DIAMOND DRILLING

TOWNSHIP: HOBLITZELL TWP.

WORK PERFORMED FOR: COGEMA CANADA LTD.

RECORDED HOLDER: SAME AS ABOVE

<table>
<thead>
<tr>
<th>CLAIM NO.</th>
<th>HOLE NO.</th>
<th>FOOTAGE</th>
<th>DATE</th>
<th>NOTE</th>
</tr>
</thead>
<tbody>
<tr>
<td>L 1025524</td>
<td>POC-02</td>
<td>321.6 M</td>
<td>JUNE/90</td>
<td>(1)</td>
</tr>
<tr>
<td>L 1025525</td>
<td>POC-01</td>
<td>196.9 M</td>
<td>JUNE/90</td>
<td>(1)</td>
</tr>
</tbody>
</table>

NOTES: (1) W9008.242. FILED NOVEMBER 8, 1990
COGEMA CANADA LIMITED
PORPHYRY CREEK PROJECT
FINAL REPORT 1990
"DIAMOND DRILL RESULTS"
VOLUME 1 OF 2

By: J. Learn
J. Cadieux
June, 1990

Ref. No. 90-CND-52-01
/BCD
SUMMARY OF RESULTS AND CONCLUSIONS

Two diamond drill holes were performed in early 1990 close to the eastern limit of the Porphyry Creek project to test for the western extension of a gold-bearing structure known to occur on the Burntbush River project at about 2 km to the east.

Two main lithologies are described: a mafic to intermediate metavolcanic unit, and a feldspar-quartz porphyritic unit. The stratigraphy here resembles that which is observed to the north of the zone of interest, in particular near hole BUR-52 drilled at Burntbush River.

Although a few minor zones of quartz veining/pyrite mineralizations were intersected, the maximum Au result is only 21 ppb.

It is suggested that the down dip extension of the zone of interest may eventually cross onto the claims, but no further work is recommended at the present time.
TABLE OF CONTENTS

SUMMARY OF RESULTS AND CONCLUSIONS

1. INTRODUCTION .. 1

2. LOCATION AND ACCESS .. 1

3. REGIONAL GEOLOGIC SETTING 3

4. PREVIOUS EXPLORATION WORK 4

5. DESCRIPTION OF FIELD WORK 7

6. RESULTS .. 10
 6.1 Summary ... 10
 6.2 Mafic to intermediate metavolcanic rocks 12
 6.3 Feldspathic felsic metavolcanic rocks 17
 6.4 Nature of lithologic contacts 19

7. DISCUSSION .. 21

8. CONCLUSIONS .. 23

9. REFERENCE LIST .. 24
LIST OF TABLES

<table>
<thead>
<tr>
<th>TABLE</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>TABLE 1</td>
<td>Summary Log HN-88-17</td>
<td>6</td>
</tr>
<tr>
<td>TABLE 2</td>
<td>Drilling Summary</td>
<td>9</td>
</tr>
</tbody>
</table>

LIST OF FIGURES

<table>
<thead>
<tr>
<th>FIGURE</th>
<th>Description</th>
<th>Scale</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>FIGURE 1</td>
<td>Location Map</td>
<td>1:250 000</td>
<td>2</td>
</tr>
<tr>
<td>FIGURE 2</td>
<td>Drill Hole Locations</td>
<td>1:20 000</td>
<td>8</td>
</tr>
<tr>
<td>FIGURE 3</td>
<td>Drill Hole Section 2800E</td>
<td>1:5 000</td>
<td>11</td>
</tr>
<tr>
<td>FIGURE 4</td>
<td>Jensen Diagram - POC-01</td>
<td></td>
<td>15</td>
</tr>
<tr>
<td>FIGURE 5</td>
<td>Jensen Diagram - POC-02</td>
<td>(above 151.5m)</td>
<td>14</td>
</tr>
<tr>
<td>FIGURE 6</td>
<td>Jensen Diagram - POC-02</td>
<td>(below 151.5m)</td>
<td>18</td>
</tr>
<tr>
<td>FIGURE 7</td>
<td>Geologic Interpretation</td>
<td>1:5 000</td>
<td>22</td>
</tr>
</tbody>
</table>

LIST OF MAPS (In Pocket)

<table>
<thead>
<tr>
<th>MAP 1</th>
<th>Description</th>
<th>Scale</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>MAP 1</td>
<td>Drill Hole Section 2800E</td>
<td>1:500</td>
<td></td>
</tr>
</tbody>
</table>
APPENDIX

(Volume 2)

1. SUMMARY LOGS

2. FIELD LOGS

3. ANALYTICAL RESULTS

4. THIN SECTION DESCRIPTIONS
1: INTRODUCTION

The Porphyry Creek property comprises 80 contiguous mining claims and is owned and explored by COGEMA CANADA Ltd. It occurs just to the west of the Burntbush River property, on which we have explored for gold since 1986.

