INTERPRETATION REPORT
INPUT MKVI ELECTROMAGNETIC/MAGNETIC SURVEY
GLEN AUDEN RESOURCES LIMITED
St. Laurent Township Area
Project No.28036A December, 1986
by
Marcel Koning, P.Eng.
Nadia Caira, B.Sc.

RECEIVED
1946 16 1987
MINING LANDS SECTION
SUMMARY AND RECOMMENDATIONS

A total of 456.17 line-km of survey was flown with the Questor/Barringer MKVI, 2ms, INPUT system in November-December, 1986, on behalf of several exploration companies, over an area near Cochrane, Ontario. Glen Auden Resources Limited holds a 202 claim property comprised of 4 separate claim blocks in St. Laurent Township, Ontario all of which was covered by the Questor Survey.

The survey outlined several discrete bedrock conductors. Most of these anomalies appear to warrant further investigation using appropriate surface exploration techniques. Areas of interest may be assigned priorities for follow-up work on the basis of supporting geological and/or geochemical information.

The area of interest contains several anomalous features, many of which are considered to be of moderate to high priority as exploration targets.
INTRODUCTION

A Questor airborne INPUT electromagnetic and magnetic survey totalling 456.17 line-km (285.11 line-miles) was flown with a 100m line-spacing for Glen Auden Resources Limited 178 (90+30+58) claim property and their 24 claim property in December, 1986, in the Cochrane Area of Ontario (Figure 1).

The property is located in eastern St. Laurent Township, Larder Lake Mining Division, Ontario. The property covers an extension of the metavolcanics and iron formations that have been the subject of considerable exploration activity in the Casa Berardi area in Quebec. Potential for stratabound sulfide gold deposits exist on the property as well as possibilities for disseminated pyrite hosted gold deposits within porphyritic and/or felsic volcanic tuffs and gold associated with quartz veins in carbonate-sericite alteration zones within structurally deformed portions of the belt.

The survey was commissioned by Mr. R.S. Middleton of Glen Auden Resources Limited. Marcel H. Konings, P.Eng., Geophysicist for Questor, supervised the data compilation and interpretation through to the completion of the project in December, 1986.

The survey objective is the detection and location of base metal sulphide conductors as well as any structures and conductivity patterns which could have a positive influence on gold and base metal exploration.
PROJECT LOCATION

The property is located in eastern St. Laurent Township, some 65 air miles northeast of Cochrane, Ontario (see Figure 1). Access to the property is by helicopter from Cochrane, however, a winter road could be extended south from Newmont’s winter road that crosses central Noseworthy and Bradette Townships some 7 or 8 miles to the north of the property.

PROPERTY

The property consists of 4 different claim blocks in St. Laurent Township, as shown on the claim map in the back pocket of this report (Figure 2).

24 Claim Block

<table>
<thead>
<tr>
<th>Claim Number</th>
<th>No.</th>
<th>Recording Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>879995-879996</td>
<td>2</td>
<td>January 16, 1987</td>
</tr>
<tr>
<td>879715-879732</td>
<td>18</td>
<td>January 23, 1987</td>
</tr>
<tr>
<td>879734-879737</td>
<td>4</td>
<td>January 23, 1987</td>
</tr>
<tr>
<td></td>
<td>24</td>
<td></td>
</tr>
<tr>
<td>Claim Number</td>
<td>No.</td>
<td></td>
</tr>
<tr>
<td>-------------------</td>
<td>-----</td>
<td></td>
</tr>
<tr>
<td>876997-877000</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>877284-877287</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>877291-877294</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>877298-877300</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>877701</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>877705-877708</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>878603-878604</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>878607-878608</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>878612</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>878617</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>879201-879222</td>
<td>22</td>
<td></td>
</tr>
<tr>
<td>879268-879277</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>879301</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>879310-879319</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>879328-879336</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>879343-879379</td>
<td>37</td>
<td></td>
</tr>
<tr>
<td>879733</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>879738-879745</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>879748-879753</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>879886-879892</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>879926-879927</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>879930-879939</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>879942-879946</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>880111-880134</td>
<td>24</td>
<td></td>
</tr>
<tr>
<td></td>
<td>178</td>
<td></td>
</tr>
</tbody>
</table>

The claims are in Glen Auden Resources Limited name.
3. SURVEY OPERATIONS

3a. Survey Personnel

The survey crew was made up of experienced Questor employees:

Crew Manager/Data Technician - Ken Sherk
Pilot/Captain of Aircraft - Wayne Swantek
Co-pilot/Navigator - Terry McConnell
Equipment Technician - Ron Rasper
Aircraft Engineer - Pat Melen

The flight path recovery was completed at the survey base, while the final data compilation and drafting was carried out by Questor at its Mississauga, Ontario office. The magnetic and electromagnetic processing was carried out using Questor software and computer drafted. The INPUT interpretation and report was completed by Marcel H. Konings, P.Eng.
3b. **Instruments**

A, Short Skyvan, C-GDRG, equipped with the following instruments was used for the survey:

1. Mark VI INPUT Electromagnetic System;
2. Geometrics G-813 Proton Magnetometer (1 gamma sensitivity);
3. Sonotek SDS 1200 Data Acquisition System;
4. RMS GR33 Analogue Recorder;
5. 35mm Camera, Intervalometer and Fiducial System;

A Geometrics G-816 Base Magnetometer was used to monitor the diurnal magnetic changes.

