A REPORT ON AN INDUCED POLARIZATION SURVEY
performed over the SWAYZE PROPERTY
Dore Township (Ontario) (NTS 41-O/15)
and submitted to INMET MINING CORPORATION
by Hugues Potvin
August 1996
CONTENTS

1. INTRODUCTION .. 3

2. THE SWAYZE PROPERTY ... 3
 2.1 Location and Access ... 3
 2.2 Description .. 3
 2.3 Survey Grid .. 3

3. TECHNICAL SPECIFICATIONS OF THE SURVEY 6
 3.1 Generalities .. 6
 3.2 Electrode Array ... 7
 3.3 Equipment .. 7
 3.4 IP Survey Parameters Calculation 8
 3.5 Quality Control .. 9

4. DISCUSSION OF RESULTS .. 10

5. CONCLUSION AND RECOMMENDATIONS 14

LIST OF FIGURES
 Figure 1: General location of the property 4
 Figure 2: Claim map and survey grid 5
 Figure 3: The dipole-dipole array 7
 Figure 4: The transmitted signal at C₁-C₂ 7
 Figure 5: The signal integration windows at P₁-P₂ 8

APPENDICES

Bound at the end of the report:

Dipole-dipole pseudosections (19) of the apparent resistivity, apparent chargeability and metal factor (scale 1:5000).

Inside plastic jackets (scale 1:5000):

Map no. 96-N008-4.0 : Geophysical interpretation
Map no. 96-N008-4.2 : Apparent resistivity contours
Map no. 96-N008-4.3 : Apparent chargeability contours

Submitted separately

One colour copy of maps 96-N008-4.2 and -4.3 (96-N008-4.2c and -4.3c).
1. INTRODUCTION

At the request of Inmet Mining Corporation, VAL D’OR SAGAX Inc. performed an induced polarization survey (dipole-dipole array) over the Swayze Property located in the Dore Township, Ontario (NTS 41-O/15) (see figure 1 next page). A total of 40,05 kilometres of IP were surveyed on the property (16,00 kilometres between June 17 and June 23 and 24,05 kilometres between July 21 and August 1st, 1996).

After a brief description of the method employed, we discuss the results obtained and attempt to interpret them in light of the available geological and geophysical information. Based on the results of this interpretation, we then establish what further work, if any, should be performed.

2. THE SWAYZE PROPERTY

2.1 Location and Access

The survey grid is located approximately 30 kilometres north-north-east of the locality of Sultan and 38 kilometres south of lake Ivanhoe, near the locality of Foleyet, Ontario. The survey grid is in the north-western part of the Dore township (NTS 41-O/15). The grid is accessed by a gravel road from lake Ivanhoe or Sultan.

2.2 Description

The Swayze Property, held by Inmet Mining Corporation consists of a block of 35 mining claims located within the Dore township. A total of 23 claims were totally or partially covered by the present field work (see figure 2, page 5) and are listed below:

11544-01, -02, -03, -04, -05, -07, -08, -10, -11, -12, -13, -14, -15, -16 & -17 (15 claims)
1189640 (1 claim)
11910-59 & -60 (2 claims)
12059-78, -79, -80 & -81 (4 claims)
59537 (1 claim)

2.3 Survey Grid

A metric grid was cut on the portion of the property that is the object of the present survey. The base line is oriented N 89°. Lines were cut perpendicularly to the base line every 250 metres and chained every 25 metres. Four tie lines labelled TL 8+50S, 20+00S, 32+50S and 40+00S were also cut (see figure 2).
Figure 2: Claim map and survey grid
3. TECHNICAL SPECIFICATIONS OF THE SURVEY

3.1 Generalities

A total of 40,05 kilometres of IP were surveyed from June 17 to June 23 and from July 21 to August 1st, 1996 over the Swayze Property (see table 1 below). The field work was performed by Mr. Luc Bilodeau for the first part and Mr. Hugues Potvin, Eng. & Geophysicist, for the second portion of the job. In the two cases, four other workers completed the team.

