MAGNETOMETER GEOPHYSICAL SURVEY REPORT
OF THE
GOLDTRACK RESOURCES INC. PROPERTY
LOIS LAKE GRID
LARDER LAKE MINING DIVISION
DISTRICT OF TIMISKAMING, ONTARIO

FOR

RECEIVED
APR 16 1987

ALEXANDER H. PERRON MINING LANDS SECTION

APRIL 7, 1987

MARY GREER GEOPHYSICAL TECHNICIAN
ILLUSTRATIONS

Location Map - Figure 1a). 2 a)

Location Map - Figure 1b). 2 b)

Accompanying Map. In Back Pocket

Scale: 1 inch to 200 feet
Date: October 1986

Goldtrack Resources Inc.
Lois Lake Grid
North Half
Ground Magnetometer Survey
Map No. L.N. 87-1a

Goldtrack Resources Inc.
Lois Lake Grid
South Half
Ground Magnetometer Survey
Map No. L.S. 87-1a
<table>
<thead>
<tr>
<th>Section</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>INTRODUCTION</td>
<td>1, 2</td>
</tr>
<tr>
<td>PROPERTY DESCRIPTION</td>
<td>2</td>
</tr>
<tr>
<td>LOCATION AND ACCESS</td>
<td>2</td>
</tr>
<tr>
<td>PREVIOUS WORK</td>
<td>2</td>
</tr>
<tr>
<td>SURVEY PROCEDURE</td>
<td>3</td>
</tr>
<tr>
<td>TOPOGRAPHY</td>
<td>3</td>
</tr>
<tr>
<td>GENERAL GEOLOGY</td>
<td>3, 4</td>
</tr>
<tr>
<td>ECONOMIC GOLD MINERALIZATION</td>
<td>4, 5</td>
</tr>
<tr>
<td>INSTRUMENTATION</td>
<td>6</td>
</tr>
<tr>
<td>PRESENTATION AND DISCUSSION OF RESULTS</td>
<td>7</td>
</tr>
<tr>
<td>CONCLUSIONS AND RECOMMENDATIONS</td>
<td>7, 8</td>
</tr>
<tr>
<td>BIBLIOGRAPHY</td>
<td>9</td>
</tr>
<tr>
<td>CERTIFICATE</td>
<td>10</td>
</tr>
<tr>
<td>APPENDIX A</td>
<td>11</td>
</tr>
</tbody>
</table>
MAGNETOMETER GEOPHYSICAL SURVEY REPORT
OF THE
GOLDTRACK RESOURCES INC. PROPERTY
LOIS LAKE GRID
LARDER LAKE MINING DIVISION
DISTRICT OF TIMISKAMING, ONTARIO

INTRODUCTION

The Goldtrack Property consists of several contiguous mining claim groups which were prospected and explored under separate conditions and occasions. The properties were formerly identified as the Perron Group 1, 2 and 3, Perron North, Lois Lake Group, Ami Creek Claims and the Wedge Group. For the purpose of this report, the Ami Creek Group, the Wedge Group and Perron 2 are not part of this survey. For further information on previous work performed see the Regional Geologist Assessment Files. The claims covered by this report are listed in Appendix A as well as the associated property name and recording dates.

A geophysical grid, at a 400 foot line spacing was established by A. H. Perron in October 1986. During November of 1986, a magnetometer survey was performed over the North and South half of the property. The survey was performed by Kate Calberry, formerly of Perrons.

All drafting and interpretation was completed by Mary Greer.

The purpose of this report is to briefly describe the results obtained in said survey.
The anomalies detected therefrom are shown on the accompanying plan maps at a scale of one inch to 200 feet, that form an integral part of this report.

PROPERTY DESCRIPTION

The Goldtrack property, north and south half, consists of a contiguous block of (24) unpatented mining claims, located in Teck township, Larder Lake Mining Division, District of Timiskaming, Ontario, and are further described in Appendix 1. (See Appendix 1)

Ownership of the aforementioned groups of claims has been attested to by Alexander H. Perron, 103 Government Road East, Kirkland Lake, Ontario, and was not independently ascertained by the writer. (See Figure 1a).

