefer Twp., during July 2002.

1.1 REPORT SUMMARY

- **QG Project No:** QGI-244
- **Client Name:** DENTON RESOURCES LTD.
- **Client Address:** 23 Thorncliffe Ave.# 407
  Toronto, ON. Canada.
  Tel: (416) 873 5815
- **Project Name:** Northern Claim Area, Keefer Twp. Project
- **Survey Period:** July 13, 2002
- **Survey Type:** 3-D Borehole TEM Profiling Survey
- **Client Representative:** Glen Galata

**Survey Objectives:**

The objective of the borehole survey was to define the extent of conductive mineralization tested in the hole and to delineate any "off-hole" conductors located within a ~150 to 300 ft (50-100m) radius of the drill hole. The Borehole TEM survey over the Northern Claims utilized an 800 x 800ft (~250m) transmit loop positioned to provide optimum coupling and energy transfer with anticipated conductor responses.

- **Report Type:** Summary Interpretation, suitable for OMNDM assessment.
2 GENERAL SURVEY DETAILS

2.1 LOCATION

The Northern Claims Area, in Keefer Twp., and the survey area are located approx. 40 km Southwest of the City of Timmins and approx. 2 km South of Highway 101 (see Figure 1).

- Townships: Keefer Twp/Denton Twp.
- Province: Ontario
- Country: Canada
- Nearest Settlement: Timmins, ON.
- Nearest Highway: Hwy 101
- Geographic Coordinates (deg, min, sec): 81° 43' 45.95" W, 48° 18' 24.28" N
- UTM position: 445952.9.2E, 5350440.3N (NAD83, Zone 17N)

Figure 1: General Location of the Northern Claims, Keefer Twp. Property
2.2 **ACCESS**
- **Base of Operations:** Porcupine, ON
- **Mode of Access to Property:** 4x4 Truck
- **Mode of Access to Holes:** ATV and on foot

2.3 **SURVEY GRID**
- **Coordinate Reference System:** Local picketed survey grid, referenced to UTM NAD83, Zone 17N
- **Established By:** Denton Resources Ltd.
- **Method of Chaining:** Linear imperial
- **Line Direction:** N-90°E
- **Line Separation:** 200 feet (61 metres)
- **Station Interval:** 50 feet (15 metres).
- **Method of Chaining:** Imperial, slope distance

---

**Figure 2: UTM Referenced Property Location, Survey area and Claim Divisions**

---

1 Note: Local survey grid referenced to UTM 17N / NAD 83 by comparing claim position in OMNDM Claimmap3 to claim corner on digital claim base supplied by Denton Resources Ltd. (E. Martinez, QGI, pers. comm., 07/2003).
2.4 SURVEY CLAIMS

<table>
<thead>
<tr>
<th>No</th>
<th>HOLE #</th>
<th>CLAIMS SURVEYED²</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>BH02-02</td>
<td>P947888</td>
</tr>
</tbody>
</table>

Table I: Claims Encompassed by BHTEM Surveys

Figure 3: Survey Area and Claim Divisions in Keefer Twp's³

² Survey drill-hole and claim references from DXF base map supplied by Denton Resources Ltd. (July, 2003).
³ Claim Divisions and Township Boundaries from:
3 SURVEY WORK

3.1 GENERALITIES

- Survey Dates: July 13, 2002
- Survey Period: 1 day
- Survey Days: 1 day
- Prep/Mob/Demob Days: 0 days
- Total Survey Coverage: 155 metres from 1 hole (see Table II)

<table>
<thead>
<tr>
<th>HOLE #</th>
<th>CLAIMS SURVEYED</th>
<th>START (m)</th>
<th>END (m)</th>
<th>TOTAL (m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>BH02-02</td>
<td>P947888</td>
<td>10</td>
<td>165</td>
<td>155</td>
</tr>
</tbody>
</table>

Table II: Borehole TEM Coverage

3.2 SURVEY SPECIFICATIONS

- Method: Borehole Transient Electromagnetic Profiling
- Technique: Profiling
- Configuration: 3-D Borehole
- Output Power Stage: Low Power (2.8kW)
- Dimension: Multi-Component 3D (X, Y and Z)
- Borehole Locations: See Fig. 5, Table III and App. G.
- Borehole Loop Locations: See Fig. 5 and Table IV
- Borehole Parameters: see Table V
- Sampling Interval: 5 metres

3.3 PERSONNEL

- Project Supervisor: Woody Coulson, Porcupine, ON
- Geophysical Surveyor: Kevin McKenzie, Sydney, NS
- Geophysical Assistant: Richard Chassé, Kirkland Lake, ON
Figure 4: Borehole (BH02-02) and loop location map

<table>
<thead>
<tr>
<th>HOLE #</th>
<th>COLLAR LOCATION (FEET)</th>
<th>UTM COORDINATES (METRES)</th>
<th>AZIMUTH/DIP (at surface)</th>
<th>CASING DEPTH (M)</th>
<th>HOLE DEPTH (M)</th>
</tr>
</thead>
<tbody>
<tr>
<td>BH02-02</td>
<td>4400N/5400E</td>
<td>445952.8E 5350640.4N</td>
<td>270/-50</td>
<td>~5m</td>
<td>155m</td>
</tr>
</tbody>
</table>

Table III: Borehole Location & Specifications

<table>
<thead>
<tr>
<th>HOLE #</th>
<th>LOOP POSITION</th>
<th>LOOP SIZE (FEET)</th>
<th>LOOP EASTING (FEET)</th>
<th>UTM EASTING (METRES)</th>
<th>LOOP NORTING (FEET)</th>
<th>UTM NORTING (METRES)</th>
</tr>
</thead>
<tbody>
<tr>
<td>BH02-02</td>
<td>Collar</td>
<td>800 x 800ft</td>
<td>5200E to 6000E</td>
<td>445891.9 to 446135.7</td>
<td>4200N to 5000N</td>
<td>5350579.5 to 5350823.3</td>
</tr>
</tbody>
</table>

Table IV: Borehole TEM Loop Location & Specifications.
3.4 INSTRUMENTATION

- **Receiver:** Geonics Digital Protem (see Appendix C)
- **Receiver Coils:** Geonics BH43-3D probe (+600m cable, winch and switching unit)
- **Transmitter:** Geonics EM-37 (see Appendix C)
- **Power Supply:** Geonics GPU-2000 (2.8kW output)