Table 1: IP Coverage Performed over the Swayze Property

<table>
<thead>
<tr>
<th>Line Coverage</th>
<th>Stations</th>
<th>Metres</th>
</tr>
</thead>
<tbody>
<tr>
<td>L 14+12W</td>
<td>21+25S to 7+25S</td>
<td>1400</td>
</tr>
<tr>
<td>L 12+50W</td>
<td>40+00S to 23+00S</td>
<td>1700</td>
</tr>
<tr>
<td>L 10+00W</td>
<td>40+00S to 8+00S</td>
<td>3200</td>
</tr>
<tr>
<td>L 7+50W</td>
<td>40+00S to 0+00</td>
<td>4000</td>
</tr>
<tr>
<td>L 5+00W</td>
<td>40+00S to 0+00</td>
<td>4000</td>
</tr>
<tr>
<td>L 2+50W</td>
<td>40+00S to 8+50S</td>
<td>3150</td>
</tr>
<tr>
<td>L 0+00</td>
<td>40+00S to 0+00</td>
<td>4000</td>
</tr>
<tr>
<td>L 2+50E</td>
<td>40+25S to 27+25S</td>
<td>1300</td>
</tr>
<tr>
<td>L 2+50E</td>
<td>13+50S to 1+00S</td>
<td>1250</td>
</tr>
<tr>
<td>L 5+00E</td>
<td>34+50S to 28+00S</td>
<td>650</td>
</tr>
<tr>
<td>L 7+50E</td>
<td>13+75S to 5+75S</td>
<td>800</td>
</tr>
<tr>
<td>L 10+00E</td>
<td>25+00S to 7+00S</td>
<td>1800</td>
</tr>
<tr>
<td>L 12+50E</td>
<td>44+50S to 37+50S</td>
<td>700</td>
</tr>
<tr>
<td>L 12+50E</td>
<td>33+75S to 0+50S</td>
<td>3325</td>
</tr>
<tr>
<td>L 15+00E</td>
<td>24+50S to 0+00</td>
<td>2450</td>
</tr>
<tr>
<td>L 17+50E</td>
<td>39+25S to 31+75S</td>
<td>750</td>
</tr>
<tr>
<td>L 17+50E</td>
<td>20+75S to 0+25S</td>
<td>2050</td>
</tr>
<tr>
<td>L 20+00E</td>
<td>37+75S to 27+75S</td>
<td>1000</td>
</tr>
<tr>
<td>L 20+00E</td>
<td>25+25S to 0+00</td>
<td>2525</td>
</tr>
<tr>
<td>total</td>
<td></td>
<td>40,05 km</td>
</tr>
</tbody>
</table>

INMET MINING CORPORATION
3.2 Electrode Array

The dipole-dipole array (figure 3 below) was used for the investigation of all IP lines performed on the Swayze Property. Nominal spacing a between the electrodes was set at 50 metres and separation factor n between dipoles ranged from 1 to 6.

![Figure 3A: dipôle-dipôle](image)

Figure 3: The dipole-dipole array

3.3 Equipment

The induced polarization equipment employed consisted of a transmitting device as well as a receiving device, both working in pulse current mode. A Phoenix Geophysics Ltd. model IPT-1 device, powered by a motor generator capable of supplying 1 kW of continuous power, was used to provide a stable current. Stainless steel electrodes were used to transmit current. The transmitted current was a bipolar on-off (50% duty cycle) square wave (see figure 4 below).

![Figure 4: The transmitted signal at C_1-C_2](image)
Primary voltage V_p and apparent resistivity M were measured with an EDA IP-6 receiver. Integration of the transient voltage after current shut-off was performed in ten gates of 160 ms each (figure 5 below).

Parameters M_1 to M_{10} are automatically normalized with respect to a Standard Newmont curve, where the voltage decrease is due to pure electrode polarization. Any parasitic effect on the received signal can then be detected and filtered out using the deviation from the norm of the values of M_1 to M_{10} read at the receiver. Stainless steel electrodes were used for the receiving dipole.

![Figure 5: The signal integration windows at P_1-P_2](image)

3.4 IP Survey Parameters Calculation

Apparent resistivity was determined using the following equation:

$$\rho_a = \pi \cdot n \cdot (n+1) \cdot (n+2) \cdot a \cdot \frac{V_p}{I} \quad (\text{in } \Omega \cdot m)$$

Where

- $a =$ dipole length (50 m)
- $n =$ dipole separation factor
- $V_p =$ primary voltage (mV)
- $I =$ injected current (mA)
Chargeability M is the average of the ten normalized windows, expressed in mV/V.

The metal factor is calculated with the following equation: $FM = \frac{1000 \cdot M}{\sqrt{\rho_a}}$

The filter used consisted of an equal weight of twelve data point triangle.

3.5 Quality Control

The apparent resistivity error is essentially that of the analog current I readout and the nominal spacing a between the electrodes, approximately 5% in all.