The claims were staked in August 1987 based on the interpretation from regional airborne magnetics that a major-east west structural deformation zone continued west from the Burntbush River property onto this ground.

In December 1987, a detailed magnetic-electromagnetic airborne survey was commissioned to Aerodat, Ltd. (see COGEMA Reference No. 87-CND-52-01). In July 1988, a program of systematic ground traversing of the property was performed in order to identify, map and sample outcrop occurrences (see COGEMA Reference No. 88-CND-52-01). This report describes results of the diamond drill program which was undertaken in early 1990.

2. LOCATION AND ACCESS

The project area is located in northeastern Ontario; at 150 km northeast of Timmins, at 150 km north of Kirkland Lake, at 100 km northwest of La Sarre, Quebec and at 35 km west of the Ontario-Quebec border (49°30'N, 80°W, see Fig.1). The claim block covers approximately 13 km² mostly within Hoblitzzell township, but three claims cross into Blakelock township at the western end.

The property was accessed in 1990 via the winter road system leading to the Burntbush River property.
Location map of the Porphyry Creek (to the west) and Burntbush River (to the east) properties.
3. RÉGIONAL GEOLOGIC SETTING

The Porphyry Creek property is located in the northern part of the Archean Abitibi greenstone belt of the Superior Province of the Canadian Shield. Voluminous publications, dealing with regional and local studies within the Abitibi belt, are available for reference and continue to be issued on a regular basis. However, the area underlain by our claims has up until the recent discoveries in the "Casa Berardi belt" of Quebec, received very little attention. This is due primarily to poor bedrock exposure and the lack of producing mines.

Thomson (1936) was the first to publish a geological map which includes the claim group. His map is useful in some respects, but his interpretation is not comprehensive and is outdated.

More recently, Johns (1982) has published a geological map of the Burntbush-Detour Lakes area. But, the western limit of his map approximately correlates with the eastern limit of the project area.

Our best assumptions of the bedrock geology of the property prior to the field program were therefore based on results and conclusions presented in our reports referred to in the introductory section; namely that the best potential for economic gold mineralization would be found in the southeastern corner of the property, where we interpreted that an east-northeast trending shear zone/fault might occur.
Numerous companies, starting with Conwest Exploration Co. Ltd. in 1959, have performed reconnaissance drilling in the general area, mostly directed at base metal sulfide (electromagnetic) targets. Up until now, however, no drill holes had been performed within the present limits of the Porphyry Creek project area.

More recent exploration work has focused towards gold. In addition to COGEMA CANADA Ltd., Newmont Exploration of Canada, Esso Minerals Canada and others, have done much work in the past few years.

The recent work performed by Esso is most pertinent since their property adjoins the Porphyry Creek project to the south and since a few drill holes have been performed very close to the common boundary.

Hole HN-87-7 was drilled to test an IP anomaly close to Esso's northern boundary, at a position approximately equivalent to the centre of the Porphyry Creek property (in east-west sense). They report mostly mafic volcanic derived sediments with subordinate felsic to intermediate crystal tuffs. Alteration is generally weak (calcite, silicification, sericitic), and shearing is not mentioned. Gold values up to 0.34 g/t are reported.

Further to the east, near the southeast corner of the Porphyry Creek claims, Esso drilled hole HN-88-17. Their summary log, taken from assessment files is shown in Table 1, and we have projected the hole onto L2800E in Figure 3 (see later). Their logging suggests that they may have intersected a zone of shearing between 41.1m and 96.1m. The final unit in their summary log may be equivalent to the mixed metavolcanic rocks from hole BUR-15. Note that the lapilli tuffs described from this unit would not correlate with those described from the central part of the Burntbush River property (i.e., volcanioclastic conglomerate from holes BUR-09, BUR-24, BUR-34), unless there is a change from thick continuous intervals to thin beds intercalated with metavolcanic rocks towards the west.
Sampling in hole HN-88-17 was continuous between 41.1 to 80.6m and from 89.2 to 116.9m, and elsewhere is punctual. A summary of results ≥ 100 ppb Au is given below:

<table>
<thead>
<tr>
<th>Range</th>
<th>Au Concentration</th>
</tr>
</thead>
<tbody>
<tr>
<td>42.5 - 49.5</td>
<td>100 to 180 ppb</td>
</tr>
<tr>
<td>69.3 - 70.4</td>
<td>120 ppb Au</td>
</tr>
<tr>
<td>92.2 - 93.2</td>
<td>210 ppb Au</td>
</tr>
<tr>
<td>94.7 - 96.1</td>
<td>190 ppb Au</td>
</tr>
<tr>
<td>112.7 - 113.9</td>
<td>110 ppb Au</td>
</tr>
<tr>
<td>134.5 - 135.1</td>
<td>140 ppb Au</td>
</tr>
</tbody>
</table>
TABLE 1.
SUMMARY LOG HN-88-17

ESSO MINERALS CANADA
SUMMARY DRILL LOG

<table>
<thead>
<tr>
<th>Project Name:</th>
<th>HN</th>
</tr>
</thead>
<tbody>
<tr>
<td>Project Number:</td>
<td>1677</td>
</tr>
<tr>
<td>NTS:</td>
<td>32E/5</td>
</tr>
<tr>
<td>Logged By:</td>
<td>M.H. Lenters</td>
</tr>
<tr>
<td>Date:</td>
<td>February, 1988</td>
</tr>
<tr>
<td>Location:</td>
<td>L44+00E, 11+60N</td>
</tr>
<tr>
<td>Azimuth:</td>
<td>180°</td>
</tr>
<tr>
<td>Dip:</td>
<td>-50°</td>
</tr>
<tr>
<td>Claim Number:</td>
<td>968393 (new)</td>
</tr>
<tr>
<td>Length (m):</td>
<td>136.06</td>
</tr>
</tbody>
</table>

PURPOSE: Test IP anomaly on L44E at 11+00N

<table>
<thead>
<tr>
<th>From (m)</th>
<th>To (m)</th>
<th>Description</th>
<th>Gold Assays (g/tonne)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.00</td>
<td>41.10</td>
<td>Overburden (Vertical Depth = 31.5 metres)</td>
<td>0.01 to 0.18</td>
</tr>
</tbody>
</table>
| 41.10 | 65.75 | Interbedded Quartz-Feldspar Crystal Tuffs and Minor Ash Tuffs
Light greenish grey, weakly sericitic, well foliated tuffs, generally containing abundant feldspar grains and minor blue quartz eyes. Minor to 5% quartz and calcite veining. 2 to 7% finely disseminated pyrite. | 0.01 to 0.12 |
| 65.75 | 85.17 | Interbedded Feldspar Crystal Tuffs and Metasediments
Dark grey-green, fine grained, weakly magnetic, well foliated chlorite-silica-plagioclase schistose metasediments, interbedded with medium grey-green, well foliated tuffs containing abundant feldspar crystals and minor blue quartz eyes. Foliation at 50 to 60° to the core axis. Minor to moderate amount of quartz veining. 1 to 3% pyrite. | 0.02 to 0.21 |
| 85.17 | 96.08 | Interbedded Feldspar Crystal Tuffs and Metasediments, Including
Minor, Banded Iron Formation Horizons
As above, with metasediments containing minor, thin, weakly to moderately magnetic, well laminated, magnetite-bearing chert horizons. | 0.01 to 0.14 |
| 96.08 | 135.06 | Interbedded Felsic Metavolcanic Lapilli Tuffs and Feldspar Crystal Tuffs, with Minor Metasediment
Medium to dark grey-green to green-grey, moderately well foliated tuffs, locally containing abundant feldspar crystals and minor blue quartz eyes. Lapilli tuffs contain abundant, well flattened volcanic fragments. Minor quartz veining. 1 to 5% pyrite. | |
| 135.06 | | END OF HOLE | |
5. DESCRIPTION OF FIELD WORK

The southeastern quadrant of the property was surveyed using ground magnetics and MAXMIN 1 (horizontal loop EM). The gridded area is indicated on Figure 2; results of these surveys will be discussed in a separate report and are not repeated here.