3.5 PARAMETERS

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Pulse repetition frequency:</td>
<td>30Hz</td>
</tr>
<tr>
<td>On Time Measurement</td>
<td>Yes</td>
</tr>
<tr>
<td>Receiver Delay</td>
<td>-80 µs</td>
</tr>
<tr>
<td>Gain</td>
<td>3-4</td>
</tr>
<tr>
<td>Integration number</td>
<td>15 seconds,</td>
</tr>
<tr>
<td>Loop Sizes</td>
<td>800 x 800 ft</td>
</tr>
<tr>
<td>Current</td>
<td>9.2 to 24 amps</td>
</tr>
<tr>
<td>Turn-off times</td>
<td>160 to 270 µs</td>
</tr>
<tr>
<td>Gate positions</td>
<td>80-6136 µs (see Appendix C)</td>
</tr>
<tr>
<td>Synchronization mode</td>
<td>Crystal reference</td>
</tr>
</tbody>
</table>

**Table V: System Parameters for Borehole TEM Surveys**

- **Coil Conventions:**

<table>
<thead>
<tr>
<th>COMPONENT</th>
<th>COIL ORIENTATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Z</td>
<td>Positive Axially Up</td>
</tr>
<tr>
<td>X</td>
<td>Positive Orthogonal Up along DDH azimuth (west)</td>
</tr>
<tr>
<td>Y</td>
<td>Positive Orthogonal Horizontal and left of DDH axis (south)</td>
</tr>
</tbody>
</table>

**Table VI: Coil Conventions for Borehole TEM Survey**

- **Measurements:** Time-rate of change (dBxyz/dt) of secondary electromagnetic field transient (OFF time, see Appendix B), primary pulse and inclination (2 directions)
- **Component Rotation:** Tilt Angle Meters (using Geonics Datem™ software)
- **Data Reduction:** nanoVolt/metre squared (using Geonics Datem™ software – TF reduction using Quanetc Geoparse™)

---

4 Equivalent to Crone units of nanotesla per second
3.6 MEASUREMENTS & REPEATABILITY

- Number of Repeats per Station: 0-1
- Number of Repeats per Hole: 2-4
- Average Repeatability at Channel 1 and 20: 1-5% in early channels
- Worst Repeatability at Channel 1 and 20: 8-10% (estimated)

3.7 DATA PRESENTATION

- Profiles:

<table>
<thead>
<tr>
<th>Profile Format</th>
<th>Linear 4 Axis (see Fig. 6) and Lin-log (see Fig. 7)</th>
</tr>
</thead>
<tbody>
<tr>
<td># of Profiles:</td>
<td>8 per hole (4 x 4axis + 4 x lin-log)</td>
</tr>
<tr>
<td>Horizontal Map Scale:</td>
<td>1:2000</td>
</tr>
<tr>
<td>Vertical Profile Scales:</td>
<td>Linear - varies to best display data for each component, loop and frequency (see profiles in Appendix G)</td>
</tr>
<tr>
<td></td>
<td>Lin-Log — linear from 0 – 10 and logarithmic from 10 to 10,000</td>
</tr>
<tr>
<td>Components Profiled:</td>
<td>Total Field, X, Y and Z</td>
</tr>
</tbody>
</table>

Table VII: Borehole TEM Profile Specifications.

![Figure 5: 4-Axis Borehole TEM Profile Format](image-url)
Figure 6: Lin-Log Borehole TEM Profile Format

- **Borehole/Loop Location Maps:** Borehole-Loop Location Compilation plan map, at 1:5000 scale, translated to UTM (NAD83) and overlain onto digital topographic and claim base (see Appendix G).

- **Digital Data:** Daily raw files and processed data (Geosoft .XYZ format) on CD

  a) **Unrotated raw data files**, according to acquisition date (DDMMYY.RAW i.e. 010299.raw) - Geonics Digital Protem format (refer to Protem manual)

  b) **Rotated raw data files**, according to hole followed by "r" for rotated (i.e. dh0308r.RAW) - Geonics Digital Protem format (refer to Protem manual)

  c) **Reduced XYZ ASCII data files**, according to component, rotation method, hole and loop configuration (i.e. b0308k.xyz where, k=component – Z, X, Y or T for Total Field)

  Column 1: hole number
  Column 2: Station number i.e. Depth down hole (m)
  Column 3: Primary pulse (nanoVolt/m²)
  Column 4: Channel 1 secondary rate of decay of TEM field (nanoVolt/m²)
  Column 5: Channel 2

  Column 23: Channel 20 secondary rate of decay of TEM field (nanoVolt/m²)
4 SURVEY RESULTS AND INTERPRETATION

The objective of the Borehole TEM surveys over the Northern Claim Area, Keefer Twp. was to determine the extent and characterization of conductive mineralization and to delineate any "Off-hole" conductors located within a 50 to 100 meter radius of the borehole.

4.1 PROPERTY OVERVIEW

The Northern Claims Area in Keefer Twp. is located in the far western portion of the Abitibi Greenstone Belt, west of Timmins, ON. Existing compilations indicate that the property is underlain by a band of east-northeasterly trending, mixed intermediate to mafic and felsic volcanic rocks, surrounded by granodioritic intrusives, however geologic mapping has shown that north-southerly strikes are present, locally (G. Galata, DRL, pers. comm., 05/03). The full extent of exploration on the property is not fully known to the authors. Prior to the present 3D Borehole TEM survey, geophysical surveys have included horizontal loop electromagnetic and ground magnetic profiling by Exsics Exploration Ltd. (see Figure 7), have been undertaken on a criss-crossing NS-EW grid network, locally, in order to define/confirm the geologic strike (IBID). In addition, surface and borehole TEM surveys have also been undertaken nearby and on the Denton Twp. Property. Based on previous HLEM and magnetic results, two important linear N-S and EW geophysical anomalies (conductors) were revealed over the area. These were later drill-tested and subsequently surveyed in the present survey.

6 Ref., Quantec Geoscience Inc., Borehole and Surface TEM Surveys, Projects Qg211 (2001) and Qg227 (2002).
4.2 RESULTS AND INTERPRETATION

The Borehole TEM survey over the Northern Claims utilized an 800 x 800ft (≈250 x 250m) square transmit loop positioned over the drill collar, to provide optimum coupling and energy transfer with conductors anticipated to be oriented roughly orthogonal to the drill-hole and stratiform with the geology.

The 3D Borehole TEM survey delineated two conductor responses in hole BH02-02. The most significant is an In-hole response located at 75 meters in the hole (see Fig. 8). This is seen as a strong, late time positive, Hz response indicating the hole has tested the center region of a moderate surface area (50m square), high conductance zone which should be evident in the core. The cross component information suggests any increase in conductivity will be slightly above (up dip) and further to the left (south) of the drill hole. The source of this response is interpreted as Conductor A, delineated in the surface TEM survey conducted by Quantec in February, 20027.

