REPORT

ON

MAGNETIC TOTAL FIELD SURVEY
(January 2000)

Grenfell North (McCombe) Grid
&
Grenfell North (Robinson) Grid

Grenfell Township
Larder Lake Mining Division
North-eastern Ontario

NTS
42A/1

UTM
Grid Zone 17, NAD. 27

For
Barry McCombe
&
Doug Robinson

Graham Robinson
David Robinson
Douglas Robinson P. Eng.
Doug Robinson Consulting
A. PROJECT LOCATION ................................................................. 4
   Grenfell North Grid: McCombe Property & Robinson Property 4
B. ACCESS .................................................................................. 4
C. CLAIM LIST AND CLAIM MAP .................................................. 4
   Grenfell North Grid: McCombe Property 4
   Grenfell North Grid: Robinson Property 4
D. PHYSIOGRAPHY AND VEGETATION ........................................... 4
E. DEPOSIT TYPE AND GEOLOGY .................................................. 5
F. EXPLORATION TARGETS ............................................................. 5
G. SUMMARY OF PREVIOUS WORK ................................................. 6
H. 1999 EXPLORATION WORK ................................................. 6
   Grid....................................................................................... 6
   Geology............................................................................... 6
   Total Field Magnetic Survey .................................................. 7
   Magnetic Gradient Orientation Survey ................................... 7
   Topography Survey.................................................................. 7
   MaxMin EM Survey................................................................... 7
I. VERTICAL GRADIENT, TOTAL MAGNETIC FIELD SURVEY .... 7
   Rational................................................................................ 7
   Instrumentation........................................................................ 8
   Procedure............................................................................... 8
   Data Presentation..................................................................... 9
   Observations.......................................................................... 9
J. RECOMMENDATIONS ................................................................. 10
K. LIST OF CO-HOLDERS ............................................................... 10
   Grenfell North McCombe Property........................................ 10
   Grenfell North Robinson Property ......................................... 10
L. LIST OF REFERENCES ................................................................. 10
CERTIFICATE OF QUALIFICATIONS ............................................. 12

Figures
Figure 1: General Location Map: Scale 1:100,000
Figure 2: Claim Map: Random Scale
Figure 3a: General Geology Grenfell Tp.: (Map 2060 reduced to 1:50000)
Figure 3b: Legend to General Geology Grenfell Tp.
Figure 4: Contoured Magnetic Total Field Strength Grenfell North Grid: Scale 1:5000
Figure 5: Compilation Magnetic Total Field Strength Grenfell North Grid: Scale 1:5000
Figure 6: Surficial Features Grenfell North Grid: Scale 1:5000

Profiles
Line 100E Total Magnetic Field Strength
Line 200E Total Magnetic Field Strength
Line 300E Total Magnetic Field Strength

Line 350E Total Magnetic Field Strength
Line 400E Total Magnetic Field Strength
Line 500E Total Magnetic Field Strength
Line 600E Total Magnetic Field Strength
Line 700E Total Magnetic Field Strength
Line 800E Total Magnetic Field Strength
Line 900E Total Magnetic Field Strength
Line 1000E Total Magnetic Field Strength
Line 1100E Total Magnetic Field Strength
Line 1200E Total Magnetic Field Strength
Line 1700E Total Magnetic Field Strength
Line 300S Total Magnetic Field Strength
Line 200S Total Magnetic Field Strength
Line 100S Total Magnetic Field Strength
Line 000N Total Magnetic Field Strength
Line 100N Total Magnetic Field Strength
Line 200N Total Magnetic Field Strength
Line 300N Total Magnetic Field Strength
Line 400N Total Magnetic Field Strength
Line 500N Total Magnetic Field Strength
Line 600N Total Magnetic Field Strength
Line 700N Total Magnetic Field Strength
Line 800N Total Magnetic Field Strength
Line 900N Total Magnetic Field Strength

Envimag Specifications
A. PROJECT LOCATION

Grenfell North Grid McCombe Property & Robinson Property
This exploration property is located 14 km west of Kirkland Lake in the south central part of Grenfell Township (Plan # G-3212) of the Larder Lake Mining Division. The grid is located at Latitude 48°08'00"N and Longitude 80°13'00"W (UTM Zone: 5331200mN, 0558300mE).

The reader is referenced to NTS Map Sheets 42A/1 for the general location of the property. Ontario Base Map 20 17 5600 53300 gives detailed topographic features of the property.

B. ACCESS

The property is accessed via Highway 66 leading 14 km west from Kirkland Lake. From this location proceed north 6 km on Highway 11. Turn right onto the dirt road leading 0.3 km east to the natural gas pipeline. Turn right and proceed 1.2 km south to line 200N which cross the pipeline (ruff but passable pipeline road).

C. CLAIM LIST AND CLAIM MAP

Grenfell North Grid: McCombe Property
The McCombe property comprises a large block of claims in Grenfell Township. Work was done on the following claims.

- 1206101 7 units
- 1217683 2 units
- 1225785 3 units
- 1227248 6 units

Grenfell North Grid: Robinson Property
The Robinson property comprises the following claims in Grenfell Township.

- 1225784 3 units
- 1225988 1 unit (8 Ha)
- 1226007 2 units
- 1227294 1 unit (8 Ha)
- 1227295 2 units

D. PHYSIOGRAPHY AND VEGETATION

The gridded portion of the property consists of approximately:
• 40% spruce covered outcrop
• 40% spruce tamarack covered swamp
• 10% aspen cover clay flatlands
• 10% aspen, birch and jack pine covered deep sandy soils.

E. DEPOSIT TYPE AND GEOLOGY
The property lies within Fe and Mg tholeiitic basalts of the Kenojevis Group. Green-grey magnesium tholeiitic basalts with lessor dark green magnetic iron tholeiitic basalts. The stratigraphy strikes northwest and dips steeply. This stratigraphy is interrupted by altered auriferous structures including faults, wide pyritic Fe-carbonate-sericite alteration zones and pyritic quartz veining. Pyritic quartz veins occur both within and outside the wide alteration zones. These structural trends are both easterly and north-westerly. The east trending structures are parallel to and part of the structural domain controlled by the Larder Lake Break-Cadillac Break. This structural domain hosts the gold deposits located between Matachewan, Ontario and Val d'Or, Quebec including the Kirkland Lake gold camp and the Kerr Addison Mine.

F. EXPLORATION TARGETS
Disseminated auriferous sulphides and gold veins are the exploration target. These auriferous sulphides are expected to be hosted within larger alteration zones including Fe-carbonate alteration, sericitization or silicification. Gold veins within structural breaks are also targeted.

Disseminated auriferous sulphides are expected to be hosted within alteration including extensive Fe-carbonate alteration, sericitization or silicification. The associated alteration is expected to have a magnetic signature indicating the destruction of the primary magnetic fabric of the host rocks.

Gold veins within (geological) structural breaks are also targeted. The veins are expected to be marked by very weak geophysical signatures. The magnetic surveys seek breaks in the magnetic signature that mark interruption in lithologies across the targeted structural breaks. Field mapping, an EM survey, a magnetometer survey and a gradiometer survey target both extensive alteration expected to host auriferous sulphides and narrow alteration zones associated with gold veins.
G. SUMMARY OF PREVIOUS WORK
Comparison of maps and descriptions indicate confusion may exist to the identification of
the North and South shafts in various reports examined. Field mapping appears to have
confirmed the location of these two shafts. A possible third unrecorded shaft (or deep pit)
was also identified during 1999 field work.

1915 North shaft (first shaft) sunk to ~120 foot depth with assays up to 4.84 oz/ton across
a 12 inch quartz vein.

1920 North Shaft: Two 3 ton bulk samples taken running 3.11 oz/ton, and 2.96 oz/ton Au.
Property acquired by Grenfell-Kirkland Gold Mines Ltd.: development on 100 foot
level; shear zone (150 feet wide) seen to displace vein east of shaft.