Two diamond drill holes were undertaken for a total of 518.5m. The holes consist of a north-south profile located at about 100m west of the eastern limit of the claims, starting at about 625m north of the southern boundary, and continuing south towards the property limit (see Table 2 and Figure 2).
<table>
<thead>
<tr>
<th>Hole # (drill#)</th>
<th>Started</th>
<th>Completed</th>
<th>Collar Coordinates</th>
<th>Azimuth</th>
<th>Inclination</th>
<th>Overburden</th>
<th>Bedrock</th>
<th>Total Depth (meters)</th>
</tr>
</thead>
<tbody>
<tr>
<td>POC-01</td>
<td>6/03</td>
<td>11/03/90</td>
<td>X 2800E Y 675S</td>
<td>180</td>
<td>-45</td>
<td>61.6</td>
<td>135.3</td>
<td>196.9</td>
</tr>
<tr>
<td>POC-02</td>
<td>11/03</td>
<td>18/03/90</td>
<td>X 2800E Y 900S</td>
<td>179</td>
<td>-49</td>
<td>40.8</td>
<td>280.8</td>
<td>321.6</td>
</tr>
</tbody>
</table>

CUMULATIVE TOTALS OVERBURDEN 102.4

BEDROCK 416.1

TOTAL 518.5
6. RESULTS

6.1 Summary

Two principal lithologic units were intersected in the diamond drill holes. The northern unit is composed of mafic to intermediate metavolcanic rocks; the southern unit is composed of feldspar-quartz porphyritic rocks. The last few meters of hole POC-02 resemble the northern unit and may be a similar unit at a different stratigraphic level or it may be a repetition of the northern unit due to faulting or folding (see Figure 3).

As a general observation, the rocks are relatively fresh and unaltered, veining is insignificant, and sulfide mineralization is weak. Local zones of anomalous veining and/or pyrite content do occur and these were sampled, but the maximum Au value obtained was only 21 ppb.

The remainder of chapter six is a more detailed presentation of the drill hole results, to complement MAP 1 and the Appendices.
FIGURE #3
SECTION 2 800 E
Scale : 1:5000

- ESSO, DDH-88-17
- crystal tufts and tappoli tufts
- crystal tufts (and metasediments)
- mafic metavolcanics
- felsic metavolcanics
- porphyry
- mafic metavolcanics
- minor graphite (weakly conductive)

- HLEM - 1760 Hz
- icm - 5 %
- in phase
- quadrature

- MAGNETICS
- icm - 1000 T
- 59 000
- 58 900
- 58 800
- 58 700
6.2 Mafic to intermediate metavolcanic rocks

The northern mafic to intermediate unit comprises all of hole POC-01 and the first 151.5m of hole POC-02. In hole POC-01 the following mesoscopic subunits were logged:

- 61.6 - 126.3 intermediate to mafic tuffs (and/or flows)
- 126.3 - 153.35 amphibole rich mafic flow(s)
- 153.35 - 196.9 mafic to intermediate tuffs (and/or flows)

The first subunit is composed predominantly of fine to medium grained biotite and hornblende with interstitial feldspar + quartz. The proportions of biotite and hornblende vary within the unit such that biotite-rich and hornblende-rich intervals varying from 1 to 50cm alternate. Local 1-10 cm feldspathic bands and 0.5 to 5m garnetiferous bands also occur.

Weakly graphitic intervals were observed at 70m and at 78m. Minor pyrite + pyrrhotite mineralization occurs near these depths to a maximum of about 2%. A thin interval of strong pyrite mineralization (25% py in irregular foliation-parallel bands over 0.5m) is also noted near the lower contact of the subunit.

One sample was analyzed for major and minor elements in a garnetiferous section of the unit (see Figure 4). It shows a slightly more felsic composition than we expected.

The second subunit is more uniformly amphibole-rich but a few biotitic bands (<20cm) occur. The lowermost 8m is characterized by 3-7% garnet porphyroblasts.

One sample was analyzed for major and minor elements from the upper (no garnets) section. It plots as a tholeiitic basalt on the Jensen diagram (Figure 4) and is characterized by high Mg and Fe.
Figure 4: Jensen plot of samples from POC-01.
The third subunit strongly resembles the first subunit, but over its total length is considered to carry more abundant hornblende. One section about 4m thick resembles the thin feldspathic bands of the first subunit. Minor pyrite ± pyrrhotite is noted in three short intervals at 168m, 177m and 189m.