---

The second conductor delineated in the hole BH02-02 is an early time, off-hole response at 30 meters in the hole. The source of this conductor is interpreted to lie within 5 meters, below (down dip) the drill hole. There may be evidence of this conductor in core. This conductor is interpreted as Conductor D delineated in the surface survey.

Figure 8: Borehole TEM Interpreted Section
The Borehole TEM survey over the Northern Claim, Keefer Twp. was successful in delineating 2 conductive responses in drill hole BH02-02.

The first in-hole response at 75 meters is expected to continue above and below the hole but possibly to a limited depth extent. Consideration should be given to testing this conductor along strike (north and south) and down dip if the results of the first hole are deemed significant.

The second, weaker response at 30 meters is considered a poor conductor and may not have economic potential. However, if deemed geologically significant, a second hole may be considered behind BH02-02 to test the source of this response.

No further work is recommended on this area based on the results of these surveys. However, any future drilling should continue to utilize TEM borehole surveys to optimize drill hole spacing and determine the existence of conductors within a 50 to 100 meter radius of the holes.
DDH BH02-02 - CHANNEL 16 TEM SECONDARY FIELDS

**LEGEND**

- **Total Field**
- **Z Component**
- **X Component**
- **Y Component**

Profile Scale: 1 m = 1 cm

Borehole BH02-02
Collar Loop
Scale 1:1000

**VIEW LOOKING NORTH**

**DDH BH02-02**

**CHANNEL 16 TEM SECONDARY FIELDS**

- **30m** = Minor Off-Hole Edge Anomaly
  - DDH has narrowly missed a small area (<20x50m).
  - Moderate Conductance (16m - weak stringer sulfide or py) body, trending east.
  - ~5m below and NS-Centred to borehole axis - Likely represents TEM Conductor A.

- **75m** = Strong In-Hole Anomaly
  - DDH has intersected a moderate area (>50x50m).
  - High Conductance (>20m - likely po or gp) body, centred slightly above and further left (south) of borehole axis - Likely represents TEM Conductor B.

---

**DENTON RESOURCES LTD.**
**HOLE BH-02 - NORTHERN CLAIMS AREA**
Kiefer Twp., near Timmins, ON

**3D FIXED-LOOP BOREHOLE TEM SURVEY**
Secondary Electromagnetic Field (dB/ft)

- **Transmitter Frequency:** 30 Hz (50% duty cycle)
- **Tx Loop Size:** 40m x 40m
- **Transmitter Current:** 17.3 Amps
- **Tx Turn-On Time and Rx Delay:** 120 ms - 40 ms
- **Borehole Location:** N40°30'E, D143.75'
- **Borehole Inclination:** 125°30'
- **Data Interval:** 5.0 meters
- **Profile Units:** m = 1 cm = 3.33
- **Receiver Coil Orientation:** Hz - negative up, Hy - positive up, Hx - positive west, Hz - positive south
- **Cross Component Rotation:** using 7/16 meter angles

**Survey Date:** July 2002

**Instruments:**
- Rx = Digital Probe (32 Channels)
- E-Geometrics 3D probe-400m cable
- Tx = Denton EM-31-2, 2 kHz

Surveyed & Processed by:
QUANTEC GEOSCIENCE INC
ON# MD 3524-TEM-SECTION-BH02-CH10
APPENDIX A

Statement of Qualifications

I, Jean M. Legault, declare that:

1. I am a consulting geophysicist with residence in Waterdown, Ontario and am presently employed in this capacity with Quantec Geoscience Inc. of Toronto, Ontario.

2. I obtained a Bachelor's Degree, with Honours, in Applied Science (B.A.Sc.), Geological Engineering (Geophysics Option), from Queen's University at Kingston, Ontario, in Spring 1982.

3. I am registered Professional Engineer, since 1987, with a license to practice in the Province of Ontario (Reg #90531542).

4. I have practiced my profession continuously since May, 1982, in North-America, South-America and North-Africa.

5. I am a member of the Society of Engineers of Quebec, the Quebec Prospectors Association, the Prospectors and Developers Association of Canada, and the Society of Exploration Geophysicists.

6. I have no interest, nor do I expect to receive any interest in the properties or securities of Denton Resources Ltd.

7. I have reviewed the data contained in this report and the statements made represent my professional opinion based on my consideration of the information available to me at the time of writing this report.

Toronto, Ontario
June, 2003

Jean M. Legault, P.Eng.
Chief Geophysicist
Quantec Group

QG244 – July 2003
APPENDIX A

Statement of Qualifications

I, Sherwood T. Coulson, hereby declare that:

1. I am a consulting geophysicist with residence in Porcupine, Ontario and am presently employed in this capacity with Quantec Consulting Inc. of Porcupine, Ontario.

2. I am a graduate of Cambrian College, Sudbury, Ontario in 1974 with an Honours Diploma in Geophysical Engineering Technology.

3. I have practiced my profession in Europe and North America continuously since graduation.

4. I am a member of the Canadian Society of Exploration Geophysicists and the Prospectors and Developers Association.

5. I have no interest nor do I expect to receive any interest, direct or indirect, in the properties or securities of Denton Resources Ltd.

6. I prepared the BHTEM plots and a summary interpretation report. The statements made by me in this report represent my best opinion and judgment based on the information available to me at the time of the writing of this report.

Porcupine, Ontario
June 2003

Sherwood Coulson
Senior Geophysical Technologist
Quantec Consulting Inc.
APPENDIX A

Statement of Qualifications

I, Evelio Martinez del Pino, declare that:

1. I am a geophysicist with residence in Hamilton, Ontario and am presently employed in this capacity with Quantec Geoscience Ltd., Toronto, Ontario.

2. I obtained a Bachelor’s Degree in Applied Geophysics (B.Sc.) at IISPJAE University in La Havana, CUBA, in 1993, and a Masters Degree in Geophysics (M.Sc.) at the ITC in Delft, Netherlands, in 2000.

3. I have practiced my profession continuously since September 1993, in Cuba, The Netherlands, and Portugal.

4. I have no interest, nor do I expect to receive any interest in the properties or securities of Denton Resources Ltd., its subsidiaries or its joint-venture partners.

1. I edited and prepared the compilation maps, plots and a portion of this final interpretation report. The statements made represent my professional opinion based on my consideration of the information available to me at the time of writing this report.