Final chargeability measurements (M_1 to M_{10}) represent the average of 6 to 12 measuring cycles. However the difference between the ten normalized windows is the best indicator of the quality and the purity of a chargeability reading. Hence, if parasitic signals such as telluric noise and electromagnetic coupling are encountered, the repeatability and the stability of an induced polarization measurement (chargeability, frequency effect, or phase angle) do not necessarily mean quality, because these parasitic signals are periodic and affect each measurement in a similar fashion. Normalization enables us to compare precisely and in situ the shape of the voltage curve with that of a curve caused by a pure electrode polarization effect.
4. DISCUSSION OF RESULTS

The induced polarization survey performed by VAL D'OR SAGAX Inc. delineated fourteen (14) anomalies labelled DD-1 to DD-14, as well as a few isolated anomalies, which were not marked. The priority given to the anomalies is based first on the resistivity-chargeability contrast, and then to the available geological information. So one has to consider all the other information (geological and other) in possession of Inmet Mining Corporation before proceeding with the recommended follow-up formulated at the end of this report.

Anomalies DD-1, DD-3, DD-8, DD-9, DD-4, and DD-5 show the best resistivity-chargeability contrast of this property; so, from a geophysical point of view, they must be considered in priority. The source of these six anomalies seems to be shallow. A geological verification on the field is advisable.

Anomaly DD-7 and DD-10 are open and strongly polarizable in their east side.

Anomalies DD-14, DD-12, DD-13, and DD-6 are conductive and locally weakly polarizable. These anomalies probably represent locally weakly-mineralized fault zones.

Finally, note the presence of a few anomalies (marked or not) near a geological interpreted fault.