1928 North shaft extended to 173 foot; drifting 150 foot level

1932 South Shaft (inclined) sunk to 70 feet and 50 feet of drifting on narrow quartz
stringers.

1937 Two one ton sorted samples shipped.
First sample 1 ton containing 10 oz Au.
Second sample 1 ton containing 17 oz Au.

1941 177 tons shipped with no record of grade.

1985 ground magnetic and VLF surveys, drilling and geological mapping by Perron Inc.

1997 Kinross drilled two holes interesting gold values to 0.071 oz Au/ton over 3.0 feet
(0.050/7.0 feet)
Perron Inc. conducted the only recorded geological mapping in the Kirkland Lake Resident
Geologist's assessment files. This mapping outlined outcrop areas only. No detail is
recorded except the rock type.

H. 1999 EXPLORATION WORK
Grid
A square grid was cut at 100 metre centres with lines at both 000° and 090°. This square
grid is the optimum and is necessary because known auriferous structures and alteration in
Grenfell Township and on the property trend both northerly and easterly. Grid location
300E-200N is located at GPS co-ordinates 0558300mE-5331200mN. This location was
selected to start the grid as it was close to the North Shaft located at 273E-206N. Lines
200N and 900E were established as base lines.

Geology
The property was mapped during the summer-fall season of 1999.
Total Field Magnetic Survey
A magnetic total field was performed in continuous reading mode rendering readings spaced at approximately 2 meter intervals. This survey was performed to give clean total field strength data independent of instrument noise that can be encountered in gradient surveys. Also clean data derived from the total field strength survey was used to validate the data derived from the gradient survey.

Magnetic Gradient Orientation Survey
Traditionally magnetic surveys target magnetic lows caused by possible auriferous alteration. Fe-carbonate and sericitic alteration and silicification destroy the primary magnetic field of the host rocks. Formations; however, can have reversed magnetic fields that give magnetic values lower than the magnetically neutral alteration sought.

A vertical magnetic gradient survey was performed to establish if magnetic lows caused by reversed magnetic fields can be discriminated from magnetic lows over magnetically neutral rocks including auriferous alteration. It is anticipated that the absolute value of the magnetic gradient will be near zero over magnetically neutral rocks and strong over rocks of both normal and reversed polarity (opposite signs).

Topography Survey
Topography measurements were recorded in percent and used to calculate slopes used in the EM survey. The topography was plotted at 1:5000 scale on the EM-Magnetic profile sheets.

MaxMin EM Survey
3555 Hz and 888 Hz MaxMin EM surveys were performed. Topography calculations were used to maintain the transmitting and receiving coils coplanar during the survey.

I. VERTICAL GRADIENT, TOTAL MAGNETIC FIELD SURVEY
Rational
The magnetic survey is intended to supplement other geophysical surveys and geological mapping to define and enhance exploration targets by:
- Identifying rocks having neutral magnetic signatures resulting from destructive alteration including:
  - Fe-carbonate
  - sericite
  - silicification.
locating magnetic breaks that could define major contacts including fault contacts.
tracing lithologies and mineralization zones established during mapping.

Detailed profiles generated from 2 m spaced readings are well suited to define precise contacts and to define magnetically neutral magnetic signatures marking alteration that has overprinted primary magnetic textures. Disseminated auriferous sulphides and auriferous veins are expected to be hosted within this destructive alteration.

The detailed magnetic fabric is also a useful tool to locate and define structural features that can control and host gold deposits, including veins. The veins are expected to be marked by very weak geophysical signatures; however, if structures separate lithologies with different magnetic signatures, a magnetic break may identify the location of the host structure.

**Instrumentation**
A Scintrex Envimag was used in walkmag mode. Total magnetic field strength readings were measured at 2 second intervals which generated readings spaced at approximately two-meter intervals. This interval is ideal to produce the true magnetic signature (magnetic texture).

**Procedure**
July 2-Aug 7, 1999 David and Graham Robinson conducted the survey. Data was presented on profile by a visual basic program prepared by Graham Robinson. Background information and technical support were provided by Doug Robinson consulting.

Base stations were established along line 200N and 900E. Each base station reading was established standing on the east side of the picket while facing north. Both initial base station readings and the base station readings during the survey were recorded as the average of 10-20 readings.

<table>
<thead>
<tr>
<th>Base Station Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>Line</td>
</tr>
<tr>
<td>200N</td>
</tr>
</tbody>
</table>
The survey traverses were interrupted at the base stations. All base stations used were quiet and the traverse data was corrected prior to profiling and contouring.

**Data Presentation**

The data was corrected to base station drift prior to profiling and contouring. Noisy readings caused by instrument motion and incidental contact with overhead objects was manually edited from the database. Known cultural noise, primarily noise from the pipeline were also edited from the database. Gaps remain in the profiles marking edited readings. Noisy readings were identified as spikes that were not repeated in the gradient survey.

Profiling was performed using programming developed by Graham Robinson. The Scintrex Envimap program was used to present the magnetic data in filtered format commonly known as contouring. A 1:5000 contour plan and a magnetic interpretation plan are provided to supplement the profiles.

**Observations**

The magnetic signature is generally low relief, probably over Mg tholeiites. This low relief is accentuated by the property being in large part covered by deep overburden, including swamp and deep sandy soil. Prominent strong narrow magnetic responses
generally less than 60 meters wide trend azimuth 145 degrees. Most of these strong responses are normal polarity as magnetic highs. A few negative responses appear to be over rocks of reversed polarity. A broad flat magnetic low extends from 900N-850E to 00N-1200E. This broad low is located under swamp and clay cover.

Three prominent continuous magnetic high responses are labeled “A”, “B”, and “C” on Figure 5.

J. RECOMMENDATIONS
- The magnetic survey data should be integrated with the geological mapping, the EM survey and the gradient survey.
- Narrow strong positive responses bands “A”, “B”, and “C” should be examined.
- Any alteration zone encountered during mapping should be traced by magnetic signatures.
- The inferred location of magnetic highs and lows should be verified and explained by geological mapping. From the resulting information it may be possible to infer a geophysical signature of existing favorable formations. The signature established then should be used to extend known geology beyond outcrop areas.

K. LIST OF CO-HOLDERS
Grenfell North McCombe Property
Barry McCombe is the sole owner of the McCombe property

Grenfell North Robinson Property
Douglas Robinson and Betty Robinson are the sole owners (joint tenants) of the Grenfell North Robinson Property.

L. LIST OF REFERENCES
Grenfell Township
Grant, J.A.
& accompanying Map No 2060: Bompass and Grenfell Townships
Scale 1 inch to 0.5 mile (1:31680).

Savage, W.S.
Thomson, J. E.


CERTIFICATE OF QUALIFICATIONS

I, Douglas Robinson, of 24 Victoria Avenue, Swastika, Ontario hereby certify that:

1. I am a registered professional Engineer of the province of Ontario, No. 39322011.

2. I am a graduate of Queen's University in Kingston Ontario with an Honours Bachelor of Science, Geological Engineering 1975, and Northern College, School of Mines in Haileybury, Ontario, 1970.

3. I have been practising my profession since graduation.

4. The information contained in this report is the result of work done by myself and the references cited.

5. I own no direct or indirect interests in Grenfell North McCombe Property.

6. Betty Robinson and I own 100% interest in the Grenfell North Robinson Property

Respectfully submitted

Douglas Robinson, P. Eng.