Toronto, Ontario
June, 2003

E. Martinez del Pino
Staff Geophysicist, QGI
### APPENDIX B

**Production Summary**

<table>
<thead>
<tr>
<th>Date</th>
<th>Description</th>
<th>Area</th>
<th>Hole #</th>
<th>Start</th>
<th>End</th>
<th>Total Coverage (m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>12-July-02</td>
<td>Mob to grid. Locate hole BH02-02 at 4400N/5400E az:270N, dip: -50. Set Tx loop 800 ft x 800ft at 5200E to 6000E, 4200N to 5000N.</td>
<td>Keefer Twp.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13-July-02</td>
<td>Surveyed BH02-02 from collar loop, pick-up gear and demob.</td>
<td>BH02-02</td>
<td>10m</td>
<td>155m</td>
<td>155m</td>
<td></td>
</tr>
</tbody>
</table>
APPENDIX C

Survey Procedures and General Theory

TEM Surface and Borehole Surveys

TEM profiling is conducted on lines either adjacent to (Off-Loop mode) or surrounded by (In-Loop mode) a large fixed rectangular transmit loop. Current is passed through the loop which following the Turn-Off, produces a primary magnetic field (H) both inside and outside (Figure B1). This primary field induces a vortex current pattern, which energizes conductors and which in turn create their own secondary magnetic field (Bs). The rate of change of the decaying secondary magnetic flux (dBs/dt) is measured as the vertical (Hz), in-line horizontal (Hx) and/or cross line horizontal (Hy) vector components on surface using an air-core sensor coil. These measurements of the TEM decay (20 log-time slices) are taken during the "Off-Time", using a 30 cycle/sec, base repetition rate.

In keeping with the industry standard, the primary field is always considered positive up inside the loop and negative down outside. Similarly, for secondary EM fields, the receiver coil is oriented positive vertical up for the Hz component. The convention for In-Loop surveys, has the in-line component, Hx oriented either positive east (for grid EW lines) or north (for grid NS lines). The Off-Loop survey convention differs, with the receiver coil orientation for Hx pointing positive away from the transmit loop (for EW or NS lines). Finally, the sign convention in all cases, has the Hy component pointing positive orthogonal to the left of the Hx, according to the right-hand-rule.

![Primary Field Sign Convention](image)

**Figure B1: Primary field sign convention for TEM surveys.**

The borehole survey is particularly useful to determine the geometrical relationship between a conductor or a complex swarm of conductors around the drill hole. Of particular importance is its application in cases where the drilling is believed to have missed the target of interest. A 3-D borehole survey can effectively determine the direction and distance from the drill hole to the conductor by measuring two orthogonal secondary field components in addition to the axial component. Additionally, conductors located below the end of a drill hole, which either may be too deep and/or have gone previously undetected from surface, may be discovered during the course of a borehole survey.

The probe is manually lowered down the borehole at the end of a cable and, at successive depths, measurements of three (3-D) orthogonal components of the TEM field (Hx, Hy, Hz) are individually obtained in succession by electronically switching the sensor coils in the borehole antenna through the use of a relay/switching system from surface, via the borehole-cable shield. As the probe is free to rotate on its vertical axis, a correction is later applied to the 3-D data in order to rotate the components into their respective coordinate axes.
The secondary fields induced decay at a rate proportional to the conductivity-thickness and are then measured and profiled by the borehole sensor-probe.

a) Hz is positive up along the axis of borehole,

b) Hx is positive perpendicular to the borehole axis and pointing upward, in a vertical plane, in the direction of the azimuth of the hole,

c) Hy is positive 90° counterclockwise to Hx and horizontal, according to the right-hand rule.

At the end of each survey day, the stored data are transferred to a microcomputer using PROTEM and edited and viewed using DATEM (both programs written by Geonics). From there the data is corrected for the turn-off time, loop area, system gain and current, converted from millivolts to nanoVolts per ampere meter squared or nanoVolts per meter squared and Geosoft formatted XYZ files created using GEOPARSE written by Quantec. The data are then transferred to disk for storage and processing. Report quality field plots are generated on site, using a 24-pin printer in order to monitor the data characteristics and to provide a preliminary interpretation capability.

The following equations govern the transient EM response for buried plate-like conductive bodies

\[
emf = \frac{1}{\tau} e^{-t/\tau}
\]

where:  
\[t = \text{fixed time}\]
\[e = \text{exponential decay}\]
\[\tau = \text{time constant of conductor}\]

---

The time constant of the response is alternatively defined as the slope of the lin-log decay curve (Geonics) or, more exactly, as the time channel where the amplitude of the decay collapses to 37% (1/e) of its maximum value. Both $\tau$ and the analogous decay strength (i.e., the number of anomalous channels above background), are commonly used as indicators of conductor quality. This relationship between decay-strength and the conductivity-thickness can easily be demonstrated in the following equation for a vertically dipping conductive sheet:

$$\tau = \frac{\sigma \mu h}{\pi^2} \text{ for a thin plate}$$

where $\sigma =$ conductivity of target  
$\mu =$ magnetic susceptibility  
$t =$ thickness of plate  
$h =$ vertical extension of plate

thereby giving, for an infinite vertical sheet:

$$\sigma t = \frac{\pi^2}{\mu h} \tau \approx \frac{\tau}{0.31} \text{ mhos / metre (siemens)}$$

From these equations and relationships, it therefore becomes obvious of the common use of the anomaly strength of decay as a simple, rule-of-thumb indicator of the relative conductivity-thickness product for TEM surveys.

In addition, the total secondary field is calculated using the three components ($H_x$, $H_y$ and $H_z$) in the following formula

$$H_{tot} = \sqrt{H_x^2 + H_y^2 + H_z^2} \text{ nanoVolt / Am}^2.$$
APPENDIX D

Instrument Specifications

GEONICS LIMITED

EM-37 Transmitter
Technical Specifications

Current Waveform: bipolar square wave.

Repetition Rate: 3Hz, 7.5Hz or 30Hz in countries using 60Hz power line frequency; 2.5Hz, 6.25Hz or 25Hz in countries using 50Hz power line frequency; all six base frequencies are switch selectable.

Turn-off Time (t): fast linear turn-off maximum of 450 μsec. at 30 amps into a 300x600 meter loop. Decreases proportionally with current and the root of the loop area to a maximum of 20 μsec. Actual value of t read on front panel meter.

Transmitter Loop: any dimensions from 40x40 meters to 300x600 meters maximum at 30 amps. Larger dimensions at reduced current. Transmitter output voltage switch adjustable for smaller loops. Value of loop resistance read from front panel meter; resistance must be greater than 1 ohm on lowest setting to prevent overload.

