GEOPHYSICAL REPORT
ON
AJAY PROJECT
LAKE DETOUR AREA
FOR
INGAMAR EXPLORATION
TABLE OF CONTENTS

I - INTRODUCTION 1
II - LOCATION AND ACCESS 2
III - INSTRUMENTS AND PROCEDURE 3
IV - DISCUSSION OF RESULTS 7
V - CONCLUSIONS AND RECOMMENDATIONS 10
I - INTRODUCTION

At the request of Ingamar Exploration, the cooperative "MAGMA" has cut a grid of 34.2 kilometers and carried a V.L.F. and Magnetic survey during September 1983.

The property being well located in Detour Lake area, where a large gold deposit is presently being mined, the purpose of the survey was to try to locate a similar type of occurrence.
LOCATION AND ACCESS

LOCATION: The group is located 6 km to the north east of the Detour Lake Mine, near the Quebec Ontario border. The property is covered by 21 claims listed as follows: 653776 to 653796 inclusive.

ACCESS: Access to the property was made by float equipped aircraft from La Sarre, Quebec. The road going to Detour Lake Mine could also be used.

Generally the topography is flat and does not impair geophysical results.
INSTRUMENTS : VLF Survey

The VLF-EM method as a source, one of the numerous submarine communications transmitters in the 15 to 25 KHz band located throughout the world. At the surface of the earth these radio waves propagate predominantly in a single mode along the earth-air interface. This mode is known as the "surface wave". Over flat homogeneous ground in the absence of vertical conductive discontinuities the magnetic field component this radio wave is horizontal and perpendicular to its direction of propagation.

Where non-horizontal structures such as faults, contacts and conductors give rise to changes in ground conductivity, secondary modes are generated which produce a vertical component of the magnetic field. This produces an elliptical polarization of the total field in a plane perpendicular to the direction of propagation.
Commercial VLF instruments enable detection or disturbing structures by measuring the tilt angle of the major axis of the polarization ellipse. On flat homogeneous ground the tilt angle will be zero, but in the vicinity of conducting disturbances it will acquire a finite value.

Direction of tilt indicates direction of the disturbing structure. Ability to deduce such parameters as depth, depth extent, dip, and width of anomalous structures is minimal. Fortunately, this does not seriously affect location of points where VLF profiles cross the upper limit of dipping structures which can be identified as areas of greatest change in tilt angle per unit of distance.

The transmitting station used during the survey was Cutler Maine 17,8 KHz.

The data is presented as profiles with positive to the left, negative to the right. The instruments specifications are given in Appendix I.
PROCEDURE: The V.L.F. survey was carried out with an E.M.-16 unit, tuned to NAA (17.8KHz).

Readings were taken at 20 meters interval along the lines.

The magnetics were performed with a G-816 proton magnetometer, and readings were also taken every 20 meters. All readings were corrected using base stations established on the base line.
INSTRUMENTS: Magnetometer systems

An Exploranium/geometrics Model G816 Proton Precession field magnetometer was used to survey the grid. This system utilizes the precession of spinning protons of a hydrogen atom within a hydrocarbon fluid. These spinning magnetic dipoles (protons) are polarized by applying a magnetic field using a current within a coil of wire. When the current is discontinued the protons precess about the earth's magnetic field and in turn generate a small current in the wire. This frequency of precession is proportional to the earth's total magnetic field.

This instrument is read directly in gammas which is the absolute value of the earth's total field for that station.

Correction of the magnetic data for instrument and diurnal drift was done by re-occupying previously established base stations periodically (approximately every 2 hours) during the course of the survey. In this manner a drift curve can be established and adjustment of the field readings can be made such that they are all related to an established datum. Instrument specifications are presented in Appendix I.
The VLF-EM survey has outlined 15 parallel conductive zones on the property. Though most of the zones are weak, and have no direct magnetic correlation, except for conductor AA', it is interesting to note that all the zones are striking in the same direction, which is approximately N45°W. This might be an indication that most of the anomalies are related to the bedrock, though it can be assumed that some of the anomalies are caused by clay valleys filling eroded zones of weakness.