January 17, 2000
CERTIFICATE OF QUALIFICATIONS

I, David Robinson, North Bay, Ontario hereby certify that:

1. I am a registered Prospector in Ontario: Licence # K22681 and Client No. 300792.

2. I have been practising mineral exploration since 1994.

3. The information contained in this report is the result of work done by myself and the references cited.

4. I own no direct or indirect interests in Grenfell North

Respectfully submitted

[Signature]

David Robinson
January 21, 2000
CERTIFICATE OF QUALIFICATIONS

I, Graham Robinson, of North Bay, Ontario hereby certify that:

1. I am a registered Prospector in Ontario: Licence # K23005 and Client No. 302666.

2. I have been practising mineral exploration since 1994.

3. The information contained in this report is the result of work done by myself and the references cited.

4. I own no direct or indirect interests in Grenfell North Property.

Respectfully submitted

Graham Robinson

January 21, 2000
Figure 1: General Location Map
Scale 1 = 100,000
Figure 2: Claim Map: Random Scale
Map 2060

BOMPAS AND GRENFELL TOWNSHIPS

TIMISKAMING DISTRICT

Scale 1:31,680 or 1 inch to ½ mile
SYMBOLS

Glacial striae.
Esker.
Small rock outcrop.
Boundary of rock outcrop.
Geological boundary, defined.
Geological boundary, approximate.
Geological boundary, assumed.
Horizontal bedding.
Strike and dip; direction of top unknown.
Strike and vertical dip; direction of top unknown.
Direction (arrow) in which inclined beds face as indicated by cross bedding.
Direction in which lava flows face as indicated by shape of pillows.
Synclinal axis.
Anticlinal axis.
Strike and dip of schistosity.
Strike of vertical schistosity.
Strike of schistosity, dip unknown.
Strike of vertical pegmatite.
Lineation (plunge known).
Jointing, inclined.
Jointing, vertical.
Fault indicated, or assumed.
Railway.
Motor road, Provincial highway number encircled where applicable.
Other road.
Trail, portage, winter road.
Building.
Shaft.
Township boundary. Approximate location only.
Approximate position of mining property. See list of properties.

LIST OF PROPERTIES
2. Elliott, George C., (1924)Grassine.
3. Magnus Mining Corporation Ltd.
4. Mylade Mines Ltd.
5. Prospectors Associates.

LEGEND

CENOZOIC*
PLEISTOCENE AND RECENT
Clay, sand, gravel.

UNCONFORMITY

PRECAMBRIAN**

PROTEROZOIC

HUROANIAN
COBALT GROUP***
Gowganda Formation

5a Argillite.
5b Arkose, greywacke.
5c Conglomerate, conglomeratic arkose, greywacke.

UNCONFORMITY

ARCHEAN

BASIC INTRUSIVE ROCKS****

4 Undifferentiated diabase.
4a Mactachewan diabase.

INTRUSIVE CONTACT

ACID INTRUSIVE ROCKS

3a Granite (hornblende-quartz monzonite).
3b Syenite, syenite porphyry, quartz-feldspar porphyry, diorite.
3c Basic syenite, lamprophyre.

INTRUSIVE CONTACT

SEDIMENTARY ROCKS

2a Basal grit, greywacke.
2b Conglomerate, greywacke.
2c Tuff and agglomerate, trachyte and trachytic agglomerate and breccia.

UNCONFORMITY

BASIC VOLCANIC ROCKS

1 Undifferentiated intermediate and basic volcanic rocks.
1a Basalt, andesite, dacite.
1b Gabbro, diabase, diorite.
1f Fragmented lavas.
1p Pillow lavas.
1s Sheared lavas.
1u Spherulitic lavas.
1m Amphibolite schist and gneiss.

Au Gold
Cu Copper
S Sulphide mineralization (pyrite).
W Tungsten

Figure 3b: Legend to General Geology Grenfell Tp.
Total Magnetic Field Strength (100nT/cm)
Grenfell N: 3+00 E
1:5000 Scale
Total Magnetic Field Strength (100nT/cm)
Grenfell N: 6+00 N
1:5000 Scale
Total Magnetic Field Strength (100nT/cm)
Grenfell N: 8+00 N
1:5000 Scale
Locating Buried Drums and Tanks?
The NEW ENVI-MAG is the solution to this environmental problem. ENVI-MAG is an inexpensive, lightweight, portable "WALKMAG" which enables you to survey large areas quickly and accurately. ENVI-MAG is a portable, proton precession magnetometer and/or gradiometer, for geotechnical, archaeological and environmental applications where high production, fast count rate and high sensitivity are required. It may also be used for other applications, such as mineral exploration, and may be configured as a total-field magnetometer, a vertical gradiometer or as a base station.

The ENVI-MAG
- easily detects buried drums to depths of 10 feet or more
- more sensitive to the steel of a buried drum than EM or radar
- much less expensive than EM or radar
- survey productivity much higher than with EM or radar

Main features include:
- select sampling rates as fast as 2 times per second
- "WALKMAG" mode for rapid acquisition of data
- large internal memory, expandable to 200,000 readings
- easy to read, large LCD screen displays data both numerically and graphically
- ENVIMAP software for processing and mapping data

ENVI-MAG comprises several basic modules; a lightweight console with a large screen alphanumeric display and high capacity memory, a staff mounted sensor and sensor cable, rechargeable battery and battery charger, RS-232 cable and ENVIMAP processing and mapping software.

Features and Benefits

"WALKMAG" Magnetometer/Gradiometer
The "WALKMAG" mode of operation (sometimes known as "Walking Mag") is user-selectable from the keyboard. In this mode, data is acquired and recorded at the rate of 2 readings per second as the operator walks at a steady pace along a line. At desired intervals, the operator "triggers" an event marker by a single key stroke, assigning coordinates to the recorded data.

True Simultaneous Gradiometer
An optional upgrade kit is available to configure ENVI-MAG as a gradiometer to make true, simultaneous gradiometer measurements. Gradiometry is useful for geotechnical and archaeological surveys where small near surface magnetic targets are the object of the survey.

Selectable Sampling Rates
0.5 second, 1 second and 2 second reading rates user selectable from the keyboard.

Large-Key Keypad
The large-key keypad allows easy access for gloved-hands in cold-weather operations. Each key has a multi-purpose function.

Large Capacity Memory
ENVI-MAG with standard memory stores up to 28,000 readings of total field measurements, 21,000 readings of gradiometry data or 151,000 readings as a base station. An expanded memory option is available which increases this standard capacity by a factor of 5.

Easy Review of Data
For quality of data and for a rapid analysis of the magnetic characteristics of the survey line, several modes of review are possible. These include the measurements at the last three stations, the ability to scroll through any or all previous readings in memory, and a graphic display of the previous data as profiles, line by line. This feature is very useful for environmental and archaeological surveys.

Highly Productive
The "WALKMAG" mode of operation acquires data rapidly at close station intervals, ensuring high-definition results. This increases survey productivity by a factor of 5 when compared to a conventional magnetometer survey.

"Datacheck" Quality Control of Data
"Datacheck" provides a feature wherein at the end of each survey line, data may be reviewed as a profile on ENVI-MAG's screen. Datacheck confirms that the
Instrument is functioning correctly and allows the user to note the magnetic relief (anomaly) on the line. Large Screen Display

"Super-Twist" 64 x 240 dot (8 lines x 40 characters), LCD graphic screen provides good visibility in all light conditions. A display heater is optionally available for low-temperature operations below 0°C.

Close-up of the ENVI-MAG screen showing data presented after each reading

Interactive Menus

The set-up of ENVI-MAG is menu-driven, and minimizes the operator's learning time, and on-going tasks.

Close-up of display of ENVI-MAG showing interactive set-up menu

Specifications

Total Field Operating Range
20,000 to 100,000 nT (gauss)

Total Field Absolute Accuracy
± 1 nT

Tuning
Fully solid state, manual or automatic, keyboard selectable

Cycling (Reading) Rates
0.5, 1 or 2 seconds, up to 9999 seconds for base station applications, keyboard selectable

Sensitivity
0.1 nT at 2 second sampling rate

Gradometer Option
Includes a second sensor, 20 inch (50 cm) staff extender and processor module

"WALKMAG" Mode
0.5 second for walking surveys, variable rates for hilly terrain

Digital Display
LCD "Super-Twist", 240 x 64 dots graphics, 8 line x 40 characters alphanumeric

Display Heater
Thermostatically controlled, for cold weather operations

Keyboard Input
17 keys, dual function, membrane type

Notebook Function
32 characters, 5 user-defined MACRO's for quick entry

Rechargeable Battery and Battery Charger
An "off-the-shelf" lead-acid battery and charger are provided as standard. The low-cost "Camcorder" type battery is available from electronic parts distributors everywhere.