Three samples in this subunit were analyzed for major and minor elements. Two of these fall in the calc-alkaline basalt field on Figure 4. The third sample shows high Fe relative to the first two samples but it was taken in the pyritic zone at 168m.

Twenty-three samples were tested for Au geochemistry and all gave \(\leq 5 \) ppb except for sample #2470. This sample gives 14 ppb Au and was taken at 188.5 - 190.0m, within which \(\sim 30 \) cm shows pyrite content of \(\sim 10\% \).

In hole POC-02, the upper mafic to intermediate unit is subdivided into the following subunits:

\[
\begin{align*}
40.8 - 54.0 & \quad \text{strongly fractured oxidized/limonitic} \\
54.0 - 71.1 & \quad \text{intermediate to mafic tuffs (and/or flows)} \\
71.1 - 134.4 & \quad \text{mafic to intermediate tuffs (and/or flows)} \\
134.4 - 151.5 & \quad \text{intermediate to mafic tuffs (and/or flows)}
\end{align*}
\]

It is assumed that the strongly fractured and oxidized section at the top of the hole can be included with the subunit which follows it. We interpret the zone to be due to (pre-glacial?) surface weathering.

The first subunit (i.e. 40.8m to 71.1m) basically resembles the first and third subunits of hole POC-01, although there is a lack of feldspathic bands.

One sample was analyzed for major and minor elements and it falls in the calc-alkaline andesite field on Figure 5.
POC-02
FeO + Fe₂O₃ + TiO₂

Subunit 1: * (1414)
Subunit 2: + (1415-1419)
Subunit 3: x (1420, 1421)

Figure 5: Jensen plot of samples above 151.5m from POC-2
The second subunit is similar to the above, but we perceive an overall somewhat higher amphibole content. Unlike the other units, there is no garnet present. Weak pyrrhotite-pyrite is commonly present whereas the other units were generally barren.

We analyzed five samples for major and minor elements. Four of the samples plot as calc-alkaline basalt/andesite similar to most samples previously discussed. The sample taken close to the lower contact falls in the tholeiitic basalt field, and may suggest the presence of a thin band similar to subunit 2 in hole POC-01 (see Figures 4 and 5).

The third subunit is predominantly biotitic with a few amphibole-rich bands and local garnet porphyroblasts. Weak pyrrhotite-pyrite is common.

Two samples were analyzed and these plot as tholeiitic andesites on the Jensen diagram (Figure 5).

The southern mafic to intermediate unit, intersected at the end of hole POC-02 is similar to the above described lithologies. It is perhaps slightly richer in amphibole than in biotite although both are present throughout the interval.

The sample tested for major and minor elements falls in the tholeiitic andesite field in Figure 6.

Thirteen samples were tested for Au from the mafic to intermediate rocks in hole POC-02. All samples gave <5 ppb except for sample #1420 which shows 10 ppb Au in an unmineralized garnetiferous section.
In summary, these rocks have been described mostly taking into consideration the proportions of amphibole and biotite, and to a lesser extent, garnet. Feldspar and quartz are usually too finely crystallized to be identified at mesoscopic scale, although both are surely present in the groundmass.

Since we recognize no primary textures in these rocks, we refer to them as tuffs (and/or flows). The centimeter scale alternating biotitic-amphibolitic bands are perhaps more suggestive of tuffs with the exception of subunit 2 from POC-01 which has relatively uniform amphibole content.

6.3 Feldspathic felsic metavolcanic Rocks

Two subunits are distinguished in this unit from hole POC-02:

151.5 - 211.1 feldspar-quartz porphyry
211.1 - 312.9 feldspar-quartz crystal tuffs

The porphyry subunit is characterized by massive to weakly foliated texture. Subhedral feldspar phenocrysts (25%) and rounded blue quartz eyes (15%) are set in a fine grained quartz-feldspar-biotite groundmass, giving the rock a spotty appearance (mainly due to the white feldspars set in the grey/blue-grey groundmass). Small biotitic schlieren or xenoliths are present and the unit shows blocky fracturing, suggestive of a closely spaced set of joints.

The porphyry shows a few short intervals of abundant epidote-calcite veinlets/fractures with associated bleaching of the rock and one 2-metre interval of quartz-pyrite veining near 178m.

Two samples tested for major and minor elements plot as dacites in the calc-alkaline field as defined on the Jensen diagram (see Figure 6).
Figure 6: Jensen plot of samples below 151.5m from POC-02.
Eight Au analyses were performed and all results are below detection limits.