LOCATION AND ACCESS

The Goldtrack claims are located in the western part of central Teck township, approximately situated between Perron Lake to the South, Lois Lake and Inverness Lake to the north and Amikougami Creek to the east.

This property is accessible via the old Goldthorpe Road and extends westward approximately four miles from the town of Chaput Hughes, which is two miles west of Kirkland Lake. (See Figure 1a and 1b).

PREVIOUS WORK

Isolated trenches are scattered over the properties but no records can be found to expand on this information. See Regional Geologists files for previously mentioned work.
Claim Location Map

Scale: 1 inch to 1/4 mile

Taken from a March 1986
SURVEY PROCEDURE

An northwest baseline was established from the No.2 post of claim L-642642 which was located at a patent survey pin. This line was cut for 7,600 feet.

A grid system of picket lines at 400 foot spacings, with stations each 100 feet was established at right angles to the baseline.

Readings were taken at 50 foot intervals on the picket lines.

TOPOGRAPHY

The general terrain varies from high dry ground to the central section of the property and a low swampy area of alder and spruce extending across the southern part of the group. There are several beaver ponds dotted across the property as well as Lois Lake located in the northeast corner. The area south of Inverness Lake consists of large areas of rocky exposed outcrop.

GENERAL GEOLOGY

O.D.M. Geological Map, 1945-1, covering Teck township, at a scale of one inch to 1,000 feet, indicates that the predominant bedrock of Perron North is basic to intermediate volcanics (greenstone). These basic to intermediate flows are fine to medium grained dark green rocks, the texture will vary with the thickness of the flow. These flows are very massive with structures found in them such as vesicles, amygdules, spherules and pillows.

There is scattered formations of Algoman age rock types, consisting of diorite and gabbro quartz diorite and quartz gabbro.
Syenite porphyry may be exposed as dikes or small irregular shaped bodies. Quartz-eyes may be found in the syenite porphyry classifying the porphyry as quartz feldspar porphyry. The porphyry is usually pink to bright red in colour, showing a presence of conspicuous crystals of feldspar.

ECONOMIC GOLD MINERALIZATION

Gold was first discovered in the vicinity of Larker Lake in 1903. During 1906 and 1907 a major staking rush was caused in the Kirkland Lake area. Once gold was discovered in the Swastika area in 1906, the mining and exploration activity quickly spread to Kirkland Lake. Gold was first discovered in the Kirkland Lake area in 1911-1912 and seven (7) major mining developments were quickly put into production.

The seven mines produced an average of more than 0.40 oz. Au/ton. These high gold values were found in quartz veins in intrusions along andesite west, steeply dipping fault zone. The quartz veins contained pyrite, pyrrhotite, and specular hematite.

Gold mineralization can be quite common in several rock types such as an altered basaltic lava flow containing no olivine, which apparently is identical to non-mineralized lava flows. Another example would be the gold bearing ultra mafic intrusions and lava flows common to the Larder Lake area, Timmins area and others; but similar ultra mafic intrusions and lava flows found elsewhere are not gold bearing.

Many varieties of mineralization are associated with gold deposits, including sulphides, sulphates, carbonates and silicates of iron, copper, lead arsenic and others.
The most common conclusion to be made concerning gold bearing locations is they are found in structurally complicated zones, the Kirkland Lake-Larder Lake Fault zone being a prime example.

The Kirkland Lake «Main Break» is an east plunging synclinorium located between the Lake Abitibi Batholith and the Round Lake Batholith. The Kirkland Lake-Larder Lake Fault zone marks the south location of the synclinorium and the Destor-Porcupine Fault zone marks the north. The major gold producing mines are found in these zones.

Particular examples of gold mineralization in ore types can be described by the ore of Kerr-Addison Mine located near the town of Virginiatown, Ontario, along the Kirkland Lake-Larder Fault zone.