Generally speaking the isomagnetic contours show a low magnetic area in the central part of the grid, a higher area in the north east portion of the grid, and a high zone in the south east corner of the grid. In this high magnetic zone isolated magnetic highs are also present. The rapidly increasing isoanomaly curve in this same area indicates a shallow source, as this would not be the case in other parts of the grid.
Since pyrrhotite is quite often associated to other economical minerals in the area. These local magnetic highs warrant to be investigated.

Description of conductors:

AA' : A very long, moderately conductive zone with a magnetic correlation, on L-25,20E and L-26,40E.

BB' : A moderately conductive zone, cutting the north east corner of the grid.

CC' : A very short strike length conductor of fair conductivity, flanquing a magnetic high, the source is probably shallow.

DD' : Basically the same as CC', flanquing the southern part of the same magnetic high, the source is probably shallow.

EE' : A weak and short anomaly.

FF' : A short anomaly with fair conductivity.
GG' : A very short anomaly of weak to moderate conductivity.

HH' : A short anomaly with weak to moderate conductivity.

II' : A fairly conductive zone. The source is probably deep.

JJ' : Fair to moderate conductivity. More conductive on L-4,80E, parallel to the isomagnetic contours.

KK' : A low conductivity anomaly, might be related to JJ'. Comes off the grid on L-0+00.

LL' : A low conductivity anomaly, with a deep source. Comes off the grid on L-0+00.
The survey as outlined several anomalies, and most of them warrant to be investigated, with emphasis on AA'.

Since the most interesting part of the grid seems to be in the south east corner, and that overburden does not seem to be too thick in that area, a geochemistry survey could be helpful. Humic surveys have given good results in the past, and such a sampling is relatively inexpensive. Lines 21+60E to L-30,00E could be sampled from 0+00 to 7+00N.
CERTIFICATE

I, Pierre Morissette of Rouyn, Quebec here by declare that:

1) I hold a D.E.C. in Mining Technology from the Rouyn College.

2) I have fifteen years of experience in mining exploration.

3) I have based conclusions and recommendations contained in this report on my experience. All field work conducted on the property during October 1983 was carried out under my supervision.

4) I hold no interest, directly or indirectly in this property other than professional fees, nor do I expect to receive any interest in the property or in Ingamar Explorations Limited or any of its subsidiary companies.

P. Morissette

Pierre Morissette
Report of Work

Type of Surveys:
- Lines, Magnetometer & EM16

Claim Holders:
- LLOYD ROBERTS

Address:
- GENERAL DELIVERY, CONNAUGHT, ONTARIO PON 1AO

Survey Company:
- INGAMAR EXPLORATIONS LIMITED

Name and Address of Author of Geo-Technical report:
- KEVIN FILO, 143 DOME AVENUE, SOUTH PORCUPINE, ONT.

Credits Requested per Each Claim in Columns at right

Special Provisions

- For first survey:
 - Enter 40 days. (This includes line cutting)

- For each additional survey:
 - Enter 20 days (for each)

Geophysical

Days per Claim
- Electromagnetic: 20
- Magnetometer: 40
- Radiometric:
- Other:

Geological

Days per Claim
-

Geochemical

Days per Claim
-

Expenditures (Excludes power, shipping)

Type of Work Performed
-

Performer(s) of Claim(s)
-

Mining Claims Traversed (List in numerical sequence)

<table>
<thead>
<tr>
<th>Mining Claim</th>
<th>Exp. Days Cr.</th>
</tr>
</thead>
<tbody>
<tr>
<td>P 653776</td>
<td></td>
</tr>
<tr>
<td>653777</td>
<td></td>
</tr>
<tr>
<td>653778</td>
<td></td>
</tr>
<tr>
<td>653779</td>
<td></td>
</tr>
<tr>
<td>653780</td>
<td></td>
</tr>
<tr>
<td>653781</td>
<td></td>
</tr>
<tr>
<td>653782</td>
<td></td>
</tr>
<tr>
<td>653783</td>
<td></td>
</tr>
<tr>
<td>653784</td>
<td></td>
</tr>
<tr>
<td>653785</td>
<td></td>
</tr>
<tr>
<td>653786</td>
<td></td>
</tr>
<tr>
<td>653787</td>
<td></td>
</tr>
<tr>
<td>653788</td>
<td></td>
</tr>
<tr>
<td>653789</td>
<td></td>
</tr>
<tr>
<td>653790</td>
<td></td>
</tr>
<tr>
<td>653791</td>
<td></td>
</tr>
<tr>
<td>653792</td>
<td></td>
</tr>
<tr>
<td>653793</td>
<td></td>
</tr>
<tr>
<td>653794</td>
<td></td>
</tr>
<tr>
<td>653795</td>
<td></td>
</tr>
<tr>
<td>653796</td>
<td></td>
</tr>
</tbody>
</table>