The equipment, such as the INPUT system, magnetometer and radar altimeter were regularly calibrated at the beginning and end of each survey flight as well as in mid-flight, whenever necessary. Details of the calibration procedures are given in Appendix C.

The continuous chart speed of the RMS recorder was set at 15 cm./minute.
3c. Production

The flight line spacing over the block was 100 metres.

Table 1 summarizes the kilometres flown during the survey operation.

<table>
<thead>
<tr>
<th>Table 1</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Traverse lines</td>
<td>450.67 km</td>
</tr>
<tr>
<td>Control lines</td>
<td>5.5 km</td>
</tr>
<tr>
<td>Total Lines</td>
<td>456.17 km</td>
</tr>
</tbody>
</table>

The survey was completed in three production flights. No days were lost during the survey.

3d. Products

The products delivered by Questor to Glen Auden Resources Limited, together with four copies of the report:
1. one unscreened master photo mosaic, scale 1:20,000;
2. one master photo mosaic with electromagnetic and magnetometer information and interpretation shown thereon, scale 1:20,000;
3. one magnetic overlay, scale 1:20,000;
4. one magnetic first derivative overlay, scale 1:20,000
5. four white prints of (2);
6. one computer plot of the electromagnetic and magnetometer flight analogues, scale 1:20,000;
7. one copy of colour contoured magnetics, scale 1:20,000;
8. one copy of colour contoured magnetic first derivative, scale 1:20,000;
9. the negative of the flight path film;
10. anomaly data sheets;
11. the flight logs.

3e. Survey Procedure

During the survey, the aircraft maintained a terrain clearance as close to 122 metres as possible, with the receiver coil (bird) at approximately 55 metres above the ground surface. In areas of substantial topographic relief and large population, the aircraft height may exceed 122 metres for safety reasons. The height of the bird above the ground is also influenced by the aircraft's air speed (see figure C1 in Appendix C), which was maintained at 110 to 120 knots, while on survey.

Whenever possible, the traverse lines were flown in alternate flight directions (e.g., north then south) to facilitate the interpretation of dipping conductors. When the traverse line
spacing exceeded twice the normal spacing interval over a 2.2 kilometre distance, the gap is normally filled with an appropriately spaced fill-in line at a later date.

The details of each production flight are documented on the flight logs by the equipment technician. The logs include the survey times, line numbers and fiducial intervals, as well as a record of equipment irregularities and atmospheric conditions. One may refer to these logs in order to relate the flight path film to the geophysical data.

During the course of the survey the following data were recorded:

1. INPUT Electromagnetic results represented by six channels of successively increasing time delays after cessation of the exciting pulse (Appendix A);
2. a record of the terrain clearance as provided by radar altimeter;
3. a photographic record of the terrain passing below the aircraft as obtained from a 35 mm. camera;
4. time markers impressed synchronously on the photographic and geophysical records to facilitate accurate positioning on photomosaics;
5. airborne magnetometer data;
6. ground base station magnetometer data.

3f. Magnetic Diurnal

Diurnal variations in the earth's magnetic field had been recorded to an accuracy of \(\pm 1 \) nT using a base station equipped
with a Geometrics G-816 Proton Precession Magnetometer. It was monitored periodically during the day for severe diurnal changes (magnetic storms). A variation of 20 nT over a 5 minute time period was considered to be a magnetic storm. During such an event, the survey would normally have been discontinued or postponed and the survey data would have been scrubbed.

The base station magnetometer was set up at LaSarre, Quebec.
4b. **Computer Processing**

The completed flight path is accurately digitized on a flat-bed digitizer at Questor using the picked point co-ordinates. The recovery is then routinely verified by a computer programme 'speed check', which flags any abnormalities in the distance per fiducial unit between picked points on a traverse line. As a final check, the rough magnetic contour maps are examined for contour irregularities that could be attributed to recovery errors.
5. **INPUT DATA PRESENTATION**

The base maps for the survey area are photomosaics constructed from 1:50,000 air photographs supplied by Ontario Ministry of National Resources and taken in 1978. The photomosaic was used to construct the navigation flight strips and also the base onto which the flight path was recovered. The mosaics are uncontrolled at a scale of 1:20,000.

The INPUT anomaly map presents the information extracted from the analogue records. This consists chiefly of the peak anomaly positions and response characteristics, surficial responses, up-dip responses, and magnetic anomaly locations. In effect, these represent the primary data analysis. The symbols are explained in the map legend, but the following observations are presented:

- position of peak anomaly;
- conductance or conductivity-thickness;
- amplitude of channel 2 response;
- position and peak amplitude of associated magnetic anomalies;
- where present, surficial, up-dip and poorly defined responses have been identified with a unique symbol.

The interpretation maps outline the geophysical-geological interpretation of the INPUT electromagnetic, magnetic, geological and physiographic data. Bedrock conductors have axis locations and dip directions, when they are interpretable. The anomalous zones which are recommended for follow-up have a reference label assigned, to which additional comments and recommendations are
directed in the Interpretation Section of this report. Surficial response sources are mapped out by boundaries showing their interpreted lateral extent. The following list summarizes the interpretation presentation:

- bedrock conductor axis, probable and possible;
- conductor dip;
- surficial conductor outlines;
- anomalous conductors selected for ground evaluation with reference number.
6. INTERPRETATION - GENERAL

6a. Geological Perspective

The survey area is located in the western end of a major volcanic belt extending westward from Quebec. This part of the Abitibi belt contains mostly felsic to intermediate metavolcanics metamorphosed to greenschist and amphibolite facies. The area has been mapped by G.W. Johns in 1982 and documented in OGS Report 199. He suggests that the survey block is located within a volcanic pile which forms a domed feature. Although local folds have been suggested cutting across the felsics, this sequence appears to form a normal north facing pile with mafic volcanics to the south and metasediments dominating the lithology north of Bradette Township.