HELP-Line Available
Purchasers of ENVI-MAG are provided with a HELP-Line telephone number to call in the event assistance is needed with an application or instrumentation problem.

ENVIMAP Processing and Mapping Software

Supplied with ENVI-MAG, and custom designed for this purpose, is easy-to-use, very user-friendly, menu driven data processing and mapping software called ENVIMAP. This unique software appears to the user to be a single program, but is in fact a sequence of separate programs, each performing a specific task. Under the menu system, there are separate programs to do the following:

a) read the ENVI-MAG data and reformat it into a standard compatible with the ENVIMAP software
b) grid the data into a standard grid format
c) create a vector file of posted values
with line and baseline identification that allows the user to add some title information and build a suitable surround
d) contour the gridded data

ENVI-MAP is designed to be as simple as possible. The user is required to answer a few basic questions asked by ENVI-MAP, and then simply toggles "GO" to let ENVI-MAP provide default parameters for the making of the contour map. The user can modify certain characteristics of the output plot. ENVIMAP'S menu system is both keyboard and mouse operable. HELP screens are integrated with the menu system so that HELP is displayed whenever the user requests it.

Options Available

- True simultaneous gradiometer upgrade
- Base station upgrade
- Display heater for low temperature operations
- External battery pouch
- External battery pouch
- Power Supply
- Rechargeable "Camcorder" type, 2.3 Ah, lead-acid battery.
- 12 Volts at 0.65 Amp for magnetometer, 1.2 Amp for gradiometer,
- External 12 Volt input for base station operations
- Optional external battery pouch for cold weather operations

Battery Charger
110 Volt - 230 Volt, 50/60 Hz

Operating Temperature Range
Standard 0° to 60°C
Optional -40°C to 60°C

Dimensions

Console - 10 x 6 x 2.25 inches (250 mm x 152 mm x 55 mm)
T.F. sensor - 2.75 inches dia. x 7 inches (70 mm x 175 mm)
Grad. sensor and staff extender - 2.75 inches dia. x 26.5 inches (70 mm x 675 mm)
T.F. staff - 1 inch dia. x 76 inches (25 mm x 2 m)

Weight

Console - 5.4 lbs (2.45 kg)
with rechargeable battery
T. F. sensor - 2.2 lbs (1.15 kg)
Grad. sensor - 2.5 lbs (1.15 kg)
Staff - 1.75 lbs (0.8 kg)

SCINTREX

222 Snidercroft Road
Concord, Ontario, Canada L4K 1B5

In the USA:
Scintrex Inc.
85 River Rock Drive
Unit 202
Buffalo, New York 14207
Telex: 06-964570

Telephone: (905) 669-2433 or 669-5132
Fax: (905) 669-6403 or 669-5132

Telephone: (914) 298-1219
Fax: (914) 298-1217

J.D. Fett
Naval
White Vanco

T. Has
Budes.

Hannex

Terra

Gmbh

Hamberg
REPORT

ON

MAGNETIC TOTAL FIELD SURVEY
(January 2000)

Grenfell South Grid

Grenfell Township
Larder Lake Mining Division
North-eastern Ontario

NTS
42A/1

UTM
Grid Zone 17, NAD. 27

For

Barry McCombe

Douglas Robinson P. Eng.
Doug Robinson Consulting
A. PROJECT LOCATION ................................................................. 3
B. ACCESS .................................................................................. 3
C. CLAIM LIST AND CLAIM MAP ............................................... 3
D. DEPOSIT TYPE AND GEOLOGY ................................................ 3
E. EXPLORATION TARGETS .......................................................... 4
F. SUMMARY OF PREVIOUS WORK .......................................... 4
G. 1999 EXPLORATION WORK ................................................... 4
H. MAGNETIC SURVEY ............................................................... 5
I. RECOMMENDATIONS ............................................................... 7
J. LIST OF CO-HOLDERS ............................................................. 7
K. LIST OF REFERENCES ............................................................. 7
CERTIFICATE OF QUALIFICATIONS .............................................. 9

Figures
Figure 1: General Location Map: Scale 1:100,000
Figure 2: Claim Map: Random Scale
Figure 3a: General Geology Grenfell T.: (Map 2060 reduced to 1:50000)
Figure 3b: Legend to General Geology Grenfell Tp.
Figure 4: Contoured Magnetic Total Field Strength Grenfell South Grid: Scale 1:2500
Figure 5: Compilation Magnetic Total Field Strength Grenfell South Grid: Scale 1:2500

Profiles
Line 400E Total Magnetic Field Strength
Line 500E Total Magnetic Field Strength
Line 600E Total Magnetic Field Strength
Line 650E Total Magnetic Field Strength
Line 700E Total Magnetic Field Strength
Line 750E Total Magnetic Field Strength
Line 800E Total Magnetic Field Strength
Line 900E Total Magnetic Field Strength
Line 1000E Total Magnetic Field Strength
Line 700N Total Magnetic Field Strength
Line 800N Total Magnetic Field Strength
Line 900N Total Magnetic Field Strength
Line 1000N Total Magnetic Field Strength
Line 1100N Total Magnetic Field Strength

Envimag Specifications

Grenfell South Magnetic Survey, 1999-2000
A. PROJECT LOCATION
Claim 1205807 and 1206152
This exploration property is located 12 km west of Kirkland Lake in the south central part of Grenfell Township (Plan # G-3212) of the Larder Lake Mining Division. Claims 1205807 and 1206152 are centred at Latitude 48°07'00"N and Longitude 80°12'00"W (UTM Zone: 5328850mN, 0559670mE).

The reader is referenced to NTS Map Sheets 42A/1 for the general location of the property. Ontario Base Map 20 17 5600 53300 gives detailed topographic features of the property.

B. ACCESS
The property is accessed via Highway 66 leading 14 km west from Kirkland Lake. From this location proceed north 3 km on Highway 11 (0.1 km past the Blanche River). Turn right onto the dirt road leading 0.7 km east to the natural gas pipeline. Turn left and proceed 0.5 km north to line 700N which cross the pipeline (ruff but passable pipeline road).

C. CLAIM LIST AND CLAIM MAP
The McCombe property comprises a large block of claims in Grenfell Township. Work was done on the following claims.

1205807 4 units (south part)
1206152 2 units "

D. DEPOSIT TYPE AND GEOLOGY
The property lies within iron and magnesium rich tholeiitic basalts of the Kenojevis Group. Dark green magnetic iron tholeiitic basalts dominate with lessor green-grey magnesium tholeiitic basalts. The stratigraphy strikes northwest and dips steeply towards the northeast. This stratigraphy is interrupted by altered auriferous structures including faults, wide pyritic Fe-carbonate-sericite alteration zones and pyritic quartz veining. Pyritic quartz veins occur both within and outside the major alteration zones. These structural trends are both east-northeast and northerly trends. The east-northeast trending structures are parallel to and part of the structural domain controlled by the Larder Lake Break-Cadillac Break. This structural domain hosts the gold deposits located between Matachewan, Ontario and Val d'Or, Quebec including the Kirkland Lake gold camp and the Kerr Addison Mine.

Grenfell South Magnetic Survey, 1999-2000
E. EXPLORATION TARGETS
Disseminated auriferous sulphides and gold veins are the exploration target. These auriferous sulphides are expected to be hosted within larger alteration zones including Fe-carbonate alteration, sericitization or silicification.

Gold veins within structural breaks are also targeted.

Disseminated auriferous sulphides are expected to be hosted within alteration including extensive Fe-carbonate alteration, sericitization or silicification. The associated alteration is expected to have a magnetic signature indicating the destruction of the primary magnetic fabric of the host rocks.