(i) 'Green Carbonates' - gold occurs as free gold in quartz veins.
(ii) 'Flow Ores' - these ores are all pyritic and the grade of the ore has an inverse relationship to the grain size of the pyrite.

A generalization of gold occurrences is that gold is found in quartz veins or stringer zones, syenite porphyry is usually one of the rock types found in the vein zone and as mentioned previously, a definite structure (a shear or fault zone) is generally present. Pyrite is the main mineralization, but lesser amounts of chalcopyrite, galena and molybdenite and specularite are also found on occasion.
INSTRUMENTATION

i) Magnetic Survey:

This system uses a backward motion of spinning protons of a hydrogen atom within a fluid of hydrogen and carbon. These spinning magnetic protons are caused to have two opposite poles by applying a magnetic field using a current within a coil of wire. When the current is stopped, the protons precess about the earth's magnetic field and in turn generate a small current in the wire. This frequency of precession is proportional to the earth's total magnetic field.

This instrument is read directly in gammas which is the absolute value of the earth's total field for that station.

The instrument used for this survey was an EDA OMNI 350 Proton Precession Magnetometer, this instrument has a sensitivity of .01 gamma.

The diurnal variation was monitored by closing each loop at any secondary check station, at a gridline-baseline intersection.

Diurnal corrections were applied by linear distribution of any observed variation over the time between base stations. The corrections were calculated by using a time vs. drift graph.
PRESENTATION AND DISCUSSION OF RESULTS

Magnetometer Survey:

The field data is presented on two maps at a horizontal scale of one inch to 200 feet, Map No. L.N.-87-la and Map No. L.S.-87-la, found in the back pocket of this report.

The magnetic data is illustrated as isomagnetic contours (contour interval: 100 gammas) on a map of corrected magnetic values recorded at each station.

This survey was performed to tie in a large area of claims with several different surveys performed with different instruments and grid orientations. The survey found the south half of the Lois Lake Grid to have little magnetic response and no great variation over the claims.

The northern half showed a similar response, except for the most northern part northwest of Lois Lake. A noticeable change can be observed from L 56 + 00 W to L 76 + 00 W, 20 + 00 N to 40 + 00 N.

This change may possibly indicate a structural response caused by some faulting or change in the particular rock type.

CONCLUSIONS AND RECOMMENDATIONS

Further work should be considered across the northern part of the Goldtrack property.

The areas of greater magnetic change occur over areas of old trenches and gold prospects. The one area in particular L 64 + 00 W, 30 + 00 N
occurs on some old pits which were anomalous gold zones. The continuation of the magnetic response, as well as others occurring on L 60 + 00 W 22 + 50 N; and L 68 + 00 W to L 76 + 00 W 19 + 00 N to 25 + 50 N, may indicate further areas of interest for future diamond drilling and more power stripping.

A gradiometer survey may assist in further defining any magnetic response over the area of uniform magnetic values.

Respectfully submitted,

Mary Greer
Geophysical Technician

April 7, 1987
BIBLIOGRAPHY

Jas. E. Thomson

F. R. Ploeger
1980: No. S24 Kirkland Lake Gold Study, District of Timiskaming . . . Page 188 - 190

L. S. Jensen
1980: Gold Mineralization in the Kirkland Lake-Larder Lake Areas Page 59 - 65

M. J. Downes
I, Mary Greer, of Kirkland Lake, Ontario, do hereby certify:

1) That I am a Geophysical Technician and reside at:
 49 McKelvie Avenue, Kirkland Lake, Ontario, P2N 2K6

2) That I graduated from Sir Sandford Fleming College at
 Lindsay, Ontario, in 1978, with a diploma as a Geological
 Technician.

3) That I have been continuously engaged in my profession for
 the past six (6) years and I am qualified to write this
 report.

4) That I did not participate in this survey.