Total Expenditure Days Credits

Total Expenditures $ + 15 =

Certification

I hereby certify that I have a personal and intimate knowledge of the facts set forth in the Report of Work annexed hereto, having performed the work or witnessed same during and/or after its completion and the annexed report is true.

Name and Postal Address of Person Certifying
- MAURICE HIBBARD, CEDAR HILL, CONNAUGHT, ONTARIO PON 1AO

Date Certified: Sept. 8/83

For Office Use Only

Recorded: 9/20/83

Date Approved as Recorded: 9/20/83
October 24, 1984

Ministry of Natural Resources
Whitney Block, Room 6643
Queen's Park
Toronto, Ontario
M7A 1W3

ATTENTION: MRS. S. HURST

SUBJECT: Geophysical (Electromagnetic & Magnetometer) Survey submitted on Mining Claims P 653776 et al in the Area of Sunday Lake.

Dear Mrs. Hurst:

Attached herewith are the maps showing all data as requested by your office.

Thank you.

Sincerely,

Irmá Hibbard, Vice-President

RECEIVED

MINING LANDS SECTION
MINISTRY OF NATURAL RESOURCES

September 24, 1984

Lloyd Roberts
General Delivery
Connaught, Ontario
PON 1A0

Dear Sirs:

RE: Geophysical (Electromagnetic & Magnetometer) Survey submitted on Mining Claims P 653776 et al in the Area of Sunday Lake.

Enclosed is a copy of our letter dated February 23, 1984 requesting additional information for the above-mentioned survey.

Unless you provide the required data by October 3, 1984 the Mining Recorder will be directed to cancel the work credits recorded on September 9, 1984.

For further information, please contact Mrs. S. Hurst at (416)965-4888.

Yours sincerely,

S.E. Yundt
Director
Land Management Branch

Whitney Block, Room 6643
Queen's Park
Toronto, Ontario
M7A 1E3
(Toll Free 1-800-463-3737)

S. Hurst:

Enc.

c/o Mining Recorder
Kamloops, Ontario

c/o Commissioner of Mineral Exploration Limited
Connaught, Ontario
PON 1A0
Albert M. Valero
A. Files
Dear Sir:

RE: Geophysical (Electromagnetic & Magnetometer) Survey submitted on Mining Claims P 653776 et al. in the Area of Lake.

Enclosed are the plans, in duplicate, for the above mentioned survey. Please show all claim lines and numbers and return the maps to this office as soon as possible.

For further information, please contact Mr. F.W. Matthews at 416/955-1380.

Yours very truly,

J.R. Morton
Acting Director
Land Management Branch
Whitney Block, Room 6643
Queen's Park
Toronto, Ontario
M7A 1K3
Phone: 416/965-1380

M.E. Anderson:

cc: Mining Recorder
Timmins, Ontario
Dear Sir:

RE: Geophysical (Electromagnetic & Magnetometer) Survey submitted on Mining Claims P 6537/6 et al in the Area of Sunday Lake.

Enclosed is a copy of our letter dated February 23, 1984 requesting additional information for the above-mentioned survey.

Unless you can provide the required data by October 3, 1984 the mining recorder will be directed to cancel the work credits recorded on September 9, 1984.

For further information, please contact Mrs. S. Hurst at (416)965-4888.

Yours sincerely,

S.E. Yundt
Director
Land Management Branch

Whitney Block, Room 6643
Queen’s Park
Toronto, Ontario
M7A 1N3
(416)965-4888

S. Hurst:sc

Encl:

cc: Mining Recorder
 Timmins, Ontario

cc: Ingamar Explorations Limited
 Cedar Hill
 Connaught, Ontario
 PON 1A0
 Attn: M. Hibbard
 K. Filo
Lloyd Roberts
General Delivery
Connaught, Ontario
PON 1AO

Dear Sir:

RE: Geophysical (Electromagnetic & Magnetometer) Survey submitted on Mining Claims P 653776 et al in the Area of Sunday Lake.