Drilling and outcrop mapping have established that volcanic sediments (tuffs and lapilli tuffs) dominate the lithology with flows being a very minor component. South of Rube Lake, very little mineralization has been established by previous drilling, while the northern part of the unit has been extensively explored and drilled.

6b. Conductivity Analysis

The conductivity-thickness products of planar horizontal, and thin steeply dipping conductors are proportional to the time constant of the secondary field electromagnetic transient decay. This transient may be closely approximated by an exponential function for which the conductivity-thickness product (TCP) is
INPUT INTERPRETATION

The main survey covered an area with 321.17 line-kilometers over the 90+30+24 claim block and 135 line kilometers over the 58 claim block.

The entire Glen Auden Resources Limited property in St. Laurent Township was covered by the Questor Survey, the results of which are shown on the map sheets at the back of this report (See Figures 3a,3b,4a,4b,5a,5b).

The electromagnetic/magnetic survey covered a segment of the Burntbush greenstone belt which has not received previous evaluation. In addition to the strong conductors on which past exploration focussed several weak (previously undetected) conductors were interpreted.

The 58 claim block of Glen Auden Resources is dominated by a magnetic low striking southwest from the northeast corner of the property down to the southwest corner of the property.

The survey block contains several moderate conductors. It is strongly recommended that all ground geochemical, geophysical and geological information be used.

Anomalies 11430N and 11390N, 11331N

These conductors are located across the central portion of the survey block striking roughly just south of west. This
Anomaly is located along the edge of a southwest striking mag-low.

This zone could reflect possible sulfides and should be investigated on the ground.

Anomaly 11320S is located in the center of the claim block and is an isolated anomaly within the magnetic low.

Anomaly 11290N

This anomaly located along the west-central portion of the claim block appears to reflect an isolated, weakly magnetic conductor. This zone could reflect possible sulfides.

The 90 claim block of Glen Auden Resources Limited is dominated by a highly magnetic feature striking roughly east-west along the southern boundary of the claim block to northwest in the western portion of the claim group. There appears to be an offset faulted section of the probable iron formation along the western half. A northwest striking magnetic high probably due to a diabase dike appears to dissect the iron formation.

Anomaly A

This conductor strikes parallel to the northern border of the claim group. This conductor is predominantly weakly magnetic. It may be reflecting mineralization along a contact. It appears to be following an east-west striking creek bed.
Anomaly 10240N

This isolated conductor located in the northwestern section of the claim block is predominantly non-magnetic. This zone could reflect possible sulfides and should be investigated on the ground.

The 30 claim block of Glen Auden Resources Limited is dominated by a north-south striking magnetic low along the western half of the claim block.

The 24 claim block of Glen Auden Resources Limited is dominated by a magnetic high along the northern boundary of the claim block typical of an iron formation. This zone may have strike extensions to the east.
Depths were only determined for responses which appear to fit the interpretation model—a thin near vertical plate with a strike length of greater than 500 metres. Qualifications for these determinations are summarized in the interpretation section.

The depths for 5 and 6 channel anomalies were corrected for the interpreted conductor strike intersection relative to the line direction and the effects of aircraft altitude deviations from a flight altitude of 120 metres.

An anomaly listing at the back of this report summarizes each anomalous response in a numerical sequence. In addition to the standard anomaly parameters, an "anomaly type" classification has been added. The letters correlate with the plotted symbols according to the following table.

<table>
<thead>
<tr>
<th>ANOMALY TYPE</th>
<th>RESPONSE SOURCE</th>
<th>SYMBOL</th>
</tr>
</thead>
<tbody>
<tr>
<td>BLANK</td>
<td>bedrock conductors</td>
<td>circular</td>
</tr>
<tr>
<td>S</td>
<td>surficial (overburden or lakebottom) conductivity</td>
<td>diamond</td>
</tr>
<tr>
<td>U</td>
<td>up-dip accessory peak to main response</td>
<td>half circular, half diamond, symbolically "pointing" in dip direction</td>
</tr>
<tr>
<td>P</td>
<td>poorly defined response</td>
<td>asterisk "*" in lower left quadrant</td>
</tr>
<tr>
<td>C</td>
<td>cultural source</td>
<td>square</td>
</tr>
</tbody>
</table>
The "P" poorly defined response may not yield signatures diagnostic of a discrete bedrock anomaly to standard electromagnetic prospecting equipment. Interpreted axis locations may be approximate for these intercepts.
28037 CHANNEL 1

AMPLITUDE PROFILES
INPUT System Characteristics

The INPUT receiver sensor is towed approximately 93 metres behind and 68 metres below the aircraft at a survey airspeed of 110 knots. The actual position of the bird is dependent on the airspeed of the survey aircraft, as can be seen in Figure A1. For the Trislander, Skyvan and DC-3 aircrafts, airspeeds average 110 knots.