The crystal tuff subunit is virtually identical to the porphyry unit above, except that the massive, spotty texture gives way to a well defined foliation which, in places, may be due to shearing of weak to moderate intensity. The size and proportion of feldspar phenocrysts is somewhat reduced and they are slightly more elongate. There is little or no change in the percentage or shape of the quartz eyes.

Disseminated pyrite is more widespread than in the porphyry subunit but rarely attains concentrations >1%. The subunit is generally unaltered and is only weakly veined with quartz ± calcite ± tourmaline, calcite ± epidote and calcite ± quartz ± muscovite ± tourmaline veins/veinlets.

Five major element analyses show results basically identical to the porphyry subunit as shown in Figure 6.

Thirteen samples of 1.5m length were taken in the interval 246.0 - 265.5m, where pyrite is most widespread. Three results in the range 19 to 21 ppb Au were received; the remainder gave <10 ppb Au. Outside of this zone, six additional samples taken all gave <5 ppb Au.

6.4 Nature of Lithologic Contacts

The upper contact of the amphibole-rich mafic subunit of hole POC-01 is faulted and displays minor strong pyrite. The lower contact of this subunit is abrupt but appears conformable.

Contacts between the subunits in the northern mafic to intermediate rocks of hole POC-02 are gradual.
The upper contact of the feldspar porphyry subunit is sharp but also appears conformable. There is no apparent chill zone in the porphyry, and there appears to be no evidence to suggest thermal metamorphism of the adjacent metavolcanics. If the porphyry subunit is truly intrusive, these features were obliterated by the regional metamorphism.

The contact between the two porphyritic subunits is relatively abrupt; it is not faulted.

The lower contact of the porphyritic tuffs is faulted over about 2m. Within this 2m contact zone, there is some mixing between the hanging wall/footwall units.
7. DISCUSSION

A geological/geophysical compilation map of the area drilled is shown in Figure 7 at 1:5 000 scale.

Results from POC-01 and POC-02 do not confirm the presence of a gold-bearing structure on the claim group. The stratigraphy encountered seems to closely resemble the area of hole BUR-52 further to the east, suggesting that the rocks in Esso's hole HN-88-17 may be part of the gold-bearing structure which we hoped to find.

Au results in Esso's hole are somewhat anomalous, particularly at 42.5 to 49.5m and at 92.2 to 96.1m and these data may suggest that the structure has less economic potential in this area than on the Burntbush River property. Furthermore, the Esso core description seems to best resemble hole BUR-15, which is also only very weakly anomalous in its Au content.

The interpreted updip projection of the end of hole POC-02 comes to within about 150m of the southern property limit: the collar of hole HN-88-17 is located at 75m south of the claim line. Thus, one additional drill hole would be required to verify the exact location of the structure in this area.

But, we have confirmed that the structure follows the magnetics trend which bends west-southwest in this area.
Porphyry Creek Project
GEOLOGIC INTERPRETATION

FIGURE 7

Scale 1:5000
8. CONCLUSIONS

The Spade Lake shear, having been drilled over a distance of 5 km on the Burntbush River property, was not intersected in holes POC-01 or POC-02, but may have been intersected in hole HN-88-17.

Au geochemistry in these holes is very weak in comparison to most holes drilled at Burntbush River.

The shear strikes east-northeast and therefore falls within the HN property (now being operated by INCO); but since it has a north dip, the downdip extension may eventually cross onto the Porphyry Creek claims, particularly in the east sector.

Although there is about 200m of untested ground between the updip extension of hole POC-02 and hole HN-88-17, the probability of an economic zone here is interpreted to be remote.

Nevertheless, it may be of interest to keep the southeastern part of the property in our portfolio for as long as possible in the event that INCO chooses to drill in this area (to protect the downdip extension of any potential zone).
9. REFERENCES

Various assessment files, Office of the Resident Geologist, Kirkland Lake, Ont., Blakelock, Hoblitzell, Noseworthy Townships area:

Conwest 1959
Esso Minerals 1987
Summary of Work Performance and Distribution of Credits

<table>
<thead>
<tr>
<th>Total Work Days Cr. claimed</th>
<th>Mining Claim</th>
<th>Work Days Cr.</th>
<th>Mining Claim</th>
<th>Work Days Cr.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1700</td>
<td>See list</td>
<td>attached</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