Gold veins within (geological) structural breaks are also targeted. The veins are expected to be marked by very weak geophysical signatures. The magnetic surveys seek breaks in the magnetic signature that mark interruption in lithologies across the targeted structural breaks.

Field mapping, a magnetometer survey and a gradiometer survey target both extensive alteration expected to host auriferous sulphides and narrow alteration zones associated with gold veins.

F. SUMMARY OF PREVIOUS WORK
Claim 1205807 and 1206152
• 1981-83 D. Grant Sirola conducted stripping and overburden drilling defining a system of auriferous quartz veins.
• Kinross Gold conducted prospecting and stripping and defined a major new mineralized altered deformation zone approximately 40 m south of an old shaft sunk on narrow auriferous quartz vein.

Little other exploration is recorded. The Kirkland Lake Resident geologist's files record no significant geological mapping of the property.

G. 1999 EXPLORATION WORK
Grid
A square grid was cut at 100 metre centres with lines at both 000° and 090°. This square grid is the optimum and is necessary because known auriferous structures and alteration in Grenfell Township and on the property trend both northerly and easterly. Grid location 600E-800N is located at GPS co-ordinates 0559600mE-5328800mN.

Geology
The property was mapped by Frank Ploeger during the summer of 1999.

**Total Field Magnetic Survey**

A magnetic total field was performed in continuous reading mode rendering readings spaced at approximately 2 meter intervals. The data is presented in profile and contoured formats. The survey and report preparation were performed by Doug Robinson Consulting.

**Magnetic Gradient Orientation Survey**

Traditionally magnetic surveys target magnetic lows as possible auriferous alteration. Fe-Carbonate and sericitic alteration and silicification destroy the primary magnetic field of the host rocks. Formations; however, can have reversed magnetic fields that give magnetic values lower than the magnetically neutral alteration sought.

A vertical magnetic gradient survey was performed to establish if magnetic lows caused by reversed magnetic fields can be discriminated from magnetic lows over magnetically neutral rocks including auriferous alteration. It is anticipated that the absolute value of the magnetic gradient will be near zero over magnetically neutral rocks and strong over rocks of both normal and reversed polarity (opposite signs).

**H. MAGNETIC SURVEY**

October 18 and 21, 1999 the author conducted the survey. A Scintrex Envimag in walkmag mode was used in walkmag mode. Total magnetic field strength readings were measured at 2 second intervals which generated readings spaced at approximately two-meter intervals which is ideal to produce the true magnetic signature (magnetic texture).

Base stations were initially established along line 700N and 400E. These stations were located on areas having strong magnetic gradients and were abandoned. New reliable base stations were established along lines 1100N and 1100E (prior to the survey). Each base station reading was established standing on the east side of the picket while facing north. Both initial base station readings and the base station readings during the survey were recorded as the average of 10-20 readings.

<table>
<thead>
<tr>
<th>Base Station Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>Line</td>
</tr>
<tr>
<td>700N</td>
</tr>
<tr>
<td>800N</td>
</tr>
<tr>
<td>900N</td>
</tr>
<tr>
<td>1000N</td>
</tr>
<tr>
<td>400E</td>
</tr>
</tbody>
</table>
500E  1075N  58617
600E  No Station (Pipeline)
700E  1085N  57405
800E  1075N  57575
900E  1075N  57505
1000E 1075N  57535

The survey traverses were interrupted at the base stations. All base stations used were quiet and the traverse data was corrected prior to profiling and contouring. Profiling was performed using programming developed by Graham Robinson and contoured using the Scintrex Envimap program. A 1:2500 contour plan is provided to supplement the profiles.

A two second continuous reading mode was used. This process generates total field magnetic readings at a 2 metre interval which is ideal to generate the true magnetic signature (magnetic texture). This detailed magnetic signature is well suited to define precise contacts and to define areas of probable destruction of the primary magnetic texture as caused by Fe-Carbonate and/or sericite alteration and silicification which are commonly associated with gold mineralization. The detailed magnetic fabric is also a useful tool to locate and define structural features that can control and host gold deposits.

The grid has two magnetic signatures.
- Strong magnetic relief west of the pipeline and
- A flat magnetic signature east of the pipeline.

These signatures possibly reflect Fe tholeiites to the west and Mg tholeiites to the east with the contact being near and sub-parallel the pipeline. This could be a fault contact that is an exploration target (~600E-1100N-->~900E-700N).

The area bounded by 400E-700E and 400N-1000N has extreme magnetic relief that is accentuated by the shallow overburden. North of 1000N overburden appears to be deeper and may reduce the extreme magnetic relief. However this area appears to have a low magnetic field strength possibly related to alteration or Mg tholeiites.

The area bounded by 900-1000E and 1000N-1075N has a high relief signature. This could be bounded on the south by a fault trending northeast from 400E-700N to 1000E-1000N through known alteration south of the shaft. The highest relief magnetic responses are directly north of this inferred line.

A line through 400E-1064N-->700E-955N defines the break between high magnetic relief to the south and moderate magnetic relief to the north. This could reflect a sharp drop in the bedrock elevation to the north or a real disruption if the magnetic signature.

Grenfell South Magnetic Survey, 1999-2000
The location of magnetic high and low responses is transferred to the magnetic compilation map.

I. RECOMMENDATIONS

- The magnetic survey data should be integrated with the geological mapping and the gradient survey.
- The trend from 600E-1100N->900E-700 should be examined
- The trend from 400E-700N->1000E-1000N should be examined
- The trend 400E->1064N->700E-955N should be examined
- Any alteration zone encountered during mapping should be traced by magnetic signatures.
- The inferred location of magnetic highs and low should be verified and explained by geological mapping. From the resulting information it may be possible to infer a geophysical signature of existing favorable formation. The signature established then should be used to extend known geology beyond outcrop areas.

J. LIST OF CO-HOLDERS

Barry McCombe is the sole holder of the property.

K. LIST OF REFERENCES

Grenfell Township

Grant, J.A.
& accompanying Map No 2060: Bompass and Grenfell Townships
Scale 1 inch to 0.5 mile (1:31680).

Savage, W.S.

Thomson, J. E.
1950: Geology of Teck Township and the Kenogami Lake Area, Kirkland Lake Gold Belt:
Scale 1 inch to 1000 feet (1:12000).

1979 Ontario Geological Survey Preliminary Map P-2262A.

Grenfell South Magnetic Survey, 1999-2000
Kirkland Lake Area Grenfell Township Airborne Electromagnetic Survey
Total Intensity Magnetic Survey. Scale 1:20000.
CERTIFICATE OF QUALIFICATIONS

I, Douglas Robinson, of 24 Victoria Avenue, Swastika, Ontario hereby certify that:

1. I am a registered professional Engineer of the province of Ontario, No. 39322011.

2. I am a graduate of Queen's University in Kingston Ontario with an Honours Bachelor of Science, Geological Engineering 1975, and Northern College, School of Mines in Haileybury, Ontario, 1970.

3. I have been practising my profession since graduation.

4. The information contained in this report is the result of work done by myself and the references cited.

5. I own no direct or indirect interests in Grenfell South.

Respectfully submitted,

Douglas Robinson, P. Eng.

January 17, 2000
Figure 1: General Location Map
Scale 1:100,000
Map 2060

BOMPAS AND GRENFELL TOWNSHIPS
TIMISKAMING DISTRICT

Scale 1:31,680 or 1 inch to 1/4 Mile
SYMBOLS

G. Glacial striations.
E. Eater.
S. Small rock outcrop.
* Boundary of rock outcrop.
G. Geological boundary, defined.
A. Geological boundary, approximate.
B. Geological boundary, assumed.
H. Horizontal bedding.
W. Strike and dip; direction of top unknown.
S. Strike and vertical dip; direction of top unknown.
X. Direction (arrow) in which inclined beds lase as indicated by cross bedding.
Y. Direction in which lava flows face as indicated by shape of pillows.
A. Synclinal axis.
F. Anticlinal axis.
W. Strike and dip of schistosity.
S. Strike of schistosity, dip unknown.
V. Strike of vertical schistosity.
L. Lineation (plunge known).
J. Jointing, inclined.
K. Jointing, vertical.
F. Fault indicated, or assumed.
R. Railway.
M. Motor road. Provincial highway number encircled where applicable.
O. Other road.
T. Trail, portage, winter road.
B. Building.
S. Shelf.
U. Township boundary. Approximate location only.
V. Approximate position of mining property.
See list of properties.