EFFECT OF AIR SPEED ON BIRD POSITION

![Diagram showing the effect of air speed on bird position](Figure A1)
INPUT TRANSMITTER SPECIFICATIONS

<table>
<thead>
<tr>
<th>Specification</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pulse Repetition Rate</td>
<td>180 pps.</td>
</tr>
<tr>
<td>Pulse Shape</td>
<td>half-sine</td>
</tr>
<tr>
<td>Pulse Width</td>
<td>2.0 ms.</td>
</tr>
<tr>
<td>Off Time</td>
<td>3.56 ms.</td>
</tr>
<tr>
<td>Output Voltage</td>
<td>75 V.</td>
</tr>
<tr>
<td>Output Current</td>
<td>240 A.</td>
</tr>
<tr>
<td>Output Current Average</td>
<td>54 A.</td>
</tr>
<tr>
<td>Coil Area</td>
<td>186 m.²</td>
</tr>
<tr>
<td>Coil Turns</td>
<td>6</td>
</tr>
<tr>
<td>Electromagnetic Field</td>
<td></td>
</tr>
<tr>
<td>Strength (peak)</td>
<td>267,840 amp-turn-meter²</td>
</tr>
</tbody>
</table>

INPUT SIGNAL

TRANSMITTED PRIMARY FIELD

![Figure A2](image-url)
INPUT RECEIVER SPECIFICATIONS

Sample Gate	Windows (centre positions)	Widths
CH 1 | 300 μsec. | 200 μsec.
CH 2 | 500 | 200
CH 3 | 800 | 400
CH 4 | 1200 | 400
CH 5 | 1700 | 600
CH 6 | 2300 | 600

Integration Time Constant: 1.2 sec.

Receiver Features:
- Power Monitor 50 or 60 Hz
- 50 or 60 Hz (and harmonic) Filter
- VLF Rejection Filter
- Spheric Rejection (tweak) Filter

Figure A3
DATA ACQUISITION SYSTEM
Sonotek SDS 1200
Includes time base Intervalometer, Fiducial System

CAMERA
Geocam 75 SF
35 mm continuous strip or frame

TAPE DRIVE
DIGIDATA MODEL 1139
9 TRACK 800 BBI ASCII

OSCILLOSCOPE
Tektronix Model 305

ANALOGUE RECORDER
RMS GR-33
Heat Sensitive Paper (33cm)
Recording 10 Channels: 50-60 Hz Monitor, 6 INPUT Channels, fine and coarse Magnetics and Altimeter. Also, time, fiducial numbers, latitude and longitude (optional), timing lines, centimetre spaced vertical scale marks and line numbers are imprinted on the paper.

ALTIMETER
Sperry Radar Altimeter
GEOMETRICS MODEL G-813 PROTON MAGNETOMETER

The airborne magnetometer is a proton free precession sensor which operates on the principle of nuclear magnetic resonance to produce a measurement of the total magnetic intensity. It has a sensitivity of 0.1 gamma and an operating range of 17,000 gammas to 95,000 gammas. The G-813 incorporates fully automatic tuning over its entire range with manual selection of the ambient field starting point for quick startup. The instrument can accurately track field changes exceeding 5,000 nT and for this survey has an absolute accuracy of 0.5 nT at a 1 second sample rate. The sensor is a solenoid type, oriented to optimize results in a low ambient magnetic field. The sensor housing is mounted on the tip of the tail boom supporting the INPUT transmitter cable loop. A 3 term compensating coil and perma-allow strips are adjusted to counteract the effects of permanent and induced magnetic fields in the aircraft.

Because of the high intensity electromagnetic field produced by the INPUT transmitter, the magnetometer and INPUT results are sampled on a time share basis. The magnetometer head is energized while the transmitter is on, but the read-out is obtained during a short period when the transmitter is off. Using this technique the sensor head is energized for 0.80 seconds and subsequently the precession frequency is recorded and converted to gammas during the following 0.20 second when no current pulses are induced into the transmitter coil.
APPENDIX B

THE SURVEY AIRCRAFT

Figure B1

Manufacturer Short Brothers Ltd.,
Type SHORT SKYVAN
Model SH-7 Series 3
Canadian Registration C-GDRG
Date of INPUT Installation October 1981

Modifications:
1) Nose, tail and wing booms for coil mounting;
2) Long range cabin fuel tank: 8 hours of air time;
3) Winch, camera and altimeter ports;
4) Sperry C-12 navigational system;
5) Doppler navigational system (optional);
6) Capable of spectrometry;
7) Modified hydraulic driven generator system.

The SKYVAN is a short take-off and landing aircraft. It is powered by two low maintenance turbine engines. The configuration of the aircraft provides for easy installation of equipment and extra fuel capability. These factors have made the SKYVAN a reliable and efficient geophysical survey aircraft.
APPENDIX C

CALIBRATION OF THE SURVEY EQUIPMENT

The major advance made during the transition from the INPUT MK V to the MK VI Model has been the ability to calibrate the equipment accurately and consistently.

At the beginning of each survey flight, the calibration of the survey equipment is performed by the following tests:

1) zero the 6 channel levels;
2) altimeter calibration;
3) calibration of INPUT receiver gain;
4) aircraft compensation;
5) record background E.M. levels at 600m;

This sequence of tests are recorded on the analogue records and may be repeated in midflight given that the duration of the flight is sufficiently long (Figure C1). At the termination of every flight, the calibration of the equipment is checked and recorded for any drift that may have occurred during the flight.