Protection: circuit breaker protection against input over voltage; instantaneous solid state protection against output short circuit; automatically resets on removal of short circuit. Input voltage output voltage and current indicated on front panel meter.

Output voltage: 24 to 160 volts (zero to peak) maximum

Output power: 2800 watt maximum

Motor generator: 5 HP Honda gasoline engine coupled to a 120 volt, three phase, 400 Hz alternator. Approximately 8 hours continuous operation from built-in fuel tank.

Component Dimensions and Weights

Transmitter Console: 20 by 42 by 32 cm, 20 kg

GPU: 44 by 32 by 21 cm, 65 kg

QG244 – July 2003
APPENDIX D

Instrument Specifications

GEONICS LIMITED

Digital Protem Ground Transient Electromagnetic System
Technical Specifications

Receiver

Measured Quantity: Time rate of decay of magnetic flux along 3 axes

Sensors:
1. (L.F.): Air-cored coil of bandwidth 60 kHz; 100 cm diameter
2. (H.F.): Air-cored coil of bandwidth 850 kHz; 100 cm diameter
3. (3D-3): Three orthogonal component sensor; simultaneous operation
4. (3D-1): Three orthogonal component sensor; sequential operation

Time channels: 20 geometrically spaced time gates for each base frequency gives range from 6 μ sec to 800 msec.

Repetition Rate: 0.3 Hz, 0.75, 3, 7.5, 30, 75 or 285 Hz for 60 Hz power-line networks

Synchronization:
(1) reference cable
(2) high stability (oven controlled) quartz crystals.

Integration time: 2, 4, 8, 15, 30, 60, 120, 240 sec.

Calibration:
Internal self calibration
External Q coil calibration (optional)

Keyboards:
Two 3 x 4 matrix sealed key pads with positive tactile feedback

Gain:
Automatic or manual control

Dynamic Range: 23 bits (132 dB)

Display Quantity:
(1) Table of time rate of decay of magnetic flux (dB/dt)
(2) Curve of rate of decay of magnetic flux (dB/dt)
(3) Table of apparent resistivity (ρa)
(4) Curve of apparent resistivity (ρa)
(5) Profile of dB/dt
(6) Real time noise monitor
(7) Calibration curve
(8) Data acquisition statistics (real time)

Storage: Solid state memory with capacity for over 3000 data sets

Display: 8 lines by 40 character (240 x 64 dot) graphic LCD

Data Transfer: Standard RS-232 communications port.

QG244 – July 2003
**Gate Locations**

<table>
<thead>
<tr>
<th>GATE</th>
<th>285/237.5 Hz</th>
<th>75/62.5 Hz</th>
<th>30/25 Hz</th>
<th>GATE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>6.000</td>
<td>6.813</td>
<td>1.625</td>
<td>32.00</td>
</tr>
<tr>
<td>2</td>
<td>7.625</td>
<td>8.688</td>
<td>2.125</td>
<td>38.50</td>
</tr>
<tr>
<td>3</td>
<td>9.750</td>
<td>11.13</td>
<td>2.750</td>
<td>47.00</td>
</tr>
<tr>
<td>4</td>
<td>12.50</td>
<td>14.19</td>
<td>3.375</td>
<td>56.00</td>
</tr>
<tr>
<td>5</td>
<td>15.88</td>
<td>16.07</td>
<td>4.375</td>
<td>71.5</td>
</tr>
<tr>
<td>6</td>
<td>20.25</td>
<td>23.06</td>
<td>5.625</td>
<td>89.00</td>
</tr>
<tr>
<td>7</td>
<td>25.88</td>
<td>29.44</td>
<td>7.125</td>
<td>111.5</td>
</tr>
<tr>
<td>8</td>
<td>33.00</td>
<td>37.56</td>
<td>9.125</td>
<td>140.0</td>
</tr>
<tr>
<td>9</td>
<td>42.13</td>
<td>47.94</td>
<td>11.63</td>
<td>176.6</td>
</tr>
<tr>
<td>10</td>
<td>53.75</td>
<td>61.13</td>
<td>14.75</td>
<td>223.0</td>
</tr>
<tr>
<td>11</td>
<td>66.50</td>
<td>77.94</td>
<td>18.88</td>
<td>262.0</td>
</tr>
<tr>
<td>12</td>
<td>87.38</td>
<td>99.38</td>
<td>24.00</td>
<td>367.5</td>
</tr>
<tr>
<td>13</td>
<td>111.4</td>
<td>126.7</td>
<td>30.63</td>
<td>453.5</td>
</tr>
<tr>
<td>14</td>
<td>151.7**</td>
<td>166.4</td>
<td>29.38</td>
<td>576.0</td>
</tr>
<tr>
<td>15</td>
<td>181.1**</td>
<td>206.0</td>
<td>49.88</td>
<td>732.5</td>
</tr>
<tr>
<td>16</td>
<td>231.0</td>
<td>262.8</td>
<td>62.63</td>
<td>932.0</td>
</tr>
<tr>
<td>17</td>
<td>294.6</td>
<td>335.2</td>
<td>81.25</td>
<td>1187</td>
</tr>
<tr>
<td>18</td>
<td>375.9</td>
<td>427.7</td>
<td>103.6</td>
<td>1512</td>
</tr>
<tr>
<td>19</td>
<td>479.5</td>
<td>546.5</td>
<td>132.1</td>
<td>1926</td>
</tr>
<tr>
<td>20</td>
<td>611.6</td>
<td>695.9</td>
<td>188.5</td>
<td>2465</td>
</tr>
<tr>
<td>21*</td>
<td>780.1</td>
<td></td>
<td></td>
<td>3125</td>
</tr>
</tbody>
</table>

* End of Gate 20
** A Gap of 9.7 μsec exists between Gate 13 and Gate 14 in the micro-frequency range/

This Table applies to both synchronization modes regardless of which of TEM37, TEM47 and TEM57 transmitters is used, provided that correct Tx model is selected in Header (2.4).