Enclosed are the plans, in duplicate, for the above mentioned survey. Please show all claim lines and numbers and return the maps to this office as soon as possible.

For further information, please contact Mr. F.W. Matthews at 416/965-1380.

Yours very truly,

J.R. Morton
Acting Director
Land Management Branch
Whitney Block, Room 6643
Queen's Park
Toronto, Ontario
M7A 1W3
Phone: 416/965-1380

M.E. Anderson:sc

cc: Mining Recorder
Timmins, Ontario

Encls:
April 9, 1984

J.R. Morton, Acting Director
Land Management Branch
Whitney Block
Room 66443
Queen's Park
Toronto, Ont.
M7A 1W3

SUBJECT: Your File: 2.6021
Geophysical (Electromagnetic and Magnetometer) survey submitted on Mining Claims P653776 et al in the Sunday Lake Area

In regards to the claim post locations on the above property we understand that the geophysical crew neglected to locate the posts. However, geological surveys will be carried out over the property this summer and post locations will be made and the data will be forwarded to your office as soon as possible.

Thank you.

Sincerely,
INGAMAR EXPLORATIONS LIMITED

J.K. Filo, Project Geologist

File: Ajay
Lloyd Roberts
General Delivery
Connaught, Ontario
PON 1A0

Dear Sir:

RE: Geophysical (Electromagnetic & Magnetometer)
Survey submitted on Mining Claims P 653776
et al in the Area of Sunday Lake.

Enclosed are the plans, in duplicate, for the above mentioned
survey. Please show all claim lines and numbers and return
the maps to this office as soon as possible.

For further information, please contact Mr. F.W. Matthews at
416/965-1380.

Yours very truly,

J.R. Morton
Acting Director
Land Management Branch

Whitney Block, Room 6643
Queen's Park
Toronto, Ontario
M7A 1W3
Phone: 416/965-1380

M.E. Anderson:sc

cc: Mining Recorder
Timmins, Ontario

Encls:
- maps require claim lines and claim numbers.

To: Geophysics

Mr. R. Barlow

Comments

☐ Approved ☐ Wish to see again with corrections Date: June 3, 1983 Signature: [signature]

To: Geology - Expenditures

Comments

☐ Approved ☐ Wish to see again with corrections Date: Signature:

To: Geochemistry

Comments

☐ Approved ☐ Wish to see again with corrections Date: Signature: L. D.

☐ To: Mining Lands Section, Room 6462, Whitney Block. (Tel: 5-1380)
Mining Recorder
Ministry of Natural Resources
60 Wilson Avenue
Timmins, Ontario
P4N 2S7

Dear Sir:

We have received reports and maps for a Geophysical (Electromagnetic and Magnetometer) survey submitted under Special Provisions (credit for Performance and Coverage) on mining claims P 653776 et al in the Area of Sunday Lake.

This material will be examined and assessed and a statement of assessment work credits will be issued.

Yours very truly,

E.F. Anderson
Director
Land Management Branch
Whitney Block, Room 6643
Queen's Park
Toronto, Ontario
M7A 1W3
Phone:(416)965-1380

cc: Lloyd Roberts
General Delivery
Connaught, Ontario
PON 1A0

cc: Maurice Hibbard
Cedar Hill
Connaught, Ontario
PON 1A0
Initial Check

Assessed

Approved Reports of Work sent out

Notice of Intent filed

Approval after Notice of Intent sent out

Duplicate sent to Resident Geologist

Duplicate sent to A.F.R.O.
Pioneered and patented exclusively by Geonics Limited, the VLF method of electromagnetic surveying has been proven to be a major advance in exploration geophysical instrumentation.

Since the beginning of 1965 a large number of mining companies have found the EM16 system to meet the need for a simple, light and effective exploration tool for mining geophysics.

The VLF method uses the military and time standard VLF transmissions as primary field. Only a receiver is then used to measure the secondary fields radiating from the local conductive targets. This allows a very light, one-man instrument to do the job. Because of the almost uniform primary field, good response from deeper targets is obtained.