 April 7/87

 Date

 Mary Greer
 Geophysical Technician
<table>
<thead>
<tr>
<th>CLAIM NUMBER</th>
<th>FORMER PROPERTY NAME</th>
<th>RECORDING DATE</th>
</tr>
</thead>
<tbody>
<tr>
<td>L-565526</td>
<td>Perron One</td>
<td>May 22, 1980</td>
</tr>
<tr>
<td>L-565527</td>
<td>Perron One</td>
<td>May 22, 1980</td>
</tr>
<tr>
<td>L-565528</td>
<td>Perron One</td>
<td>May 22, 1980</td>
</tr>
<tr>
<td>L-565538</td>
<td>Perron One</td>
<td>February 25, 1981</td>
</tr>
<tr>
<td>L-565539</td>
<td>Perron North</td>
<td>September 16, 1982</td>
</tr>
<tr>
<td>L-599063</td>
<td>Perron One</td>
<td>January 11, 1983</td>
</tr>
<tr>
<td>L-599064</td>
<td>Perron North</td>
<td>April 9, 1985</td>
</tr>
<tr>
<td>L-599065</td>
<td>Perron North</td>
<td></td>
</tr>
<tr>
<td>L-640922</td>
<td>Perron One</td>
<td>February 1, 1982</td>
</tr>
<tr>
<td>L-640923</td>
<td>Perron North</td>
<td></td>
</tr>
<tr>
<td>L-640924</td>
<td>Lois Lake</td>
<td></td>
</tr>
<tr>
<td>L-640925</td>
<td>Perron One</td>
<td></td>
</tr>
<tr>
<td>L-642642</td>
<td>Perron One</td>
<td></td>
</tr>
<tr>
<td>L-668355</td>
<td>Perron North</td>
<td></td>
</tr>
<tr>
<td>L-842772</td>
<td>Lois Lake</td>
<td></td>
</tr>
<tr>
<td>L-842773</td>
<td></td>
<td></td>
</tr>
<tr>
<td>L-842774</td>
<td></td>
<td></td>
</tr>
<tr>
<td>L-842775</td>
<td></td>
<td></td>
</tr>
<tr>
<td>L-842777</td>
<td></td>
<td></td>
</tr>
<tr>
<td>L-842778</td>
<td></td>
<td></td>
</tr>
<tr>
<td>L-858027</td>
<td></td>
<td>March 27, 1986</td>
</tr>
<tr>
<td>L-858029</td>
<td></td>
<td></td>
</tr>
<tr>
<td>L-892282</td>
<td></td>
<td>May 9, 1986</td>
</tr>
<tr>
<td>L-892283</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

TOTAL CLAIMS = 24
Ministry of Development (Geophysical, Geological, Geochemical and Expenditures)

Report of Work

Type of Survey:
GEOPHYSICAL SURVEY - MAGNETOMETER

Claim Holder(s):
ALEXANDER H. PERRON

Address:
103 GOVERNMENT ROAD EAST, KIRKLAND LAKE, ONTARIO P2N 1A9

Survey Company:
PERRONS

Prospector's Licence No.:
K-19026

Date:
29/09/86 07/10/86

Total Miles of Line Cut:
28.0 MILES

Credits Requested per Each Claim in Columns at right

Special Provisions
For first survey:
Enter 40 days. (This includes line cutting)

For each additional survey:
Using the same grid:
Enter 20 days (for each)

Man Days
Complete reverse side and enter totals here

Geophysical

- Electromagnetic

- Magnetometer

- Radiometric

- Other

Geological

- Other

Geochemical

- Other

Expenditures (excludes power stripping)

Type of Work Performed

Calculation of Expenditure Days Credits

Total Expenditures

Total Days Credits

Instructions

Total Days Credits may be apportioned at the claim holder's choice. Enter number of days credits per claim selected in columns at right.

Date:
FEBRUARY 12/87

Certification Verifying Report of Work

I hereby certify that I have a personal and intimate knowledge of the facts set forth in the Report of Work annexed hereto, having performed the work or witnessed same during and/or after its completion and the annexed report is true.