Note: 7.5/6.25 and 0.75/0.625 Hz proportional to 75/62.5 Hz
3/2.5 and 0.3/0.25 Hz proportional to 30/25 Hz
APPENDIX D

Instrument Specifications

GEONICS LIMITED

BH-43 3-D Borehole Probe with Tilt Sensors
Technical Specifications

<table>
<thead>
<tr>
<th>Measured Quantity:</th>
<th>Time derivative of axial and radial magnetic field</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sensors:</td>
<td>Three orthogonal coils (one axial, two radial)</td>
</tr>
<tr>
<td>Overall Length:</td>
<td>334 cm</td>
</tr>
<tr>
<td>Maximum Diameter:</td>
<td>3.8 cm</td>
</tr>
<tr>
<td>Weight:</td>
<td>9.5 kg</td>
</tr>
<tr>
<td>Sensor-Preamplifier Resonant Frequency:</td>
<td>10 kHz</td>
</tr>
<tr>
<td>Sensor Areas:</td>
<td>100 m²</td>
</tr>
<tr>
<td>Operating Temperature:</td>
<td>-30 degrees C to +80 degrees C</td>
</tr>
<tr>
<td>Probe Rotation Correction:</td>
<td>Two orthogonal tilt meters with range ±1° to ±80° from vertical</td>
</tr>
<tr>
<td>Battery:</td>
<td>Rechargeable NiCd sealed pack for 15 hours continuous operation</td>
</tr>
</tbody>
</table>

Cable

<table>
<thead>
<tr>
<th>Type:</th>
<th>Two-conductor shield polyurethane jacket Kevlar membrane</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diameter:</td>
<td>5.6 mm</td>
</tr>
<tr>
<td>Weight:</td>
<td>40 kg/km</td>
</tr>
<tr>
<td>Length:</td>
<td>550 meters</td>
</tr>
</tbody>
</table>

QG244 – July 2003
APPENDIX E

List of Profiles and Maps

- **LPTEM Borehole Profiles**: Multi-Channel 4-Axis and Lin-Log Profile Plots: (time rate of decay of the secondary electromagnetic field, 3D: Total Field, X, Y and Z components. 30Hz, 1:1000 scale, nanoVolts per metre$^2$).

<table>
<thead>
<tr>
<th>Hole</th>
<th>Number of Linear Profiles</th>
<th>Number of Lin-Log Profiles</th>
</tr>
</thead>
<tbody>
<tr>
<td>BH02-02</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>8</td>
</tr>
</tbody>
</table>

- Property Location Map (Scale 1:2500): 1
- Geologic and HLEM Interpretation Plan Map (1:5000): 1
- Borehole-Loop Location Map (1:5000): 1
- Borehole TEM Interpreted Section: 1
- TOTAL PLAN MAPS: 12
APPENDIX F

Profiles and Plan Maps
BH02-02 - BOREHOLE & LOOP LOCATION MAP

Scale 1:4800

Borehole Parameters:
Location = 54+00E, 44+00N
Azimuth & Dip = 270, -50

Survey Data:
Surveyed & Processed by:
QUANTEC GEOSCIENCE INC.

Instrumentation:
Rx = Digital Protem (3x20 Channels) & Geonics 3D probe & 600m cable
Tx = Geonics EM-37 (2.8 kW)

Map Generated by KMK (13-07-02)
DENTON RESOURCES LTD.
HOLE BH-02 - NORTHERN CLAIMS AREA
Keefer Twp., near Timmins, ON

3D FIXED-LOOP BOREHOLE TEM SURVEY

Secondary Electromagnetic Field (dB/dt)

Transmitter Frequency: 30 Hz (90% duty cycle)
Tx Loop Size: 300mx300m
Tx Loop Location: U5290E @ 4200N, L5400E @ 5004N
Transmitter Current: 17.3 Amps
Tx Turn-OFF Time and Rx Delay: 130 us, -80 us
Borehole Location: L54+00E @ 44+00H
Borehole Azimuth, Dip: 270, -40
Station Interval: 5 meters
Profile Units: meters
Receiver Coil Orientation: Hz - positive up
Cross Component Rotation: using Tri-Meter Apples
Survey Date: July 07, 2002
Instrumentation:
Rx : Digital Protem (3x20 Channels)
& Geonics EM-37-5.0 kHz
Tx = Geonics EM-37-5.0 kHz

Surveyed & Processed by:
QUANTEC GEOSCIENCE INC.

Map Generated by RMK (13-07-02)
DENTON RESOURCES LTD.
HOLE BH-02 - NORTHERN CLAIMS AREA
Keefer Twp., near Timmins, ON

3D FIXED-LOOP BOREHOLE TEM SURVEY
Secondary Electromagnetic Field (dB/dt)

- Transmitter Frequency: 30 Hz (90% duty cycle)
- Tx Loop Size: 300m x 300m
- Tx Loop Location: L5200E @ 4200N, L6000E @ 6000N
- Transmitter Current: 17.3 Amps
- Tx Turn-Off Time and Rx Delay: 130 us, -80 us
- Borehole Location: L5400E @ 4400N
- Borehole Azimuth, Dip: 270, -20
- Station Interval: 5 meters
- Profile Units: nanoVolt/m
- Receiver Coil Orientation: Hz - positive up, Hx - positive west, Hy - positive south
- Cross Component Rotation: using 725 meter Angles

Survey Date: July 07, 2002
Instrumentation:
- Rx = Digital Protem (3x20 Channels)
- & Geometrics 3D probe/400m cable
- Tx = Geometrics EM-37 (0.8 kW)

Surveyed & Processed by:
QUANTEC GEOSCIENCE INC.

Map Generated by KMK (13-07-02)
DENTON RESOURCES LTD.
HOLE BH-02 - NORTHERN CLAIMS AREA
Keefer Twp., near Timmins, ON

3D FIXED-LOOP BOREHOLE TEM SURVEY
Secondary Electromagnetic Field (dB/dt)

Transmitter Frequency: 30 Hz (50% duty cycle)
Tx Loop Sides: 300m x 300m
Tx Loop Location: L3000 @ 4:5000, L8000 @ 8:0000
Transmitter Current: 17.3 Amps
Tx Turn-Off Time and Rx Delay: 130 us - 60 us
Borehole Location: 342, 444
Borehole Azimuth, Dip: 270, -50
Station Interval: 5 meter
Profile Units: nanoVolt/m
Receiver Coil Orientation: Hz - positive up, Hy - positive south
Cross Component Rotation: using TUt Meter Angles

Survey Date: July 07, 2002
Instrumentation: Rx = Digital Proton (3:20 Channels)
4 Geonics 3D probe/50m cable
Tx = Sercieis Blk (0.4 kW)

Surveyed & Processed by:
QUANTEC GEOSCIENCE INC.
D/K: QJHI-248-BH02T-1nep".ppt
Borehole BH-02 - X Component
Collar Loop
Scale 1:2000

DENTON RESOURCES LTD.
HOLE BH-02 - NORTHERN CLAIMS AREA
Keefer Twp., near Timmins, ON

3D FIXED-LOOP BOREHOLE TEM SURVEY
Secondary Electromagnetic Field (dB/dt)

Survey Date: July 07, 2002

Surveyed & Processed by:
QUANTEC GEOSCIENCE INC.