The EM16 system provides the in-phase and quadrature components of the secondary field with the polarities indicated.

Interpretation technique has been highly developed particularly to differentiate deeper targets from the many surface indications.

Principle of Operation
The VLF transmitters have vertical antennas. The magnetic signal component is then horizontal and concentric around the transmitter location.

Specifications

<table>
<thead>
<tr>
<th>Source of primary field</th>
<th>VLF transmitting stations.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Transmitting stations used</td>
<td>Any desired station frequency can be supplied with the instrument in the form of plug-in tuning units. Two tuning units can be plugged in at one time. A switch selects either station.</td>
</tr>
<tr>
<td>Operating frequency range</td>
<td>About 15-25 kHz.</td>
</tr>
<tr>
<td>Parameters measured</td>
<td>(1) The vertical in-phase component (tangent of the tilt angle of the polarization ellipsoid). (2) The vertical out-of-phase (quadrature) component (the short axis of the polarization ellipsoid compared to the long axis).</td>
</tr>
<tr>
<td>Method of reading</td>
<td>In-phase from a mechanical inclinometer and quadrature from a calibrated dial. Nulling by audio tone.</td>
</tr>
<tr>
<td>Scale range</td>
<td>In-phase ± 150%; quadrature ± 40%.</td>
</tr>
<tr>
<td>Readability</td>
<td>± 1%.</td>
</tr>
<tr>
<td>Reading time</td>
<td>10-40 seconds depending on signal strength.</td>
</tr>
<tr>
<td>Operating temperature range</td>
<td>-40 to 50° C.</td>
</tr>
<tr>
<td>Operating controls</td>
<td>ON-OFF switch, battery testing push button, station selector, switch, volume control, quadrature, dial ± 40%, inclinometer dial ± 150%.</td>
</tr>
<tr>
<td>Power Supply</td>
<td>6 size AA (penlight) alkaline cells. Life about 200 hours.</td>
</tr>
<tr>
<td>Dimensions</td>
<td>42 x 14 x 9 cm (16 x 5.5 x 3.5 in.)</td>
</tr>
<tr>
<td>Weight</td>
<td>1.6 kg (3.5 lbs.)</td>
</tr>
<tr>
<td>Instrument supplied with</td>
<td>Monotonic speaker, carrying case, manual of operation, 3 station selector plug-in tuning units (additional frequencies are optional), set of batteries.</td>
</tr>
<tr>
<td>Shipping weight</td>
<td>4.5 kg (10 lbs.)</td>
</tr>
</tbody>
</table>
Areas of VLF Signals
Coverage shown only for well-known stations. Other reliable, fully operational stations exist. For full information regarding VLF signals in your area consult Geonics Limited. Extensive field experience has proved that the circles of coverage shown are very conservative and are actually much larger in extent.

EM 16 Profile over Lockport Mine Property, Newfoundland
additional case histories on request.

Station Selector
Two tuning units can be plugged at one time. A switch selects the station.

Receiving Coils
Vertical receiving coil circuit in instrument picks up any vertical signal present. Horizontal receiving coil circuit, after automatic 90° signal phase shift, feeds signal into quadrature dial in series with the receiving coil.

In-Phase Dial
shows the tilt-angle of the instrument for minimum signal. This angle is the measure of the vertical in-phase signal expressed in percentage when compared to the horizontal field.

Quadrature Dial
is calibrated in percentage markings and nulls the vertical quadrature signal in the vertical coil circuit.

By selecting a suitable transmitter station as a source, the M 16 user can survey with the most suitable primary field azimuth. The EM 16 has two receiving coils, one for the pick-up of the horizontal (primary) field and the other for detecting any anomalous vertical secondary field. The coils are thus orthogonal, and are mounted inside the instrument "handle".

The actual measurement is done by first tilting the coil assembly to minimize the signal in the vertical (signal) coil and then further sharpening the null by using the reference signal to buck out the remaining signal. This is done by a calibrated quadrature dial.

The tangent of the tilt angle is the measure of the vertical in-phase component and the quadrature reading is the signal at right angles to the total field. All readings are obtained in per centages and do not depend on the absolute amplitude of the primary signals present.

The "null" condition of the measurement is detected by the drop in the audio signal emitted from the patented resonance loudspeaker. A jack is provided for those preferring the use of an earphone instead.