Table 2 on the following pages describes all the physical characteristics of the IP anomalies.
<table>
<thead>
<tr>
<th>Name</th>
<th>Location</th>
<th>Chargeability contrast</th>
<th>Resistivity contrast</th>
<th>Remarks and recommendations</th>
<th>Drilling target</th>
<th>Priority</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Line</td>
<td>Station</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DD-1</td>
<td>7 + 50W</td>
<td>3 + 75S</td>
<td>++ + +</td>
<td>Strongly polarizable and conductive source, especially in its western part. This anomaly is within a basalt rock unit and stays open to the east and west. If the source of the anomaly is not known (presence of graphite for example), we recommend a preliminary verification on the field and if it is geologically justified, then a drilling of the anomaly. Additional IP coverage to the west is also recommended if the D.D.H. results are conclusive.</td>
<td>L: 7 + 50W</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>5 + 00W</td>
<td>5 + 50S</td>
<td>++ + +</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0 + 00</td>
<td>4 + 50S</td>
<td>++ + +</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2 + 50E</td>
<td>4 + 75S</td>
<td>++ + +</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DD-2</td>
<td>17 + 50E</td>
<td>4 + 75S</td>
<td>+</td>
<td>Weakly polarizable source, open to the east, with a resistivity contrast only at line 17+50E. This anomaly lies within a basalt rock unit.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>20 + 00E</td>
<td>4 + 75S</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DD-3</td>
<td>0 + 00</td>
<td>9 + 50S</td>
<td>++ + +</td>
<td>Strongly to moderately polarizable source with a good resistivity contrast. The source is within a sedimentary rock unit. If the source of the anomaly is not known, we recommend a preliminary verification on the field; if it is geologically justified, then a drilling of the anomaly.</td>
<td>L: 15+00E</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>2 + 50E</td>
<td>10 + 25S</td>
<td>++ + +</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>7 + 50E</td>
<td>8 + 75S</td>
<td>++ + +</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>10 + 00E</td>
<td>8 + 75S</td>
<td>++ + +</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>12 + 50E</td>
<td>9 + 00S</td>
<td>++ + +</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>15 + 00E</td>
<td>8 + 25S</td>
<td>++ + +</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>17 + 50E</td>
<td>10 + 00S</td>
<td>++ + +</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>20 + 00E</td>
<td>9 + 50S</td>
<td>++ + +</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DD-4</td>
<td>14 + 12W</td>
<td>8 + 00S</td>
<td>++ + +</td>
<td>Strongly polarizable and conductive source. This anomaly, open to the west, is located between faults within sedimentary rocks and gabbro. If the source of the anomaly is not known, we recommend first a verification on the field and afterwards, if it is geologically justified, a drilling of the anomaly. We also recommend additional IP coverage to the west if the results of the D.D.H. are conclusive.</td>
<td>L: 5 + 00W</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>10 + 00W</td>
<td>9 + 50S</td>
<td>++ + +</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>7 + 50W</td>
<td>10 + 50S</td>
<td>++ + +</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>5 + 00W</td>
<td>12 + 00S</td>
<td>++ + +</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2 + 50W</td>
<td>13 + 00S</td>
<td>++ + +</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Name</td>
<td>Location</td>
<td>Chargeability contrast</td>
<td>Resistivity contrast</td>
<td>Remarks and recommendations</td>
<td>Drilling target</td>
<td>Priority</td>
</tr>
<tr>
<td>------</td>
<td>----------</td>
<td>------------------------</td>
<td>---------------------</td>
<td>-----------------------------</td>
<td>-----------------</td>
<td>----------</td>
</tr>
<tr>
<td>DD-5</td>
<td></td>
<td></td>
<td></td>
<td>Moderately polarizable and conductive source. There is no resistivity contrast at line 15+00E. This source is within a feldspath rock unit and delimited east and west by two faults. If the source of the anomaly is not known we recommend a preliminary verification on the field and if it is geologically justified, a D.D.H.</td>
<td>L: 20+00E S: 14+25S D: -75 m</td>
<td>6</td>
</tr>
<tr>
<td>DD-6</td>
<td></td>
<td></td>
<td></td>
<td>Very weakly conductive and polarizable source. This anomaly is not conductive at lines 5+00W and 0+00 and not polarizable at line 10+00W. The source lies in good part within a gabbro unit. The anomaly probably represents a locally weakly-mineralized fault zone.</td>
<td></td>
<td>10</td>
</tr>
<tr>
<td>DD-7</td>
<td></td>
<td></td>
<td></td>
<td>Moderately to strongly polarizable source open eastward. The resistivity contrast is better at line 20+00E. Additional IP coverage is recommended to the east to better define the anomaly.</td>
<td></td>
<td>7</td>
</tr>
<tr>
<td>DD-8</td>
<td></td>
<td></td>
<td></td>
<td>Moderately to strongly polarizable source with a strong resistivity contrast. The anomaly is within a feldspath rock unit. If the source of the anomaly is not known, we recommend first a preliminary verification on the field, then a D.D.H.</td>
<td>L: 7+50W S: 21+25S D: -100 m</td>
<td>3</td>
</tr>
<tr>
<td>DD-9</td>
<td></td>
<td></td>
<td></td>
<td>Moderately to strongly polarizable source with a good resistivity contrast, especially to the west. The source is within sedimentary and gabbro rock units. If the source of this anomaly is not known, we recommend a preliminary verification on the field, followed by additional IP coverage between lines 0+00 and 12+50E.</td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>Name</td>
<td>Location</td>
<td>Chargeability contrast</td>
<td>Resistivity contrast</td>
<td>Remarks and recommendations</td>
<td>Drilling target</td>
<td>Priority</td>
</tr>
<tr>
<td>--------</td>
<td>----------</td>
<td>------------------------</td>
<td>---------------------</td>
<td>---</td>
<td>----------------</td>
<td>----------</td>
</tr>
<tr>
<td></td>
<td>Line</td>
<td>Station</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DD-10</td>
<td>17+50E</td>
<td>34+50S</td>
<td>+</td>
<td>Conductive source with a moderate chargeability contrast on line 20+00E. The anomaly is within a Basalt rock unit and stays open eastward. Additional IP coverage is recommended to the east to better define the anomaly.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>20+00E</td>
<td>33+75S</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DD-11</td>
<td>7+50W</td>
<td>30+00S</td>
<td>+</td>
<td>Conductive to resistive source with a weak chargeability increase on line 5+00W. No further work recommended.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>5+00W</td>
<td>30+50S</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DD-12</td>
<td>2+50W</td>
<td>33+25S</td>
<td>+</td>
<td>Conductive source with a weak chargeability contrast. The anomaly lies within a tonalite rock unit. This anomaly possibly represents a locally weakly-mineralized fault zone.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0+00</td>
<td>33+50S</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2+50E</td>
<td>32+75S</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DD-13</td>
<td>12+50W</td>
<td>33+00S</td>
<td>+</td>
<td>Conductive source open to the west with a weak chargeability contrast on line 7+50W. This anomaly is within a tonalite rock unit and probably represents a locally weakly-mineralized fault zone.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>10+00W</td>
<td>34+50S</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>7+50W</td>
<td>32+75S</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DD-14</td>
<td>12+50W</td>
<td>36+00S</td>
<td>+</td>
<td>Conductive source open to the east and west. The source is locally weakly polarizable in its eastern part. This anomaly lies within a tonalite rock unit and probably represents a locally weakly-mineralized fault zone.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>10+00W</td>
<td>36+50S</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>7+50W</td>
<td>35+00S</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>5+00W</td>
<td>34+75S</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2+50W</td>
<td>36+50S</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0+00</td>
<td>36+25S</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2+50E</td>
<td>35+37S</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1. The anomaly locations are based on the chargeability contrast.
2. Drilling target: L = Line; S = Station; D = Depth
5. CONCLUSION AND RECOMMENDATIONS

Val d'Or Sagax Inc. performed an induced polarization survey, totalling 40,05 kilometres, during June and July 1996. The results of this survey and all the available geoscientific information are the base of the recommendations formulated here. Table 3 summarizes the recommended follow-up work to be completed over this property. These priorities could be modified by Inmet Mining Corporation based on additional information.