LEGEND

CENOZOIC*

PLEISTOCENE AND RECENT
Clay, sand, gravel.

UNCONFORMITY

PRECAMBRIAN**

PROTEROZOIC

HURONIAN

COBALT GROUP***

Gowganda Formation

5a Argillite. 5b Arkose, greywacke. 5c Conglomerate, conglomeratic arkose, greywacke.

UNCONFORMITY

ARCHEAN

BASIC INTRUSIVE ROCKS****

4 Undifferentiated diabase. 4a Matachewan diabase.

INTRUSIVE CONTACT

ACID INTRUSIVE ROCKS

3a Granite (hornblende-quartz monzonite). 3b Syenite, syenite porphyry, quartz-feldspar porphyry, alaskite. 3c Basic syenite, lamprophyre.

INTRUSIVE CONTACT

SEDIMENTARY ROCKS

2a Basal grit, greywacke. 2b Conglomerate, greywacke. 2c Tuff and agglomerate, trachyte and trachytic agglomerate and breccia.

UNCONFORMITY

BASIC VOLCANIC ROCKS

1 Undifferentiated intermediate and basic volcanic rocks. 1a Basalt, andesite, dacite. 1b Gabbro, diabase, diorite. 1f Fragmental lavas. 1p Pillow lavas. 1s Sheared lavas. 1r Porphyritic lavas. 1v Amygdaloidal lavas. 1u Spherulitic lavas. 1m Amphibolite schist and gneiss.

Au Gold
Cu Copper
S Sulphide mineralization (pyrite).
W Tungsten

Figure 3b: Legend to General Geology Grenfell Tp.
Grenfell South Grid: Grenfell Tp.
Magnetic Field Strength
nanoTeslas

Contour Interval: 200 nT
Total Magnetic Field Strength (500nT/cm)
Greenfell South Grid: Grenfell Tp: Line 4+00E
1:2500 Scale
Total Magnetic Field Strength (500nT/cm)
Greenfell South Grid: Grenfell Tp: Line 5+00E
1:2500 Scale
Total Magnetic Field Strength (500nT/cm)
Greenfell South Grid: Grenfell Tp: Line 6+00E
1:2500 Scale
Northing
Total Magnetic Field Strength (500nT/cm)
Greenfell South Grid: Grenfell Tp: Line 6+50E
1:2500 Scale
Greenfell South Grid: Grenfell Tp: Line 7+00E
1:2500 Scale

Pipe Line

Total Magnetic Field Strength (500nT/cm)
Northing

Total Magnetic Field Strength (500nT/cm)

Greenfell South Grid: Grenfell Tp: Line 7+50E
1:2500 Scale
Pipe Line

Total Magnetic Field Strength (500nT/cm)
Greenfell South Grid: Grenfell Tp: Line 8+00E
1:2500 Scale
Total Magnetic Field Strength (500nT/cm)
Greenfell South Grid: Grenfell Tp: Line 9+00E
1:2500 Scale
Total Magnetic Field Strength (500nT/cm)
Greenfell South Grid: Grenfell Tp: Line 10+00E
1:2500 Scale
Total Magnetic Field Strength (500nT/cm)
Greenfell South Grid: Grenfell Tp: Line 7+00N
1:2500 Scale

Pipe Line
Easting

Total Magnetic Field Strength (500nT/cm)

Greenfell South Grid: Grenfell Tp: Line 10+00N

1:2500 Scale
Easting
Total Magnetic Field Strength (500nT/cm)
Greenfell South Grid: Grenfell Tp: Line 11+00N
1:2500 Scale

Pipe Line
Declarations of Assessment Work Performed on Mining Land

Ministry of Natural Resources and Mines

Instructions:
- For work performed on Crown Lands before recording a claim, use form 0240.
- Please type or print in ink.

1. Recorded holder(s) (Attach a list if necessary)
   - Name: Barry McCombe
   - Address: 84 McKelvie Avenue, Kirkland Lake, ON P2N-2KB
   - Client Number: 300-793
   - Telephone Number: 705-568-1234
   - Fax Number: —

2. Type of work performed: Check (✓) and report on only ONE of the following groups for this declaration.
   - Geotechnical: prospecting, surveys, assays and work under section 18 (regs)
   - Physical: drilling, stripping, trenching and associated assays
   - Rehabilitation

<table>
<thead>
<tr>
<th>Work Type</th>
<th>Office Use</th>
<th>Commodity</th>
<th>Total Value of Work Claimed</th>
<th>NTS Reference</th>
<th>Mining Division</th>
<th>Resident Geologist</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lines Cut</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Magnetic</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total Field</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mobile Survey</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Please remember to:
- obtain a work permit from the Ministry of Natural Resources as required;
- provide proper notice to surface rights holders before starting work;
- complete and attach a Statement of Costs, form 0212;
- provide a map showing contiguous mining lands that are linked for assigning work;
- include two copies of your technical report.

3. Person or companies who prepared the technical report (Attach a list if necessary)
   - Name: David Robinson
   - Address: 148 Fricke Court, North Bay, ON P2C 1C3
   - Telephone Number: 705-496-9148
   - Fax Number: —

   - Name: Graham Robinson
   - Address: 29 Bellevue Crescent, North Bay, ON P1B-9V2
   - Telephone Number: 705-476-4636
   - Fax Number: —

   - Name: Douglas Robinson
   - Address: S. Westhill Crescent, North Bay, ON P1B-9V2
   - Telephone Number: 705-642-9153
   - Fax Number: —

4. Certification by Recorded Holder or Agent
   - Barry McCRede, do hereby certify that I have personal knowledge of the facts set forth in this Declaration of Assessment Work having caused the work to be performed or witnessed the same during or after its completion and, to the best of my knowledge, the annexed report is true.

   Signature of Recorded Holder or Agent: Barry McCRede
   - Date: Feb 15, 2000

   Agent's Address: 84 McKelvie Avenue, Kirkland Lake, ON P2N-2KB
   - Telephone Number: 705-568-1234
   - Fax Number: —

   RECEIVED
   - Date: FEB 18, 2000
   - Office: GEO SCIENCE ASSESSMENT OFFICE
   - Signature: —

   RECEIVED
   - Date: FEB 18, 2000
   - Office: GEO SCIENCE ASSESSMENT OFFICE
   - Signature: —
Work can only be assigned to claims that are contiguous (adjoining) to the mining formed, at the time work was performed. A map showing the contiguous link must accompany this

<table>
<thead>
<tr>
<th>Number of Claim Units</th>
<th>Value of work performed on this claim or other mining land</th>
<th>Value of work applied to this claim</th>
<th>Value of work assigned to other mining claims</th>
<th>Bank. Value of work to be distributed at a future date</th>
</tr>
</thead>
<tbody>
<tr>
<td>16 ha</td>
<td>$26,625</td>
<td>N/A</td>
<td>$24,000</td>
<td>$2,825</td>
</tr>
<tr>
<td>2 ha</td>
<td>8,882</td>
<td>4,000</td>
<td>0</td>
<td>4,892</td>
</tr>
<tr>
<td>7</td>
<td>200</td>
<td>0</td>
<td>0</td>
<td>200</td>
</tr>
<tr>
<td>2</td>
<td>1,800</td>
<td>0</td>
<td>0</td>
<td>1,800</td>
</tr>
<tr>
<td>3</td>
<td>1,161</td>
<td>0</td>
<td>0</td>
<td>1,161</td>
</tr>
<tr>
<td>6</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>1,568</td>
<td>0</td>
<td>0</td>
<td>1,568</td>
</tr>
<tr>
<td>2</td>
<td>1,568</td>
<td>0</td>
<td>0</td>
<td>1,568</td>
</tr>
</tbody>
</table>

Column Totals

<table>
<thead>
<tr>
<th>Number of Claim Units</th>
<th>Value of work performed on this claim or other mining land</th>
<th>Value of work applied to this claim</th>
<th>Value of work assigned to other mining claims</th>
<th>Bank. Value of work to be distributed at a future date</th>
</tr>
</thead>
<tbody>
<tr>
<td>24</td>
<td>6297</td>
<td>0</td>
<td>0</td>
<td>6297</td>
</tr>
</tbody>
</table>

I, [Print Full Name], hereby certify that the above work credits are eligible under on 7 (1) of the Assessment Work Regulation 6/96 for assignment to contiguous claims or for application to the claim work was done.