Name and Postal Address of Person Certifying:
MARY GREER, 103 GOVERNMENT ROAD EAST, KIRKLAND LAKE, ONT. P2N 1A9

Date Certified:
FEB. 12/87
Ministry of Northern Development and Mines

Report of Work
(Geophysical, Geological, Geochemical and Expenditures)

Instructions:
- Please type or print.
- If number of mining claims traversed exceeds space on this form, attach a list.

Note:
- Only days credits calculated in the "Expenditures" section may be entered in the "Expend. Days Cr." columns.
- Do not use shaded areas below.

Type of Survey(s)
GEOPHYSICAL SURVEY - MAGNETOMETER

Claim Holder(s)
ALEXANDER H. PERRON

Address
103 GOVERNMENT ROAD EAST, KIRKLAND LAKE, ONTARIO P2N IA9

Survey Company
PERRONS

Date of Survey (from & to)
29-09-85 to 07-10-85

Total Miles of line Cut
28.0 MILES

Name and Address of Author (of Geo-Technical report)
MARY GREER, 103 GOVERNMENT ROAD EAST, KIRKLAND LAKE, ONTARIO P2N IA9

Credits Requested per Each Claim in Columns at right

<table>
<thead>
<tr>
<th>Mining Claim</th>
<th>Days</th>
<th>Expend. Days Cr.</th>
</tr>
</thead>
<tbody>
<tr>
<td>L 842772</td>
<td>40</td>
<td></td>
</tr>
<tr>
<td>L 842773</td>
<td></td>
<td></td>
</tr>
<tr>
<td>L 842774</td>
<td></td>
<td></td>
</tr>
<tr>
<td>L 842775</td>
<td></td>
<td></td>
</tr>
<tr>
<td>L 842777</td>
<td></td>
<td></td>
</tr>
<tr>
<td>L 842778</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Special Provisions

For first survey:
Enter 40 days. (This includes line cutting)

For each additional survey:
using the same grid:
Enter 20 days (for each)

Man Days
Complete reverse side and enter total(s) here

Geophysical
- Electromagnetic
- Magnetometer
- Radiometric
- Other

Geological
- Radiometric
- Other

Geochemical

Expenditures (excludes power stripping)

Type of Work Performed

Calculation of Expenditure Days Credits

Total Expenditures

Total Days Credits

Instructions
Total Days Credits may be apportioned at the claim holder's choice. Enter number of days credits per claim selected in columns at right.

Certification

MARCH 2, 1987

I hereby certify that I have a personal and intimate knowledge of the facts set forth in the Report of Work annexed hereto, having performed the work at witness's name and title in all its particulars and the Annexed Report is true.

MARY GREER, 103 GOVERNMENT ROAD EAST, KIRKLAND LAKE, ONTARIO P2N IA9

Date Certified
MARCH 2, 1987

Date Certified
MARCH 2, 1987

Date Certified
MARCH 2, 1987
Claim Holder(s): ALEX H. PERRON

Address: 103 GOVERNMENT ROAD EAST, KIRKLAND LAKE, ONTARIO P2N 1A9

Survey Company: PERRONS

Date of Survey (from & to): 09 06 07 - 10 06 28.0 MILES

Total Miles of line Cut: 28.0 MILES

Name and Address of Author (of Geo-Tecnnical report): MARY GREER, 103 GOVERNMENT ROAD EAST, KIRKLAND LAKE, ONT. P2N 1A9

Credits Requested per Each Claim in Columns at right

Special Provisions

For first survey:
Enter 40 days. (This includes line cutting)

For each additional survey:
using the same grid:
Enter 20 days (for each)

Man Days
Complete reverse side and enter total(s) here

Geophysical
- Electromagnetic
- Magnetometer
- Radiometric
- Other

Geochemical

Type of Work Performed

Calculation of Expenditure Days Credits

Total Expenditures $ + 15 = Days Credits

Expenditures (excludes power stripping)

Type of Work Performed

Performed on Claim(s)

Certification Verifying Report Of Work

I hereby certify that I have a personal and intimate knowledge of the facts set forth in the Report of Work annexed hereto, having performed the work or witnessed same during and/or after its completion and the annexed report is true.