Table 3: Summary of follow-up surveys to be completed

<table>
<thead>
<tr>
<th>Anomaly</th>
<th>Type of work recommended</th>
<th>Priority</th>
</tr>
</thead>
<tbody>
<tr>
<td>DD-1</td>
<td>Preliminary verification on the field. DDH if geologically justified. Target coordinates: L: 7+50W, S: 3+75S, D: -75 m. Additional IP coverage to the west if the results of the D.D.H. are conclusive.</td>
<td>1</td>
</tr>
<tr>
<td>DD-3</td>
<td>Preliminary verification on the field. DDH if geologically justified. Target coordinates: L: 15+00E, S: 8+25S, D: -75 m.</td>
<td>2</td>
</tr>
<tr>
<td>DD-8</td>
<td>Preliminary verification on the field. DDH if geologically justified. Target coordinates: L: 7+50W, S: 21+25S, D: -100 m.</td>
<td>3</td>
</tr>
<tr>
<td>DD-9</td>
<td>Preliminary verification on the field. If geologically justified, additional IP coverage between lines 0+00 and 12+50E.</td>
<td>4</td>
</tr>
<tr>
<td>DD-4</td>
<td>Preliminary verification on the field. DDH if geologically justified. Target coordinates: L: 5+00W, S: 12+00S D: -75 m. Additional IP coverage to the west if the results of the D.D.H. are conclusive.</td>
<td>5</td>
</tr>
<tr>
<td>DD-5</td>
<td>Preliminary verification on the field. DDH if geologically justified. Target coordinates: L: 20+00E, S: 14+25S, D: -75 m.</td>
<td>6</td>
</tr>
<tr>
<td>DD-7</td>
<td>Additional IP coverage to the east to better define the anomaly.</td>
<td>7</td>
</tr>
<tr>
<td>DD-10</td>
<td>Additional IP coverage to the east to better define the anomaly.</td>
<td>8</td>
</tr>
</tbody>
</table>

Finally, we suggest to give a particular attention to anomalies DD-14 and DD-6 due to their great extension. We know that these anomalies probably represent locally weakly-mineralized fault zones. We recommend a field verification, especially on the spots where the anomalies are polarizable.

Respectfully submitted,

Hugues Potvin, Eng.
Geophysicist

INMET MINING CORPORATION
APPENDICES
INDUCED POLARIZATION SURVEY

Dipole-Dipole Array

Contour interval:
- Resistivity: 1, 1.5, 2, 3, 5, 7.5, 10...
- IP effect: 2
- Metal Factor: 20

Metal Factor Definition: MF = 1000*Max(Ra)-0.5

Instruments: BRGM IP-6, PHOENIX IPT-1

Interpretation legend:
- Very high resistivity
- High resistivity
- Medium resistivity
- Low resistivity
- Very low resistivity
- Very high conductivity
- Low conductivity
- Very low conductivity
- Polarizability
- Resistivity
- Conductivity

Interpreted by: Hugues Potvin, Ing.
Date of survey: July 1996
Surveyed by: Hugues Potvin
Reference: 96-N008

INMET MINING CORP.
SWAYZE PROJECT
DORE TOWNSHIP
ONTARIO

Interpreted by: Hugues Potvin, Ing.
Date of survey: July 1996
Surveyed by: Hugues Potvin
Reference: 96-N008
Induced Polarization Survey

Dipole-Dipole Array

Interpretation

Filter

Interpretation legend

Contour Interval:
- Resistivity: 1, 1.5, 3, 5, 7.5, 10...
- IP effect: 2
- Metal Factor: 20

Metal Factor Definition: MF = 1000*MAX(Ra)-0.5

Instruments: BRGM IP-6, PHOENIX IPT-1

Line 7+50E

Scale: 1 : 5000

Interpreted by: Hugues Potvin, Ing.
Date of survey: July 1996
Surveyed by: Hugues Potvin
Reference: 96-N008

Inmet Mining Corp.