The power for the instrument is from 6 penlight cells. A battery tester is provided.
PORTABLE PROTON MAGNETOMETER
MODEL G-816

The Model G-816 is a complete portable magnetometer for all man-carry field applications. As an accurate yet simple to operate instrument, it features an outstanding combination of one gamma sensitivity and repeatability, compact size and weight, operation on standard universally available flashlight batteries, ruggedized packaging and very low price.

The G-816 magnetometer allows precise mapping of very small or large amplitude anomalies for ground geophysical surveys, or for detail follow-up to aeromagnetic reconnaissance surveys. It is a rugged, lightweight, and versatile instrument, equally well suited for field studies in geophysics, research programs or other magnetic mapping application where low cost, dependable operation and accurate measurements are required.

For marine, airborne or ground recording systems consider GeoMetrics Models G-801, G-803, and G-826A.
“Hands-free” Back Pack Sensor

Based upon the principle of nuclear precession (proton) the G-816 offers absolute drift-free measurements of the total field directly in gammas. (The proton precession method is the officially recognized standard for measurement of the earth’s magnetic field.) Operation is worldwide with one gamma sensitivity and repeatability maintained throughout the range. There is no temperature drift, no set-up or leveling required, and no adjustment for orientation, field polarity, or arbitrary reference levels. Operation is very simple with no prior training required. Only 6 seconds are required to obtain a measurement which is always correct to one gamma, regardless of operator experience. Only the Proton Magnetometer offers such repeatability—an important consideration even for 10 gamma survey resolution.

Complete Field Portable System

The Model G-816 comes complete, ready for portable field operation and consists of:

1. Electronics console with internally mounted and easily replaced “D” cell battery pack.
2. Proton sensor and signal cable for attachment to carrying harness or staff.
3. Adjustable carrying harness.
4. 8 foot collapsible aluminum staff.
5. Instruction manual, complete set of spare batteries, applications manual, and rugged field suitcase.

Price and lease rates on the G-816 magnetometer are available upon request.

SPECIFICATIONS

Sensitivity: ±1 gamma throughout range
Range: 20,000 to 100,000 gammas (worldwide)
Tuning: Multi-position switch with signal amplitude indicator light on display
Gradient Tolerance: Exceeds 800 gammas/ft
Sampling Rate: Manual push-button, one reading each 6 seconds
Output: 5 digit numeric display with readout directly in gammas
Power Requirements: Twelve self-contained 1.5 volt “D” cell, universally available flashlight-type batteries. Charge state or replacement signified by flashing indicator light on display.

<table>
<thead>
<tr>
<th>Battery Type</th>
<th>Number of Readings</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alkaline</td>
<td>over 10,000</td>
</tr>
<tr>
<td>Premium Carbon Zinc</td>
<td>over 4,000</td>
</tr>
<tr>
<td>Standard Flashlight</td>
<td>over 1,500</td>
</tr>
</tbody>
</table>

NOTE: Battery life decreases with low temperature operation.

Temperature Range:

-40° to +65°C

Battery Pack: 0° to +50°C (limited use to -15°C; lower temperature battery belt operation—optional)

Accuracy (Total Field): ±1 gamma through 0° to +50°C temperature range

Sensor: High signal, noise cancelling, interchangeably mounted on separate staff or attached to carrying harness

Size:

- Console: 3.5 x 7 x 10.5 inches (9 x 18 x 27 cm)
- Sensor: 3.5 x 5 inches (9 x 13 cm)
- Staff: 1 inch diameter x 8 ft length (3 cm x 2.44 m)

Weight:

<table>
<thead>
<tr>
<th></th>
<th>Lbs.</th>
<th>Kgs.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Console (w/batteries)</td>
<td>5.5</td>
<td>2.5</td>
</tr>
<tr>
<td>Sensor & signal cable</td>
<td>4</td>
<td>1.8</td>
</tr>
<tr>
<td>Aluminum staff</td>
<td>2</td>
<td>0.9</td>
</tr>
<tr>
<td>Total</td>
<td>11.5</td>
<td>5.2</td>
</tr>
</tbody>
</table>

All magnetometers and parts are covered by a one year warranty beginning with the date of receipt but not to exceed fifteen months from the shipping date.