Channels 1 to 6 are zeroed on the analogue record by first placing the INPUT receiver into calibration mode, which isolates the receiver from any bird signal. Then, the channels are adjusted so that they are evenly spaced 5mm. apart with channel 6 positioned on the first half cm. line at the top of the record.
Compensation is the technique by which the effects of the noise are minimized. A reference signal obtained from the primary field at the receiver coil is utilized to compensate each channel of the receiver for coupling differences caused by bird motion relative to the aircraft. This signal is proportional to the inverse cube of the distance between the bird and aircraft.

Compensation procedures are carried out at an altitude of 600 metres in order to eliminate the influence of external
TIME CONSTANT OF THE INPUT SYSTEM

The time constant, is defined as the time for a receiver signal (voltage) to build up or decay to 63.2% of its final or initial value. A longer time constant reduces background noise but also has the effect of reducing the amplitude of a signal as well as the resolution of the system. A time constant of 1.1 sec. has been found to be the optimum value.

The time constant is periodically verified for continuity. It can be measured from the exponential rise or decay of the calibration signal, recorded during the calibration of the receiver gain (figure C1,(3)).
THE LAG FACTOR

The bird's spatial position, along with the time constant of the system, introduces a lag factor (Figure C2) or shift of the response past the actual conductor axis in the direction of the flight line. This is due to fiducial markers being generated and imprinted on the film in real time and then merged with E.M. data which has been delayed due to the two aforementioned parameters. This lag factor necessitates that the receiver response be normalized back to the aircraft's position for the map compilation process. The lag factor can be calculated by considering it in terms of time, plus the elapsed distance of the proposed shift and is given by:

\[
\text{Lag (seconds)} = \text{time constant} + \frac{\text{bird lag (metres)}}{\text{ground speed (metres/sec)}}
\]
The time constant of the system introduces a 1.1 second lag while, at an aircraft velocity of 110 knots, the 'bird' lag is 1.7 seconds. The total lag factor which is to be applied to the INPUT E.M. data at 110 knots is 2.8 seconds (1.4 fiducials). It must be noted that these two parameters vary within a small range dependent on the aircraft velocity, though they are applied as constants for consistency. As such, the removal of this lag factor will not necessarily position the anomaly peaks directly over the real conductor axis. The offset of a conductor response peak is a function of the system and conductor geometry as well as conductivity.

The magnetic data has a 1.0 second lag factor introduced relative to the real time fiducial positions. This factor is software controlled with the magnetic value recorded relative to the leading edge (left end) of each step 'bar', for both the fine and coarse scales. For example, a magnetic value positioned at fiducial 10.00 on the records would be shifted to fiducial 9.95 along the flight path.

A lag factor of 2 seconds (1.0 fiducial) is introduced to correct 50-60 Hz monitor for the effects of bird position and signal processing. In cases where a 50-60 Hz signal is induced in a long formational conductor, a 50-60 Hz secondary electromagnetic transient may be detected as much as 5 km. from the direct source over the conductive horizon.

The altimeter data has no lag introduced as it is recorded in real time relative to the fiducial markings.
The QUESTOR designed and implemented computer software for automatic interactive compilation and presentation, may be applied to all QUESTOR INPUT Systems. Although many of the routines are standard data manipulations such as error detection, editing and levelling, several innovative routines are also optionally available for the reduction of INPUT data. The flow chart on the following page (Figure D1) illustrates some of the possibilities. Software and procedures are constantly under review to take advantage of new developments and to solve interpretational problems.

a) INPUT Data Entry and Verification

During the data entry stage, the digital data range is compared to the analogue records and film. The raw data may be viewed on a high-resolution video graphics screen at any desirable scale. This technique is especially helpful in the identification of background level drift and instrument problems.

b) Levelling Electromagnetic Data

Instrument drift, recognized by viewing compressed data from several hours of survey flying, is corrected by an interactive levelling program. Although only two or three calibration sequences are normally recorded, levelling can be
APPENDIX E

INPUT INTERPRETATION PROCEDURES

In the analysis of INPUT responses, the following parameters are considered:

a) Anomaly Characteristics
 - amplitude, number of channels, decay rate, symmetry;
 - half width and the overall relationships to adjacent and along strike responses, plus the ground-to-aircraft distance.

b) Geological Relationships
 - known geological strike and dip patterns;
 - host rock, overburden and saprolite conductivity.

c) Cultural Relationships
 - as directed by the power line monitor;
 - correlation with known features such as buried pipelines, fence lines, farm and industrial buildings, etc.

For each anomaly selected the following are documented:

- line number and anomaly letter;
- fiducial location on line;
- interpreted source type of the anomaly - bedrock, surficial, cultural;
- number of channels of response;
- amplitudes in parts-per-million of channels 1 through 6;
- apparent conductance in siemens based on the appropriate source model;
corresponding magnetic association in nanoTeslas with fiducial location;
alitude (ground-to-aircraft) in metres.

From the anomaly characteristics, interpretative aspects such as up-dip responses, dip direction and altitude are made. Anomalies are then grouped into linear trends for bedrock conductors, and zones for horizontal conductivity contrasts, by correlation with adjacent on-strike responses.

Also, the interpreted source of the INPUT response is categorized as bedrock, surficial, accessory (up-dip) or cultural. Bedrock conductors are caused by massive sulphides, graphite bearing formations, serpentinized peridotites and in some instances by faults or shear zones. Magnetite concentrations may also, in some circumstances, yield anomalous INPUT responses. INPUT responses have been well documented by Macnae (1979), and Palacky and Sena (1979).