Swayze Project
Dore Township
Ontario

Interpreted by: Hugues Potvin, Ing.
Date of survey: July 1996
Surveyed by: Hugues Potvin
Reference: 96-N008
Interpretation: DD-10

Metal Factor
- **Resistivity**
 - Metal Factor Definition: $MF = 1000 \cdot \left(Ra \right)^{-0.5}$
- Instruments: BRGM IP-6, PHOENIX IPT-1
- **Contour Interval:** Resistivity: 1, 1.5, 2, 3, 5, 7.5, 10...
 - IP effect: 2
- **Seal**
 - 1: 5000

Interpretation legend
- *Interpretation: DD-10*
- *Resistivity*
- *Induced Polarization (IP)*
- *Metal Factor*

Line 17+50E

Scale: 1 : 5000

Interpreted by: Hugues Potvin, Ing.
Date of survey: July 1996

Reference: 96-N008

INMET MINING CORP.
SWAYZE PROJECT
DORE TOWNSHIP
ONTARIO

Note: The diagram and text are related to an induced polarization survey conducted in the Dore Township, Ontario, for the Swayze Project by INMET Mining Corp. The survey involved the use of dipole-dipole arrays and metal factor interpretation. The site is referenced as 96-N008.
Induced Polarization Survey

Dipole-Dipole Array

Filter

Interpretation legend

Contour Interval:

Resistivity:

IP effect:

Metal Factor

Metal Factor Definition: \(MF = 1000 \times \text{MAX}(R_a) - 0.5 \)

Instruments: BRGM IP-6, PHOENIX IPT-1

Line 20+00E

Scale 1 : 3000

150

Interpreted by: Hugues Potvin, ing.

Date of survey: July 1996

Surveyed by: Hugues Potvin

Reference: 96-N008

INMET MINING CORP.

SWAYZE PROJECT

DORE TOWNSHIP

ONTARIO
ontario

3Prds I'enregistrement d'un claim

sur les mines

Directives :
- Dactylographier au stylo en lettres majuscules.
- Se reporter à l'évaluation.
- Remplir une page par action.
- Joindre à la page.
- Joindre à l'annexe

Titulaire(s) enregistré(s)

INMET MINING CORP., agen for STRIKE MINERALS INC.

Adresse

Suite 3400, Aetna Tower, P.O. Box 14, Toronto, ON, Canada M5K 1A1

Division des mines

Porcupine

Centron/secteur

Dore

N° de client

169 899

N° de téléphone

(416) 361-6400

N° de plan M ou Q

G 1108

Dates d'exécution des travaux

du : 1996 June 01

au : 1996 August 19

Travaux exécutés (cocher un seul groupe de travaux)

Groupe de travaux
Leve géotechnique
Travaux physiques, y compris forage
Récupération
Autres travaux autorisés
Essais
Valeur transférée de la réserve

Genre
LINE CUTTING + GEOPHYSICAL SURVEY (IP)

RECEIVED
DEC 16 1996

MINING LANDS BRANCH

Total des travaux d'évaluation réclamé sur le relevé des frais ci-annexé

$39 399

Nota : Le ministre peut rejeter une partie ou la totalité des travaux d'évaluation présentés pour obtenir des crédits d'évaluation si le titulaire enregistré ne peut vérifier les dépenses réclamées sur le relevé des frais dans les trente jours suivant une demande de vérification.

Les personnes et la compagnie d'arpentage qui ont exécuté les travaux (donner le nom et l'adresse de l'auteur du rapport)

Nom

Native exploration services

Val d'or Sages inc.

Adresse

203 Oremiska Street, Que-Bougounou, Que GOW

50 Lamoque boulevard, ValDor, Que, J9P 2H6

(Joindre une annexe au besoin)

Certification d'intérêt bénéficiaire * Voir la note n° 1 au verso

Je certifie qu'au moment où les travaux ont été exécutés, les claims dont il est question dans le présent rapport étaient enregistrés au nom de leur titulaire actuel ou détenus à titre bénéficiaire par l'actuel titulaire enregistré.

Nom et adresse du certificataire

Bernard Boily

6% Inmet Mining, 1300 boulevard St. Jean, Val d'or, Que

N° de téléphone

819-764-6666

Date

OCT 9 1986

Certifié par (signature)

Certification du rapport sur les travaux exécutés

Je certifie que j'ai une connaissance directe des faits exposés dans le présent rapport, pour avoir exécuté les travaux ou en avoir constaté l'exécution avant ou après leur achèvement. Je certifie aussi que le rapport ci-annexé est exact.