 Dirk McComb
Date 2/15/2000

The credits claimed in this declaration may be cut back. Please check (✓) in the boxes below to show how you wish to the deletion of credits:

- 1. Credits are to be cut back from the Bank first, followed by option 2 or 3 or 4 as indicated.
- 2. Credits are to be cut back starting with the claims listed last, working backwards; or
- 3. Credits are to be cut back equally over all claims listed in this declaration; or
- 4. Credits are to be cut back as prioritized on the attached appendix or as follows (describe).

If you have not indicated how your credits are to be deleted, credits will be cut back from the Bank first, followed by option number 2 if necessary.

Deemed Approved Date

[Signature]

Total Value of Credit Approved

Approved for Recording by Mining Recorder (Signature)
<table>
<thead>
<tr>
<th>Claim</th>
<th>Number of Claim Units</th>
<th>Value of Work Performed on This Claim or Other Mining Land</th>
<th>Value of Work Applied to This Claim</th>
<th>Value of Work Assigned to Other Mining Claims</th>
<th>Bank: Value of Work to be Distributed at a Future Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>TB 7827</td>
<td>16 ha</td>
<td>$26,825</td>
<td>N/A</td>
<td>$24,000</td>
<td>$2,825</td>
</tr>
<tr>
<td>1234567</td>
<td>12</td>
<td>0</td>
<td>$24,000</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1234568</td>
<td>2</td>
<td>$8,892</td>
<td>$4,000</td>
<td>0</td>
<td>$4,892</td>
</tr>
<tr>
<td>1206101</td>
<td>7</td>
<td>200</td>
<td>0</td>
<td>0</td>
<td>200</td>
</tr>
<tr>
<td>1217683</td>
<td>2</td>
<td>1800</td>
<td>0</td>
<td>0</td>
<td>1800</td>
</tr>
<tr>
<td>1225785</td>
<td>3</td>
<td>1161</td>
<td>0</td>
<td>0</td>
<td>1161</td>
</tr>
<tr>
<td>1227248</td>
<td>6</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1205807</td>
<td>4</td>
<td>1568</td>
<td>0</td>
<td>0</td>
<td>1568</td>
</tr>
<tr>
<td>1206182</td>
<td>2</td>
<td>1568</td>
<td>0</td>
<td>0</td>
<td>1568</td>
</tr>
</tbody>
</table>

**Column Totals**

| | 24 | $32,997 | 0 | 0 | $3,974 |

---

**Instruction forCutting Back Credits that are Not Approved.**

The above work credits are eligible under section 7 (1) of the Assessment Work Regulation 6/96 for assignment to contiguous claims or for application to the claim where the work was done.

1. Credits are to be cut back from the Bank first, followed by option 2 or 3 or 4 as indicated.
2. Credits are to be cut back starting with the claims listed last, working backwards; or
3. Credits are to be cut back equally over all claims listed in this declaration; or
4. Credits are to be cut back as prioritized on the attached appendix or as follows (describe):

---

**Notations:**

- If you have not indicated how your credits are to be deleted, credits will be cut back from the Bank first, followed by option number 2 if necessary.
## Statement of Costs for Assessment Credit

Transaction Number: OC8000001

**McComb**

### Work Type

<table>
<thead>
<tr>
<th>Units of work</th>
<th>Cost Per Unit of work</th>
<th>Total Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lines Cutting (N)</td>
<td>7.050 km</td>
<td>300</td>
</tr>
<tr>
<td>Magnetic Profile (N)</td>
<td>7.000 km</td>
<td>90</td>
</tr>
<tr>
<td>Lines Cutting (S)</td>
<td>6.325</td>
<td>300</td>
</tr>
<tr>
<td>Lines Cutting (S)</td>
<td>0.300</td>
<td>300</td>
</tr>
<tr>
<td>Magnetic Profile (S)</td>
<td>6.625</td>
<td>90</td>
</tr>
</tbody>
</table>

### Associated Costs (e.g. supplies, mobilization and demobilization)

<table>
<thead>
<tr>
<th>Item</th>
<th>Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grid Layout, Supervision &amp; Property Definition (location)</td>
<td>800</td>
</tr>
</tbody>
</table>

### Transportation Costs

<table>
<thead>
<tr>
<th>Item</th>
<th>Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>1st/2nd/3rd Duplication &amp; Collection, 6 copies &amp; Report</td>
<td>61</td>
</tr>
<tr>
<td>Total Value of Assessment Work</td>
<td>6297</td>
</tr>
</tbody>
</table>

### Food and Lodging Costs

<table>
<thead>
<tr>
<th>Item</th>
<th>Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>Food and Lodging</td>
<td>90</td>
</tr>
</tbody>
</table>

### Calculations of Filing Discounts:

1. Work filed within two years of performance is claimed at 100% of the total Value of Assessment Work.
2. If work is filed after two years and up to five years after performance, it can only be claimed at 50% of the Total Value of Assessment Work. If this situation applies to your claims, use the calculation below:

\[
\text{Total Value of Assessment Work} \times 0.50 = \text{Total $ value of worked claimed.}
\]

### Note:

- Work older than 5 years is not eligible for credit.
- A recorded holder may be required to verify expenditures claimed in this statement of costs within 45 days of a request for verification and/or correction/clarification. If verification and/or correction/clarification is not made, the Minister may reject all or part of the assessment work submitted.

### Certification verifying costs:

I, Barry McComb, do hereby certify, that the amounts shown are as accurate as may reasonably be determined and the costs were incurred while conducting assessment work on the lands indicated on the accompanying Declaration of Work form as ______________ (recorded holder, agent, or state company position with signing authority). I am authorized to make this certification.

Signature: Barry McComb
Date: Feb 17, 2000

RECEIVED
LARDER LAKE MINING DIVISION
FEB 17 2000

RECEIVED
FEB 18 2000
ORECONESS ASSESSMENT
Declaration of Assessment Work
Performed on Mining Land

Mining Act, Subsection 65(2) and 66(3), R.S.O. 1990

Transaction Number (office use)  W 00 01 01 01
Assessment Files Research Imaging

Instructions: - For work performed on Crown Lands before recording a claim, use form 0240.
- Please type or print in ink.

Recorded holder(s) (Attach a list if necessary)

<table>
<thead>
<tr>
<th>Name</th>
<th>Client Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Douglas Robinson</td>
<td>2 2 2 8 8 6</td>
</tr>
</tbody>
</table>

Address
Box 218
Swastika, ON T 0 K 1 7 0

Instructions: - For work performed on Crown Lands before recording a claim, use form 0240.
- Please type or print in ink.

Recorded holder(s) (Attach a list if necessary)

<table>
<thead>
<tr>
<th>Name</th>
<th>Client Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Douglas Robinson</td>
<td>2 2 2 8 8 6</td>
</tr>
</tbody>
</table>

Address
Box 218
Swastika, ON T 0 K 1 7 0

Type of work performed: Check (√) and report on only ONE of the following groups for this declaration.