MASSIVE SULPHIDE DEPOSITS

The conductivity characteristic of massive sulphides is due to intergranular connections forming elongated sheet-like masses which permit the induction of eddy currents. These produce a secondary electromagnetic field which can be detected and quantitatively measured.

In most sulphide bodies the conductivity is caused by pyrrhotite and chalcopyrite. Pyrite, which often forms the greater quantity of sulphides present, usually occurs as isolated, albeit
closely spaced grains or crystals, and therefore, only produces moderate or weak responses. Sphalerite does not provide anomalous responses and can even insulate the better sulphide conductivity portion of a deposit. The resultant overall conductivity response from a massive sulphide deposit is in the range of 5 to 30 Siemens/metre, although individual lenses or mineral aggregates may have much higher conductivities.

Massive sulphide deposits occur as injections, veins and stratiform bodies of variable size, geometry and conductivity. Given these variables, there are no universal rules for all sulphide deposits; however, there are some general observations regarding the INPUT responses. These are:

- Amplitudes primarily increase in response to conductor strike and depth extent up to an "infinite" size of some 600 metres by 300 metres. Thereafter, source conductor width contributes to amplitudes, that is, amplitude is dependant on sulphide mass.
- Conductance varies independently with the overall integrated mineralogy and form of the sulphide components.
INPUT is often utilized in the search for volcanogenic copper-zinc sulphide deposits. These deposits are usually associated with felsic volcanic sequences, often at the interface of felsic-mafic rocks or with intercalated tuffs and/or sedimentary rocks. Many of these deposits have stringer sulphide zones in the footwall rocks related to feeder vent alteration systems and these can also contribute to the INPUT response. Laterally, the main sulphide deposits can lens out quickly or continue as minor bands, lenses or disseminated sulphides within more regionally extensive coeval tuffs or sediments and also provide INPUT responses along a considerable strike extent. All these variables must be considered in the explorationist's depositional model and in the analysis and interpretation of the geophysical responses. A careful analysis of the conductances, apparent widths (half peak width) and magnetic responses will often reveal the geometry-source aspects of the deposit. Stratiform base metal sulphides of up to 2,000 metres strike extent are known, although most sizeable deposits have strike lengths between 500 and 1,000 metres.

The magnetic response of a sulphide deposit is the most deceiving information available to the explorationist. Although many large economic deposits have a strong direct magnetic association, some of the largest base metal deposits have no magnetic association. Others have flanking magnetic anomalies caused by pyrrhotite/magnetite deposits in volcanic vent systems flanking the main sulphide body. Essentially non-homogeneous conductivities and magnetic responses may be favourable parameters.
GRAPHITIC SEDIMENTARY CONDUCTORS

Graphitic sediments are usually found within the sedimentary facies of greenstone belts. These represent a low energy, subaqueous sedimentary environment. Graphites are often located in basins of the subaqueous environment, producing the same geometrical shape as sulphide concentrations. Most often however, they form long, homogeneous planar sequences. These may have thicknesses from a metre to hundreds of metres. The recognition of graphite in this setting is often straightforward because conductivities and apparent widths may be very consistent along strike. Strike lengths of tens of kilometres are common for individual horizons.

The conductivity of a graphite formation is a function of two variables:

a) the quality and quantity of the graphite, and

b) the presence of pyrrhotite as an accessory conductive mineral

Pyrite is the most common sulphide mineral occurring within graphitic sequences. It does not contribute significantly to the overall conductivity as it will normally be found as disseminated crystals. Amphibolite facies metamorphism will often be sufficient to convert carbonaceous sediments to graphitic beds. Likewise, pyrite will often be transformed to pyrrhotite.

Without pyrrhotite, most graphitic conductors have less than 10 S conductivity-thickness value as detected by the INPUT system or 1 to 10 S/m conductivity from ground geophysical measurements. With pyrrhotite content, there may be little difference from other sulphide conductors.
It is not unusual to find local concentrations of sulphides within graphitic sediments. These may be recognized by local increases in apparent width, conductivity or as a conductor offset from the main linear trends.

Graphite has also been noted in fault and shear zones which may cross geological formations at oblique angles.

SERPENTINIZED PERIDOTITES

Serpentinized peridotites are very distinguishable from other anomalies. Their conductivity is low and is caused partially by serpentine. They have a fast decay rates, large amplitudes and strong magnetic correlation. Large profile widths with a shape similarity to surficial conductors are a common characteristic.

MAGNETITE

INPUT anomalies over massive magnetites correlate to the total Fe content. Below 25-30% Fe, little or no response is obtained. However, as the Fe percentage increases, strong anomalies may result with a rate of decay that usually is more pronounced than those for massive sulphides.

Negative INPUT responses may occur in a resistive but very magnetic iron formation, the result of a very high permeability, however, these are extremely rare.
SURFICIAL CONDUCTORS

Surficial conductors are characterized by fast decay rates and usually have a conductivity-thickness of 1-5 siemens. This value is much higher in saline conditions. Overburden responses are broad, more so than bedrock conductors. Anomalies due to surficial conductivity are dependent on flight direction. This causes a staggering effect from line-to-line as the INPUT response is much stronger for the leading edge of the flat lying surface materials than for the trailing edge. When the surficial response has the form of a thin horizontal ribbon, anomalies may be very difficult to distinguish from weak bedrock conductors. A unique identification for all geometries of horizontal ribbon, sheet and layer conductivity contrasts is best accomplished by matching of transient decay amplitudes to the appropriate response nomogram.