Nom et adresse du certificataire

Bernard Boily

6% Inmet Mining, 1300 boulevard St. Jean, Val d'or, Que

N° de téléphone

819-764-6666

Date

OCT 9 1986

Certifié par (signature)

Certification de la valeur des crédits enregistrés

Valeur totale des crédits enregistrés

$39 399

Date d'enregistrement

Représentatif des claims

Date d'approbation

Date de notification de clôture

Date d'envoi de l'Avis de modification

RECEIVED
OCT 21 1996

PORCUPINE MINING DIVISION
Credits you are claiming in this report may be cut back. In order to minimize the adverse effects of such deletions, please indicate from which claims you wish to prioritize the deletion of credits. Please mark (✓) one of the following:

1. Credits are to be cut back starting with the claim listed last, working backwards.
2. Credits are to be cut back equally over all claims contained in this report of work.
3. Credits are to be cut back as prioritized on the attached appendix.

In the event that you have not specified your choice of priority, option one will be implemented.

Note 1: Examples of beneficial interest are unrecorded transfers, option agreements, memorandum of agreements, etc., with respect to the mining claims.

Note 2: If work has been performed on patented or leased land, please complete the following:

I certify that the recorded holder had a beneficial interest in the patented or leased land at the time the work was performed.

<table>
<thead>
<tr>
<th>Signature</th>
<th>Date</th>
</tr>
</thead>
</table>
Note 1: Examples of beneficial interests are unrecorded transfers, option agreements, memorandum of agreements, etc., which respect to the mining claims.

Note 2: If work has been performed on patented or leased land, please indicate from the following:

1. Credits are to be cut back starting with the claim listed last, working backwards.
2. Credits are to be cut back equally over all claims contained in this report of work.
3. Credits are to be cut back according to the choices provided on the attached appendix.

In the event that you have not specified your choice of priority, option one will be implemented.

<table>
<thead>
<tr>
<th>Claim Number (see Row 2)</th>
<th>118,914,10</th>
<th>118,914,59</th>
<th>119,105,97</th>
<th>120,597,49</th>
<th>120,597,80</th>
<th>130,598,12</th>
</tr>
</thead>
<tbody>
<tr>
<td>Work Report Number for Applying Claim</td>
<td>5</td>
<td>4</td>
<td>15</td>
<td>15</td>
<td>15</td>
<td>15</td>
</tr>
<tr>
<td>Total Assigned From Work</td>
<td>$44,993</td>
<td>$8,000</td>
<td>$13,484</td>
<td>94 Units</td>
<td>24 Hours</td>
<td>94 Units</td>
</tr>
<tr>
<td>Total Assigned From Work</td>
<td>$44,993</td>
<td>$8,000</td>
<td>$13,484</td>
<td>94 Units</td>
<td>24 Hours</td>
<td>94 Units</td>
</tr>
</tbody>
</table>

__Signature__

__Date__
Statement of Costs

for Assessment Credit

État des coûts aux fins du crédit d'évaluation

Mining Act/Lol sur les mines

Transaction No./N° de transaction 2.16945

Personal Information collected on this form is obtained under the authority of the Mining Act. This Information will be used to maintain a record and ongoing status of the mining claim(s). Questions about this collection should be directed to the Provincial Manager, Mining Lands, Ministry of Northern Development and Mines, 4th Floor, 159 Cedar Street, Sudbury, Ontario P3E 6A5, telephone (705) 670-7264.

1. Direct Costs/Coûts directs

<table>
<thead>
<tr>
<th>Type</th>
<th>Description</th>
<th>Amount</th>
<th>Total global</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wages</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Labour</td>
<td>Main-d'œuvre</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Field Supervision</td>
<td>Line cutting</td>
<td>13852</td>
<td></td>
</tr>
<tr>
<td>Contractor's and Consultant's Fees</td>
<td>IP survey</td>
<td>35547</td>
<td></td>
</tr>
<tr>
<td>Supplies Used</td>
<td>Equipment Rental</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Food and Lodging</td>
<td>Mobilization</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Total Direct Costs/Sum total des coûts directs

34391

Note: The recorded holder will be required to verify expenditures claimed in this statement of costs within 30 days of a request for verification. If verification is not made, the Minister may reject for assessment work all or part of the assessment work submitted.

2. Indirect Costs/Coûts indirects

Note: When claiming Rehabilitation work Indirect costs are not allowable as assessment work.

For the remboursement des travaux de réhabilitation, les coûts indirects ne sont pas admissibles en tant que travaux d'évaluation.