- Geotechnical: prospecting, surveys, assays and work under section 18 (regs)
- Physical: drilling stripping, trenching and associated assays
- Rehabilitation

Magnetic Total Field Profile Survey

- Office Use
- Commodity
- Total $ Value of Work Claimed: 8 9 1 2
- NTS Reference
- Mining Division
- Resident Geologist
- District

LARDER LAKE
MINING DIVISION

2 FEB 2000

Certification by Recorded Holder or Agent

Douglas Robinson, do hereby certify that I have personal knowledge of the facts set forth in this Declaration of Assessment Work having caused the work to be performed or witnessed the same during or after its completion and, to the best of my knowledge, the annexed report is true.

Signature of Recorded Holder or Agent

Douglas Robinson

Date
FEB 19 2000

RECEIVED
FEB 18 2000

GEOSCIENCE ASSESSMENT OFFICE
Work can only be assigned to claims that are contiguous (adjoining) to the mining performed at the time work was performed. A map showing the contiguous link must accompany this.

<table>
<thead>
<tr>
<th>Claim Number</th>
<th>Number of Claim Units</th>
<th>Value of work performed on this claim or other mining land.</th>
<th>Value of work applied to this claim.</th>
<th>Value of work assigned to other mining claims.</th>
<th>Bank. Value of work to be distributed at a future date</th>
</tr>
</thead>
<tbody>
<tr>
<td>TB 7827</td>
<td>15 ha</td>
<td>$26,825</td>
<td>N/A</td>
<td>$24,000</td>
<td>$2,825</td>
</tr>
<tr>
<td>1234567</td>
<td>2</td>
<td>$8,892</td>
<td>$4,000</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1234568</td>
<td>3</td>
<td>$3,512</td>
<td>$1,200</td>
<td>0</td>
<td>2,312</td>
</tr>
<tr>
<td>1225784</td>
<td>1</td>
<td>400</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1226007</td>
<td>2</td>
<td>400</td>
<td>0</td>
<td>400</td>
<td>0</td>
</tr>
<tr>
<td>1227295</td>
<td>1</td>
<td>400</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1227295</td>
<td>2</td>
<td>400</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Column Totals 0 8712 2000 400 6712

Douglas Robinson, do hereby certify that the above work credits are eligible under subsection 7 (1) of the Assessment Work Regulation 6/96 for assignment to contiguous claims or for application to the claim here the work was done.

In 1924, the credits claimed in this declaration may be cut back. Please check (✓) in the boxes below to show how you wish to prioritize the deletion of credits:

☐ 1. Credits are to be cut back from the Bank first, followed by option 2 or 3 or 4 as indicated.
☐ 2. Credits are to be cut back starting with the claims listed last, working backwards; or
☐ 3. Credits are to be cut back equally over all claims listed in this declaration; or
☐ 4. Credits are to be cut back as prioritized on the attached appendix or as follows (describe):
   
   First, cut back 1226007, then 1227295.

Note: If you have not indicated how your credits are to be deleted, credits will be cut back from the Bank first, followed by option number 2 if necessary.
Statement of Costs for Assessment Credit

Transaction Number (office use) WO7150.00101

Ministry of Northern Development and Mines

Information collected on this form is obtained under the authority of subsection 6 (1) of the Assessment Work Regulation 6/96. Under section 8 of the Regulation, this information is a public record. This information will be used to review the assessment work and correspond with the mining land holder.

Anyone who has questions about this collection should direct them to a Provincial Mining Recorder, Ministry of Northern Development and Mines, 3rd Floor, 933 Ramsey Lake Road, Sudbury, Ontario, P3E 6B5.

<table>
<thead>
<tr>
<th>Work Type</th>
<th>Units of Work</th>
<th>Cost Per Unit of Work</th>
<th>Total Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lines</td>
<td>19,825</td>
<td>300</td>
<td>5948</td>
</tr>
<tr>
<td>Magnetic Profiles</td>
<td>19,825</td>
<td>90</td>
<td>1784</td>
</tr>
</tbody>
</table>

Associated Costs (e.g. supplies, mobilization and demobilization).
- Supervision, Rept. Place Aluminum Tags on Pickets, Plant Pickets after Front out of Ground $900
- Aluminum Tags $40

Transportation Costs 40

Food and Lodging Costs

RECEIVED
FEB 18 2000

Total Value of Assessment Work 8712

Calculations of Filing Discounts:

1. Work filed within two years of performance is claimed at 100% of the above Total Value of Assessment Work.
2. If work is filed after two years and up to five years after performance, it can only be claimed at 50% of the Total Value of Assessment Work. If this situation applies to your claims, use the calculation below:

\[
\text{Total Value of Assessment Work} \times 0.50 = \text{Total $ value of worked claimed.}
\]

Note:
- Work older than 5 years is not eligible for credit.
- A recorded holder may be required to verify expenditures claimed in this statement of costs within 45 days of a request for verification and/or correction/clarification. If verification and/or correction/clarification is not made, the Minister may reject all or part of the assessment work submitted.

Certification verifying costs:
1. **Douglas Robinson**, do hereby certify, that the amounts shown are as accurate as may reasonably be determined and the costs were incurred while conducting assessment work on the lands indicated on the accompanying Declaration of Work form as **Douglas Robinson**. I am authorized to make this certification.

RECEIVED
LARDER LAKE MINING DIVISION

FEB 17 2000 2:45 PM

Signature
Date: FEB 19 2000
June 29, 2000

DOUGLAS RAYMOND ROBINSON
24 VICTORIA AVENUE
BOX 218
SWASTIKA, ONTARIO
P0K-1T0

Dear Sir or Madam:

Submission Number: 2.20085

Subject: Transaction Number(s): W0080.00101 Approval After Notice

We have reviewed your Assessment Work submission with the above noted Transaction Number(s). The attached summary page(s) indicate the results of the review. WE RECOMMEND YOU READ THIS SUMMARY FOR THE DETAILS PERTAINING TO YOUR ASSESSMENT WORK.

If the status for a transaction is a 45 Day Notice, the summary will outline the reasons for the notice, and any steps you can take to remedy deficiencies. The 90-day deemed approval provision, subsection 6(7) of the Assessment Work Regulation, will no longer be in effect for assessment work which has received a 45 Day Notice. Allowable changes to your credit distribution can be made by contacting the Geoscience Assessment Office within this 45 Day period, otherwise assessment credit will be cut back and distributed as outlined in Section #6 of the Declaration of Assessment work form.

Please note any revisions must be submitted in DUPLICATE to the Geoscience Assessment Office, by the response date on the summary.

If you have any questions regarding this correspondence, please contact JIM MCAULEY by e-mail at james.mcauley@ndm.gov.on.ca or by telephone at (705) 670-5880.

Yours sincerely,

Stephen B. Beneteau
Acting Supervisor, Geoscience Assessment Office
Mining Lands Section

Visit our website at: www.gov.on.ca/MNDM/MINES/LANDS/mlsmnpge.htm

Correspondence ID: 15013
Copy for: Assessment Library
Work Report Assessment Results

Submission Number: 2.20085
Date Correspondence Sent: June 29, 2000

<table>
<thead>
<tr>
<th>Transaction Number</th>
<th>First Claim Number</th>
<th>Township(s) / Area(s)</th>
<th>Status</th>
<th>Approval Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>W0080.00101</td>
<td>1225784</td>
<td>GRENFELL</td>
<td>Approval After Notice</td>
<td>June 26, 2000</td>
</tr>
</tbody>
</table>

Section:
14 Geophysical MAG

The revisions outlined in the Notice dated May 12, 2000 have been received. Based on a review of this new information, the assessment work credit has been approved as outlined on the Declaration of Assessment Work Form accompanying this submission.

Correspondence to:
Resident Geologist
Kirkland Lake, ON

Assessment Files Library
Sudbury, ON

Recorded Holder(s) and/or Agent(s):
DOUGLAS RAYMOND ROBINSON
SWASTIKA, ONTARIO

BARRY KEN MCCOMBE
KIRKLAND LAKE, ONTARIO

BETTY (ELIZABETH) JOY ROBINSON
SWASTIKA, ONTARIO