CULTURAL CONDUCTORS

Cultural conductors are identifiable by examining the power line monitor and the film to locate railway tracks, power lines, buildings, fences or pipe lines. Power lines produce INPUT anomalies of high conductivity that are similar to bedrock responses. The strength of cultural anomalies is dependent on the grounding of the source. INPUT anomalies usually lag the power line monitor by 1 second, which should be consistent from line-to-line. If this distance between the INPUT response and the power line monitor differs between lines, then there is the
possibility of an additional conductor present. The amplitude and conductivity-thickness of anomalies should be consistent from line-to-line.
APPENDIX F

INPUT RESPONSE MODELS

To the interpreter, one of the main advantages of the INPUT system geometry is the variation of the secondary response with conductor shape, size, depth and conductivity (Palacky 1976, 1977).

When we discuss the recognition parameters, one of the variables which is often omitted, is the plotting position of the main peaks in opposite flight directions on adjacent lines. In many cases, the responses may appear similar, but the plotting positions will show significant differences. These situations will be illustrated in the following section.

A third conductor identification factor is the INPUT decay transient for the main response peak. The decays may be used to identify the type of source, independent of the geometrical response which is dependent on the mutual coupling.
The interpreted conductor axis location varies with the source dip, conductivity, depth, thickness, depth extent and angle of intersection of the flight line to the conductor (strike direction).
The response of a cylinder may be quite difficult to recognize from a thin strip. A cylinder or spherical model does not show a pronounced negative or upward peak following the main response. Due to the effect of the time constant of the INPUT receiver, the negative peaks which follow the theoretical response do not appear on the INPUT records (Mallick 1972, Morrison et al 1969). As the illustrations show, the sphere-cylinder response is perfectly symmetrical, but not centered over the body. The plotting position of the main peak leads the actual axis location because the most favourable mutual coupling occurs just before the transmitter coil passes the conductive body. The amplitude of the responses will be similar in both flight directions for a perfect cylinder.
c) THE HORIZONTAL SHEET

economic - some stratabound massive sulphides;
- regolith conductivity alteration haloes over
 some uranium deposits;

non
economic - overburden, lateritic soils;
- weathered rock;
- sea water or saline formations;
- graphitic metasediments.

THE HORIZONTAL SHEET

FLIGHT DIRECTION

REVERSE FLIGHT DIRECTION

ANOMALY MAP PRESENTATION
The horizontal conducting sheet has many variations but it is essentially simple to recognize. The amplitudes of the earlier channels may reach 30,000 ppm where saline solutions are present, however, horizontal sheet responses of channels 4, 5 and 6 attenuate, more rapidly than for a vertical or steeply dipping plate.

The edge effect is a common interpretational problem where a conductive layer is encountered. A secondary peak may occur as the receiver coil crosses the trailing edge of the layer. These responses are always very sharp and often have very high apparent conductivities.

The edges of the sheet are positioned approximately at the half-peak width positions which are usually the inflection points of the profile.

The variations in plotting positions observed for dipping sheets are not as evident for the plate.

It is not unusual to see a shift in the peaks, with the latter channels migrating towards a section of improved conductance and/or increasing thickness. Another characteristic of poorly conducting sheets which respond only on channels 1 through 4 is the inversion of responses on channels 5 and 6. This is a reaction of the compensation circuits to changes in the primary field in the presence of a strong conductor and it serves no practical end except as a recognition aid.
The horizontal sheet model also applies to residual soils or laterite as well as conducting rock units. As the thin overburden situation changes to a thick overburden or two layer case and finally to a half space or a uniformly conductive earth, the responses also vary. The latter cases will have progressively broader responses which would seldom be mistaken for true discrete conductive zones.

When flight lines in opposite directions cross a conductive sheet, an asymmetric mirror image response occurs when the sheet is uniform. If there are variations in the geometry or conductance across the sheet, it may be necessary to compare responses with a shallow dipping sheet conductor to determine the effects, which would not be similar when compared with adjacent lines.
d) THE VERTICAL STRIP (RIBBON) RESPONSE

non

economic - rarely encountered in nature;
cultural - grounded hydro lines, lightning arrestor lines, fences.

THE VERTICAL STRIP (RIBBON) RESPONSE

FLIGHT DIRECTION

REVERSE FLIGHT DIRECTION

ANOMALY MAP PRESENTATION
Due to the fact that this type of response is most commonly caused by fences, lightning protection lines and grounded power lines, the customary cultural presentation is a square symbol. This cultural response symbol may or may not have a power monitor (50-60 cycle) response but these will normally follow pipelines, fences, power lines, roads, railroads and other man made structures. The amplitude and apparent conductivity of such responses varies with the ground conductivity. In residual soils or conductive overburden, it is often possible to see a positive (up-dip type) peak followed by a small negative immediately before the main conductive response. The presence and amplitudes of such responses is normally very consistent. The cause of such responses is interpreted to be current gathering within the surficial sediments (West and Macnae 1982).
e) THE HORIZONTAL STRIP (RIBBON) RESPONSE

- economic - some stratabound massive sulphides;
- non-economic - some stratabound mineral deposits;
- geological - weathering of narrow basic rock units with a high amphibolite content;
- cultural - grounded and interconnected fences, pipes.