<table>
<thead>
<tr>
<th>Type</th>
<th>Description</th>
<th>Amount</th>
<th>Total global</th>
</tr>
</thead>
<tbody>
<tr>
<td>Transportation</td>
<td>Food and Lodging</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sub Total of Indirect Costs</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note : Le titulaire enregistré sera tenu de vérifier les dépenses demandées dans le présent état des coûts dans les 30 jours suivant une demande à cet effet. Si la vérification n'est pas effectuée, le ministre peut rejeter tout ou une partie des travaux d'évaluation présentés.

Filing Discounts

1. Work filed within two years of completion is claimed at 100% of the above Total Value of Assessment Credit.

2. Work filed three, four or five years after completion is claimed at 50% of the above Total Value of Assessment Credit. See calculations below:

\[
\text{Total Value of Assessment Credit} \times 0.50 = \text{Total Assessment Claimed}
\]

Certification Verifying Statement of Costs

I hereby certify:

that the amounts shown are as accurate as possible and these costs were incurred while conducting assessment work on the lands shown on the accompanying Report of Work form.

that as (Recorded Holder, Agent, Position in Company) I am authorized to make this certification.

Signatures

Signature: [Signature]

Date: [Date]

Ministry of Northern Development and Mines

January 14, 1997

Gary White
Mining Recorder
60 Wilson Avenue, 1st Floor
Timmins, ON
P4N 2S7

Ministère du Développement du Nord et des Mines

Ontario

Geoscience Assessment Office
933 Ramsey Lake Road
6th Floor
Sudbury, Ontario
P3E 6B5

Telephone: (705) 670-5853
Fax: (705) 670-5863

Dear Sir or Madam:

Submission Number: 2.16945

Subject: Transaction Number(s): W9660.00572

We have reviewed your Assessment Work submission with the above noted Transaction Number(s). The attached summary page(s) indicate the results of the review. We recommend you read this summary for the details pertaining to your assessment work.

If the status for a transaction is a 45 Day Notice, the summary will outline the reasons for the notice, and any steps you can take to remedy deficiencies. The 90-day deemed approval provision, subsection 6(7) of the Assessment Work Regulation, will no longer be in effect for assessment work which has received a 45 Day Notice.

Please note any revisions must be submitted in DUPLICATE to the Geoscience Assessment Office, by the response date on the summary.

NOTE: This correspondence may affect the status of your mining lands. Please contact the Mining Recorder to determine the available options and the status of your claims.

If you have any questions regarding this correspondence, please contact Bruce Gates at (705) 670-5856.

Yours sincerely,

Ron C. Gashinski
Senior Manager, Mining Lands Section
Mines and Minerals Division

ORIGINAL SIGNED BY
Ron C. Gashinski

Correspondence ID: 10455
Copy for: Assessment Library
Work Report Assessment Results

<table>
<thead>
<tr>
<th>Submission Number:</th>
<th>2.16945</th>
</tr>
</thead>
<tbody>
<tr>
<td>Date Correspondence Sent:</td>
<td>January 14, 1997</td>
</tr>
<tr>
<td>Assessor:</td>
<td>Bruce Gates</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Transaction Number</th>
<th>First Claim Number</th>
<th>Township(s) / Area(s)</th>
<th>Status</th>
<th>Approval Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>W9660.00572</td>
<td>1154401</td>
<td>DORE</td>
<td>Approval</td>
<td></td>
</tr>
</tbody>
</table>

Section:
14 Geophysical IP

Correspondence to:
- Mining Recorder
 Timmins, ON
- Resident Geologist
 Timmins, ON
- Assessment Files Library
 Sudbury, ON

Recorded Holder(s) and/or Agent(s):
- Bernard Boily
 METALL MINING CORPORATION
 TORONTO, Ontario
NOTES

40' surface rights reservation along the shores of all lakes and rivers.

LEGEND

DISTRICT DORE
MINING DIVISION SUDBURY
ACTIVATED BY D.O. OCT. 16/96
CHECKED BY G.A.

TOWNSHIP

SCALE: 1 INCH = 40 CHAINS

DISPOSITION OF CROWN LANDS

TYPE OF DOCUMENT
- PATENT, SURFACE & MINING RIGHTS
- SURFACE RIGHTS ONLY
- MINING RIGHTS ONLY
- LICENSING OF OCCUPATION
- RESERVATION
- CANCELLED
- LAND USE PERMIT

SYMBOLS
- SURFACE & MINING RIGHTS
- SURFACE RIGHTS ONLY
- MINING RIGHTS ONLY
- LICENSING OF OCCUPATION
- RESERVATION
- CANCELLED
- LAND USE PERMIT

DISPOSITION OF CROWN LANDS

GARNET TP
COPPELL TP
HEenan TP
SWAYZE TP

40' surface rights reservation along the shores of all lakes and rivers.