Map Generated by KMK (13-07-02)

Transmitter Frequency: 30 Hz (50% duty cycle)
Tx Loop Size: 300m x 300m
Tx Loop Location: L5000E @ 4300N, L6000E @ 4000N
Transmitter Current: 17.3 Amps
Tx Turn-Off Time and Rx Delay: 130 us, -80 us
Borehole Location: L5400E @ 4400W
Borehole Azimuth, Dip: 270°, 40°
Station Interval: 6 meter
Profile Grids: north/south
Receiver Coil Orientation: Hz - positive up
Cross Component Rotation: using Tilt Meter Angle

Surveyed
Processed by:
QUANTEC GEOSCIENCE INC.
Borehole BH02-02 - X Component
Collar Loop
Scale 1:2000

DENTON RESOURCES LTD.
HOLE BH-02 - NORTHERN CLAIMS AREA
Keefer Twp., near Timmins, ON

3D FIXED-LOOP BOREHOLE TEM SURVEY
Secondary Electromagnetic Field (dB/dt)

Transmitter Frequency: 30 Hz (50% duty cycle)
Tx Loop Size: 300m x 300m
Tx Loop Location: L5000E @ 4500N, L5000E @ 5000N
Transmitter Current: 173 Amps
Tx Turn-Off-Time and Rx Delay: 130 us - 80 us
Borehole Location: 645, 44N
Borehole Azimuth, Dip: 270, -40
Station Interval: 5 meter
Profile Units: nV/mT^2 Hz
Receiver Coil Orientation: Hz - positive up, Hy - positive south
Cross Component Rotation: using 75 Meter Angles

Survey Date: July 07, 2002
Instrumentation:
Rx = Digital Protem (3x20 Channels)
& Geonics 3D probe-90m cable
Tx = Geonics EM-37 (2.8 kW)

Surveyed & Processed by:
QUANTEC GEOSCIENCE INC.
DWG. NO. CG-044-BH02-02_L.exp*\Splat
DENTON RESOURCES LTD.
HOLE BH-02 - NORTHERN CLAIMS AREA
Keefer Twp., near Timmins, ON

3D FIXED-LOOP BOREHOLE TEM SURVEY

Secondary Electromagnetic Field (dB/dt)

Transmitter Frequency: 30 Hz (30% duty cycle)
Rx Loop Size: 300m x 300m

Transmitter Current: 17.3 Amps

Receiver Coil Orientation:

Cross Component Rotation: using Tilt Meter Angles

Survey Date: July 07, 2002

Instrumentation:

Receiver: Digital Protem (3x20 Channels)

Transmitter: Geonics EM-37 (2.8 kW)

Surveyed & Processed by:
QUANTEC GEOSCIENCE INC.

Map Generated by KMK (13-07-02)
Borehole BH02-02 - Y Component
Collar Loop

Scale 1:2000

DENTON RESOURCES LTD.
HOLE BH-02 - NORTHERN CLAIMS AREA
Keefer Twp., near Timmins, ON

3D FIXED-LOOP BOREHOLE TEM SURVEY
Secondary Electromagnetic Field (dB/dt)

Transmitter Frequency: 50 Hz (50% duty cycle)
Tx Loop Size: 300m x 300m
Tx Loop Location: L6000E @ 4200N, L6000E @ 9000N
Transmitter Current: 173.3 Amps
Tx Turn-On Time and Rx Delay: 100 us - 20 us
Borehole Location: 545, 44N
Borehole Azimuth, Dip: 270, -50
Station Interval: 5 meter
Profile Units: nanoV/m*2
Receiver Coil Orientation: Hz - positive west, Hx - positive up
Cross Component Rotation: using Tilt Meter Angles

Survey Date: July 07, 2002
Instrumentation: Rx = Digital Protem (3/20 Channels), 4 Geonics 3D probe-600m cables
Tx = Geonics EM-37 (2.8 kW)

Surveyed & Processed by: QUANTEC GEOSCIENCE INC.
## Work Report Summary

**Transaction No:** W0360.01607  
**Recording Date:** 2003-OCT-06  
**Approval Date:** 2003-OCT-14  
**Status:** APPROVED  
**Work Done from:** 2002-JUL-12  
**to:** 2002-JUL-13  