All the work was performed on Mining Claim(s): L1025524 (ddh POC-02), L1025525 (ddh POC-01)

Required Information eg: type of equipment, Names, Addresses, etc. (See Table Below)

Diamond Drill Contractor: Forage Mercier Inc. 3245 Grande Allee Boisbriand, Qc J7H 1E4
Drilling performed from 6/03/90 to 18/03/90

Equipment:
- 1 unitized Longyear 38 core drill and shack with hydraulic tower, chuck and mud mixer;
- pressure pumps: BEAN-420; supply pumps: BRAHMA;
- BQ core barrels, rods, BW and NW casing;
- 1 NODWELL FN-160 (for drill moves, setups)
- one full camp with kitchen, sleeping facilities

Credits: POC-01 (156.9m) and POC-02 (111.6m) for a total of 1700 feet of drilling

Certification Verifying Report of Work

I hereby certify that I have a personal and intimate knowledge of the facts set forth in the Report of Work annexed hereto, having performed the work or witnessed same during and/or after its completion and the annexed report is true.

Name and Postal Address of Person Certifying
John Learn, CP 877, Rouyn-Noranda, Qc, J9X 5C7

Date Certificed: Aug. 13, 1990

Table of Information/Attachments Required by the Mining Recorder

<table>
<thead>
<tr>
<th>Type of Work</th>
<th>Specific Information per type</th>
<th>Other information (Common to 2 or more types)</th>
<th>Attachments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Manual Work</td>
<td>NIL</td>
<td>Names and addresses of men who performed manual work/operated equipment, together with dates and hours of employment.</td>
<td>Work Sketch: these are required to show the location and extent of work in relation to the nearest claim post.</td>
</tr>
<tr>
<td>Shaft Sinking, Drifting or other Lateral Work</td>
<td>Type of equipment</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Compressed air, other power driven or mechanical equip.</td>
<td>Type of equipment and amount expended. Note: Proof of actual cost must be submitted within 30 days of recording.</td>
<td>Names and addresses of owner or operator together with dates when drilling/stripping done.</td>
<td>Work Sketch (as above) in duplicate</td>
</tr>
<tr>
<td>Power Stripping</td>
<td>Type of equipment</td>
<td>Names and addresses of owner or operator together with dates when drilling/stripping done.</td>
<td>Work Sketch (as above) in duplicate</td>
</tr>
<tr>
<td>Diamond or other core drilling</td>
<td>Signed core log showing; footage, diameter of core, number and angles of holes.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Land Survey</td>
<td>Name and address of Ontario land surveyor.</td>
<td>NIL</td>
<td>NIL</td>
</tr>
</tbody>
</table>
DISTRIBUTION OF CREDITS

[Diamond drilling]:

<table>
<thead>
<tr>
<th>Claim</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>1010811</td>
<td>40</td>
</tr>
<tr>
<td>1010812</td>
<td>40</td>
</tr>
<tr>
<td>1010813</td>
<td>40</td>
</tr>
<tr>
<td>1010814</td>
<td>40</td>
</tr>
<tr>
<td>1010815</td>
<td>40</td>
</tr>
<tr>
<td>1010816</td>
<td>40</td>
</tr>
<tr>
<td>1025491</td>
<td>40</td>
</tr>
<tr>
<td>1025492</td>
<td>40</td>
</tr>
<tr>
<td>1025493</td>
<td>40</td>
</tr>
<tr>
<td>1025494</td>
<td>40</td>
</tr>
<tr>
<td>1025495</td>
<td>40</td>
</tr>
<tr>
<td>1025496</td>
<td>40</td>
</tr>
<tr>
<td>1025511</td>
<td>100</td>
</tr>
<tr>
<td>1025512</td>
<td>100</td>
</tr>
<tr>
<td>1025513</td>
<td>100</td>
</tr>
<tr>
<td>1025514</td>
<td>100</td>
</tr>
<tr>
<td>1025515</td>
<td>100</td>
</tr>
<tr>
<td>1025516</td>
<td>100</td>
</tr>
<tr>
<td>1025521</td>
<td>100</td>
</tr>
<tr>
<td>1025522</td>
<td>94</td>
</tr>
<tr>
<td>1025523</td>
<td>90</td>
</tr>
<tr>
<td>1025524</td>
<td>36</td>
</tr>
</tbody>
</table>

Total number of claims covered by this report: 31

Total number of eligible credits: 1,700