Name and Postal Address of Person Certifying:
MARY GREER, 103 GOVERNMENT ROAD EAST, KIRKLAND LAKE, ONTARIO P2N 1A9

Date Certified: MARCH 24, 1987
GEOPHYSICAL SURVEY - MAGNETOMETER

<table>
<thead>
<tr>
<th>Claim Holder(s)</th>
<th>Northern Development Mines Ontario</th>
</tr>
</thead>
<tbody>
<tr>
<td>ALEXANDER H. PERRON</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Address</th>
<th>103 GOVERNMENT ROAD EAST, KIRKLAND LAKE, ONTARIO P2N IA9</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Survey Company</th>
<th>PERRONS</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Date of Survey</th>
<th>29 09 86</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Miles of line Cut</td>
<td>28.0 MILES</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Name and Address of Author of Geo-Technical report</th>
<th>MARY GREER, 103 GOVERNMENT ROAD EAST, KIRKLAND LAKE, ONT. P2N IA9</th>
</tr>
</thead>
</table>

Credits Requested per Each Claim in Columns at right

<table>
<thead>
<tr>
<th>Special Provisions</th>
<th>Geophysical</th>
<th>Days per Claim</th>
<th>Mining Claims Traversed (List in numerical sequence)</th>
</tr>
</thead>
<tbody>
<tr>
<td>For first survey:</td>
<td>Electromagnetic</td>
<td>20</td>
<td>L1 565526</td>
</tr>
<tr>
<td>Enter 40 days. (This includes line cutting)</td>
<td>Magnetometer</td>
<td>565527</td>
<td></td>
</tr>
<tr>
<td>For each additional survey:</td>
<td>Radiometric</td>
<td>565528</td>
<td></td>
</tr>
<tr>
<td>using the same grid:</td>
<td>Other</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Enter 20 days (for each)</td>
<td>Geological</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Geochemical</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Man Days</th>
<th>Geophysical</th>
<th>Days per Claim</th>
</tr>
</thead>
<tbody>
<tr>
<td>Complete reverse side and enter total(s) here</td>
<td>Electromagnetic</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Magnetometer</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Radiometric</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Geochemical</td>
<td></td>
</tr>
</tbody>
</table>

Airborne Credits

- Electromagnetic
- Magnetometer
- Radiometric
- Other
- Geological
- Geochemical

<table>
<thead>
<tr>
<th>Days per Claim</th>
</tr>
</thead>
<tbody>
<tr>
<td>Electromagnetic</td>
</tr>
<tr>
<td>Magnetometer</td>
</tr>
<tr>
<td>Radiometric</td>
</tr>
</tbody>
</table>

Expenditures (excludes power stripping)

<table>
<thead>
<tr>
<th>Type of Work Performed</th>
<th>Performed on Claim(s)</th>
</tr>
</thead>
</table>

Calculation of Expenditure Days Credits

<table>
<thead>
<tr>
<th>Total Expenditures</th>
<th>Total Days Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>$</td>
<td>15</td>
</tr>
</tbody>
</table>

Instructions

- Total Days Credits may be apportioned at the claim holder's choice. Enter number of days credits per claim selected in columns at right.

<table>
<thead>
<tr>
<th>Date</th>
<th>APRIL 15/86</th>
</tr>
</thead>
</table>

Certification Verifying Report of Work

I hereby certify that I have a personal and intimate knowledge of the facts set forth in the Report of Work annexed hereto, having performed the work or witnessed same during and/or after its completion and the annexed report is true.

<table>
<thead>
<tr>
<th>Name and Postal Address of Person Certifying</th>
<th>MARY GREER, 103 GOVERNMENT ROAD EAST, KIRKLAND LAKE, ONTARIO P2N IA9</th>
</tr>
</thead>
</table>
Geophysical-Geological-Geochemical Technical Data Statement

TO BE ATTACHED AS AN APPENDIX TO TECHNICAL REPORT

FACTS SHOWN HERE NEED NOT BE REPEATED IN REPORT

TECHNICAL REPORT MUST CONTAIN INTERPRETATION, CONCLUSIONS ETC.