**Client(s):**  
134600 GALATA, FRANK

### Work Report Details:

<table>
<thead>
<tr>
<th>Claim#</th>
<th>Perform</th>
<th>Perform Approve</th>
<th>Applied</th>
<th>Applied Approve</th>
<th>Assign</th>
<th>Assign Approve</th>
<th>Reserve</th>
<th>Reserve Approve</th>
<th>Due Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>P 947830</td>
<td>$0</td>
<td>$0</td>
<td>$63</td>
<td>$63</td>
<td>$0</td>
<td>0</td>
<td>$0</td>
<td>$0</td>
<td>2005-JUN-28</td>
</tr>
<tr>
<td>P 947868</td>
<td>$0</td>
<td>$0</td>
<td>$400</td>
<td>$400</td>
<td>$0</td>
<td>0</td>
<td>$0</td>
<td>$0</td>
<td>2006-JUN-28</td>
</tr>
<tr>
<td>P 947869</td>
<td>$0</td>
<td>$0</td>
<td>$400</td>
<td>$400</td>
<td>$0</td>
<td>0</td>
<td>$0</td>
<td>$0</td>
<td>2006-JUN-28</td>
</tr>
<tr>
<td>P 947870</td>
<td>$0</td>
<td>$0</td>
<td>$400</td>
<td>$400</td>
<td>$0</td>
<td>0</td>
<td>$0</td>
<td>$0</td>
<td>2006-JUN-28</td>
</tr>
<tr>
<td>P 947871</td>
<td>$0</td>
<td>$0</td>
<td>$400</td>
<td>$400</td>
<td>$0</td>
<td>0</td>
<td>$0</td>
<td>$0</td>
<td>2006-JUN-28</td>
</tr>
<tr>
<td>P 947873</td>
<td>$0</td>
<td>$0</td>
<td>$400</td>
<td>$400</td>
<td>$0</td>
<td>0</td>
<td>$0</td>
<td>$0</td>
<td>2006-JUN-28</td>
</tr>
<tr>
<td>P 947874</td>
<td>$0</td>
<td>$0</td>
<td>$400</td>
<td>$400</td>
<td>$0</td>
<td>0</td>
<td>$0</td>
<td>$0</td>
<td>2006-JUN-28</td>
</tr>
<tr>
<td>P 947875</td>
<td>$0</td>
<td>$0</td>
<td>$400</td>
<td>$400</td>
<td>$0</td>
<td>0</td>
<td>$0</td>
<td>$0</td>
<td>2006-JUN-28</td>
</tr>
<tr>
<td>P 947876</td>
<td>$0</td>
<td>$0</td>
<td>$400</td>
<td>$400</td>
<td>$0</td>
<td>0</td>
<td>$0</td>
<td>$0</td>
<td>2006-JUN-28</td>
</tr>
<tr>
<td>P 947886</td>
<td>$0</td>
<td>$0</td>
<td>$400</td>
<td>$400</td>
<td>$0</td>
<td>0</td>
<td>$0</td>
<td>$0</td>
<td>2006-JUN-28</td>
</tr>
<tr>
<td>P 947887</td>
<td>$0</td>
<td>$0</td>
<td>$400</td>
<td>$400</td>
<td>$0</td>
<td>0</td>
<td>$0</td>
<td>$0</td>
<td>2006-JUN-28</td>
</tr>
<tr>
<td>P 947888</td>
<td>$4,863</td>
<td>$4,863</td>
<td>$0</td>
<td>$0</td>
<td>$4,863</td>
<td>4,863</td>
<td>$0</td>
<td>$0</td>
<td>2007-JUN-28</td>
</tr>
<tr>
<td>P 949920</td>
<td>$0</td>
<td>$0</td>
<td>$400</td>
<td>$400</td>
<td>$0</td>
<td>0</td>
<td>$0</td>
<td>$0</td>
<td>2006-JUN-28</td>
</tr>
<tr>
<td>P 949927</td>
<td>$0</td>
<td>$0</td>
<td>$400</td>
<td>$400</td>
<td>$0</td>
<td>0</td>
<td>$0</td>
<td>$0</td>
<td>2006-JUN-28</td>
</tr>
</tbody>
</table>

| External Credits: | 0 |
| Reserve: | 0  
Reserve of Work Report#: W0360.01607 |

| Total Remaining: | 0 |

Status of claim is based on information currently on record.
Dear Sir or Madam

Submission Number: 2.26445
Transaction Number(s): W0360.01607

Subject: Approval of Assessment Work

We have approved your Assessment Work Submission with the above noted Transaction Number(s). The attached Work Report Summary indicates the results of the approval.

At the discretion of the Ministry, the assessment work performed on the mining lands noted in this work report may be subject to inspection and/or investigation at any time.

If you have any question regarding this correspondence, please contact BRUCE GATES by email at bruce.gates@ndm.gov.on.ca or by phone at (705) 670-5856.

Yours Sincerely,

Ron C. Gashinski
Senior Manager, Mining Lands Section

Cc: Resident Geologist
Frank Galata
(Claim Holder)

Glenn Carl Galata
(Agent)

Assessment File Library
Frank Galata
(Assessment Office)
Diabase
Granodiorite - Granite - Pegmatite - Quartz
Porphyrite Granodiorite
Quartz felsic - Tonalite - Quartz monzonite
Diorite - Quartz Diorite
Gabbro
Clastic metasediments
Intermediate to Mafic Volcanics
Mafic to Intermediate Volcanics

Surficial Deposits

LEGEND

HVW, Roads, transmission lines
Lakes, Rivers, Creeks
UTM Coordinate Lines (NAD83, Zone 17N)
Borehole and TM loop location
DENTON TWP.
Township boundaries
KEEFER TWP.

Regional Location Map (Figure not scaled)
Scale 1:25000
GEOLOGICAL-GEOPHYSICAL LEGEND

Geological
1. Diabase
2. Felsic Intrusive
3. Sediments
4. Banded Iron Formation
5. Intermediate to Felsic Volcanics
6. Mafic Volcanics
Modifiers
- sp: Specified
- amy: Amygdaloidal
- cb: Carbonated
- ch: Cherty
- cl: Clayey
- fp: Fine Petrographic
- ft: Foliated
- h: Highly foliated
- qcs: Quartz-Carbonate stringers
- py: Pyritic
- sk: Siltker
- sl: StrONGLY SHEARED
- sm: Strongly sheared
- sp: Slightly Petrographic
- sm: Slightly sheared
- sw: Silicified
- v: Vesicular
- w: Weakly foliated

Modifiers
- bx: Breccia
- am: Amygdaloid
- cb: Carbonated
- ch: Cherty
- ft: Foliated
- h: Highly foliated
- qcs: Quartz-Carbonate stringers
- py: Pyritic
- sm: StrONGLY SHEARED
- sl: Strongly sheared
- sp: Slightly Petrographic
- sk: Siltker
- sm: Slightly sheared
- sw: Silicified
- v: Vesicular
- w: Weakly foliated

Symbols
- Foliation (inclined, vertical, unknown)
- Trench
- Limit of Shearing

Geophysics
- CONDUCTOR AXIS (HLEM) FROM EAST-WEST GRID
- CONDUCTOR AXIS (HLEM) FROM NORTH-SOUTH GRID

Note: Coordinate Reference System: UTM NAD 83, Zone 17N.
Note: Local picketed survey lines. Positioning (GPS) supplied by Denton Resources Ltd. (06-2003).

DENTON RESOURCES LTD.
PROJECT: NORTHERN CLAIM AREA, KEEFER Twp. PROJECT
TOWNSHIPS: KEEFER AND DENTON
TITLE: 3D FIXED LOOP BOREHOLE TEM SURVEY
BOREHOLE AND LOOP LOCATION MAP

Compiled by: E. Martinez
Interpreted by: J. M. Legault
Drawing by: E. Martinez
Modified by: J. M. Legault
Revised by: J. M. Legault
Date: 07/2003
Date: 07/2003
Date: 07/2003

Plan No: Geologic and HLEM Interpretation Plan Map
Map generated by EMLP - July 03, 2003
Plan No: Geologic and HLEM Interpretation Plan Map
3D FIXED-LOOP BOREHOLE TEM SURVEY
BOREHOLE AND LOOP LOCATION MAP

Compiled by: E. Martinez
Interpreted by: J. M. Legault
Modified by: Date: 07/2002
Revised by: J. M. Legault
Date: 07/2023

Scale: 1:5 000
UTM: NAD83, Zone 17N

DENTON RESOURCES LTD.