Type of Survey(s): Magnetometer Geophysical Survey

Township or Area: Teck Township

Claim Holder(s): ALEXANDER H. PERRON

103 GOV'T RD. E, KIRKLAND LAKE, ONT

Survey Company: PERRONS' INC., P2N 1A9

Author of Report: MARY GREER

49 MCKELVIE AVE., KIRKLAND LAKE, ONT

Covering Dates of Survey: 29/09/86 - 07/10/86

Total Miles of Line Cut: APPROXIMATELY 28.0 MILES

SPECIAL PROVISIONS CREDITS REQUESTED

Geophysical

- Electromagnetic
- Magnetometer
- Radiometric
- Other

Geological

Geochemical

AIRBORNE CREDITS (Special provision credits do not apply to airborne surveys)

- Magnetometer
- Electromagnetic
- Radiometric

DATE: April 7/87

SIGNATURE: Mary Greer

Author of Report or Agent

Res. Geol. Qualifications: 2-75

Previous Surveys

<table>
<thead>
<tr>
<th>File No.</th>
<th>Type</th>
<th>Date</th>
<th>Claim Holder</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

TOTAL CLAIMS: 24

GEOPHYSICAL TECHNICAL DATA

GROUND SURVEYS
- If more than one survey, specify data for each type of survey

<table>
<thead>
<tr>
<th>Number of Stations</th>
<th>Number of Readings</th>
</tr>
</thead>
<tbody>
<tr>
<td>1049</td>
<td>2099</td>
</tr>
</tbody>
</table>

- Station interval: **100 FEET**
- Line spacing: **400 FEET**

Instrument
- **EDA OMNI IV**

Accuracy
- Scale constant: **+ 0.01 GAMMA**

Diurnal correction method
- TIE LINE COMPUTER MODE

Base Station check-in interval (hours)
- 1 HOUR

Base Station location and value
- **BL 0 + 00 58149 GAMMAS**

ELECTROMAGNETIC

- **Instrument**
- **Coil configuration**
- **Coil separation**
- **Accuracy**
- **Method**: [] Fixed transmitter [] Shoot back [] In line [] Parallel line
- **Frequency**: (specify V.L.F. station)

Parameters measured

GRAVITY

- **Instrument**
- **Scale constant**
- **Corrections made**

Base station value and location

Elevation accuracy

Induced Polarization Resistivity

- **Instrument**
- **Method**: [] Time Domain [] Frequency Domain

Parameters
- **On time**
- **Off time**
- **Delay time**
- **Integration time**

Power

Electrode array

Electrode spacing

Type of electrode
SELF POTENTIAL

Instrument ___ Range ________________________

Survey Method ___

Corrections made __

RADIOMETRIC

Instrument ___

Values measured __

Energy windows (levels) ____________________________________

Height of instrument _______________________________________

Background Count ___

Size of detector ___

Overburden ___

(type, depth — include outcrop map)

OTHERS (SEISMIC, DRILL WELL LOGGING ETC.)

Type of survey ___

Instrument ___

Accuracy ___

Parameters measured _______________________________________

Additional information (for understanding results) _______________

AIRBORNE SURVEYS

Type of survey(s) ___

Instrument(s) ___ (specify for each type of survey)

Accuracy ___ (specify for each type of survey)

Aircraft used __

Sensor altitude ___

Navigation and flight path recovery method ____________________

Aircraft altitude ___

Line Spacing ___

Miles flown over total area ______________________ Over claims only ____________________
GEOCHEMICAL SURVEY – PROCEDURE RECORD

Numbers of claims from which samples taken.

<table>
<thead>
<tr>
<th>Total Number of Samples</th>
<th>Type of Sample</th>
<th>Average Sample Weight</th>
<th>Method of Collection</th>
<th>Soil Horizon Sampled</th>
<th>Horizon Development</th>
<th>Sample Depth</th>
<th>Terrain</th>
<th>Drainage Development</th>
<th>Estimated Range of Overburden Thickness</th>
</tr>
</thead>
</table>

ANALYTICAL METHODS

Values expressed in:

- [] per cent
- [] p. p. m.
- [] p. p. b.

Cu, Pb, Zn, Ni, Co, Ag, Mo, As-(circle)

Others

Field Analysis ([tests])

<table>
<thead>
<tr>
<th>Extraction Method</th>
<th>Analytical Method</th>
<th>Reagents Used</th>
</tr>
</thead>
</table>

Field Laboratory Analysis

No. ([tests])

<table>
<thead>
<tr>
<th>Extraction Method</th>
<th>Analytical Method</th>
<th>Reagents Used</th>
</tr>
</thead>
</table>

Commercial Laboratory ([tests])

<table>
<thead>
<tr>
<th>Name of Laboratory</th>
<th>Extraction Method</th>
<th>Analytical Method</th>
<th>Reagents Used</th>
</tr>
</thead>
</table>

SAMPLE PREPARATION

(Includes drying, screening, crushing, ashing)

Mesh size of fraction used for analysis

General

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>128/87</td>
<td>96/87</td>
<td></td>
</tr>
<tr>
<td>--------</td>
<td>-------</td>
<td></td>
</tr>
<tr>
<td>8.58027</td>
<td>8.42772</td>
<td></td>
</tr>
<tr>
<td>79</td>
<td>73</td>
<td></td>
</tr>
<tr>
<td>892282</td>
<td>74</td>
<td></td>
</tr>
<tr>
<td>83</td>
<td>75</td>
<td></td>
</tr>
<tr>
<td>45/87</td>
<td>71</td>
<td></td>
</tr>
<tr>
<td>6-12-12</td>
<td>76</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>156/87</th>
</tr>
</thead>
<tbody>
<tr>
<td>565526</td>
</tr>
<tr>
<td>28</td>
</tr>
</tbody>
</table>
THE TOWNSHIP OF
TECK
DISTRICT OF TIMISKAMING
LARDER LAKE
MINING DIVISION

SCALE 1 INCH = 20 CHAINS

DISPOSITION OF CROWN LANDS
PATENT, SURFACE AND MINING RIGHTS
- SURFACE RIGHTS ONLY
- MINING RIGHTS ONLY
- LEASE, SURFACE AND MINING RIGHTS
- SURFACE RIGHTS ONLY
- MINING RIGHTS ONLY

LICENSE OF OCCUPATION
MINED MATERIALS, IMPROVED ROADS, HIGHWAYS, MINES, POWER LINES, MARSHES, MUSKEGS

NOTES
- NOTE: surface rights reservation along the shores of all lakes and rivers.
- Areas shown subject to the disposal of the land.
- Mining claims subject to Sec. 36 of the Mining Act, R.S.O. 1950.

AREAS WITHDRAWN FROM STAKING
- DATE OF ISSUE: 16/5/1937

PLAN NO. M. 392
ONTARIO
MINISTRY OF NATURAL RESOURCES
SURVEYS AND MAPPING BRANCH
SYMBOLS
Base Station
Isomagnetic contours
Claim post
Claim line
Lake

INSTRUMENTATION
EDA OMNI IV PPM
Contour interval = 100 gammas
Datum = 58,000 gammas
Contoured by: Mary Green

KEY MAP
(1/2 inch to 2 miles)

PROPERTY
GOLDTRACK RESOURCES INC.
LOIS LAKE GRID SOUTH HALF
TECK TOWNSHIP
LARDER LAKE MINING DIVISION
DISTRICT OF TIMISKAMING, ONTARIO

GOLDTRACK RESOURCES INC.
GROUND MAGNETOMETER SURVEY
TECK TOWNSHIP
LARDER LAKE MINING DIVISION
DISTRICT OF TIMISKAMING, ONTARIO

SOUTH HALF

PERRONS KIRK AND LABAT

Kirk and Laba

MAG. N I 0 0 W
Grid North 40 0