THE HORIZONTAL STRIP (RIBBON) RESPONSE

FLIGHT DIRECTION

REVERSE FLIGHT DIRECTION

ANOMALY MAP PRESENTATION
The plotting positions of the responses could easily be mistaken for a vertical plate conductor, however, careful consideration must be given to the flight direction. The horizontal ribbon is a degeneration of the horizontal conducting sheet. It can be easily distinguished from a sphere or cylindrical body by its peak asymmetry, whereas the sphere model has a single symmetric main response.
APPENDIX G

QUANTITATIVE INTERPRETATION

The quantitative interpretation of the INPUT data is normally accomplished by comparing the resultant responses with type curves obtained from theoretical calculations, scale model studies and actual field measurements. A variety of results are available in literature for different conductor geometries and system configurations (see Ghosh 1971, Palacky 1974, Becker et al., 1972, Lodha 1977, Ramani 1980). They have also examined the effects of varying such parameters as conductance, conductor depth, dip and depth extent. Their approach has been successfully applied in interpretation of past field surveys.

The nomograms which are currently available for the INPUT system are the Vertical Half-Plane, Homogeneous Half-Space, Thin Overburden and 135° Dipping Half-Plane nomograms. The first is particularly useful for the interpretation of vertical dyke-like conductors frequently found in the Precambrian Shield type environments. In the case of a thick, homogeneous, flat-lying (less than 30 dip) source, the Homogeneous Half-Space nomogram should be applied. While in a thin overburden or tropically weathered rock environment, the Thin Overburden nomogram may be referenced to determine the depth and conductance of the overburden (Palacky and Kadekaru, 1979).

As an example, INPUT anomalies due to vertical dyke-like conductors, are asymmetric and independent of the flight direction.
Their shape is characterized by a minor first peak and a major second peak and their channel amplitudes are a function of the conductivity-thickness product and depth of the source. Anomaly B in Figure G1 illustrates one of these responses.

The channel amplitudes of anomaly A can be used in quantitative interpretation in the following way. Their values are plotted for each of the six channels on logarithmic (5 cycles K+ε 46 6213) tracing paper in a straight line using the vertical logarithmic scale in parts per million as given on the right side of Figure G2. The six channel amplitudes for anomaly A, in ppm, are 1657, 1108, 821, 500, 356, 237, respectively. The amplitudes are measured in ppm ($1\text{cm} = 475 \text{ppm}$) from the flight records with reference to the normal background levels on respective channels. Those responses which do not provide at least three channels of deflection, or whose first channel amplitude is less than 50 ppm over the normal background, should not be subjected to this analysis. The six points on the semi-logarithmic paper are then fitted to the curves of the vertical half-plane nomogram (Figure G2) without any rotation. Having accomplished this, the lateral placement of the plot indicates the apparent conductivity-thickness value, in siemens, and the position of the 10,000 ppm line on the logarithmic paper indicates the conductor depth, in metres. In the example shown (Figure G2), the apparent conductivity-thickness value is 50 siemens and the depth is 30 metres.
FIXED WING 2ms PULSE
VERTICAL 600m x 300m PLATE
CONDUCTANCE / DEPTH NOMOGRAM
Figure I3
The asymmetric Tx-Rx configuration is very sensitive to changes of dip, particularly in the case of conductors dipping against the flight direction. In this circumstance, there is a change in the magnitude of the second/first peak ratio for all channels. The ratio of the amplitudes of the two peaks is a function of dip. The dip should be the first parameter determined in the quantitative interpretation of a dipping conductor. Before the amplitude is further used for an estimate of conductivity-thickness and depth, it must be normalized to a dip of 90°. This correction is performed by means of the Thin Plate Dip Estimation and Amplitude Normalization Graph, Figure G3.

From the graph, it can be seen that a vertical dyke conductor should have a second/first peak ratio of approximately 6, i.e., that the first peak will have 16% of the amplitude of the second peak. In the case of anomaly A, this condition is true. Conversely, should the dyke dip at 60°, the ratio will decrease to 1.0. Thus, the dip of a conductor can be estimated from the peak ratios of channel two by using the graph in Figure G3.

An example of amplitude correction determination is shown in Figure G3. A dipping conductor has an up-dip second-first peak ratio of 1.0 i.e., that the channel amplitudes of the minor first peak and major second peak of channel two are equal. Taking this ratio of 1.0 and applying the graph, a dip of 60° is obtained for the conductor showing an amplitude correction of approximately 1.62. Consequently, the correction factor is applied to the six channel amplitudes of the associative down-dip response.
To estimate the apparent strike length of a conductor, the ends of the conductive trend must be determined. Modelling has shown that the conductor ends are delineated by INPUT responses having channel amplitudes not less than 40% of those typical for the conductor. Responses with less than that of 40% are attributive to lateral coupling effects and are not considered as intercepts of the conductor. This is especially true for conductors of higher conductivity. Subsequently, the strike length of a conductor is equal to the distance between those responses representing the ends of the conductor.
MAGNETOMETER: COMPENSATION, SURVEY AND PROCESSING

Aircraft Magnetic Compensation

In order for a high sensitivity magnetometer system to function without interference from the aircraft, it must be magnetically compensated. The sources of magnetic interference, produced by the aircraft are: a) eddy currents; b) aircraft electrical system; c) induced magnetism; and d) permanent magnetism. These sources of magnetic noise have distinguishable characteristics on the analogue records and a ground and airborne test will indicate the capabilities of the magnetometer installation. By following established procedures most of the noise sources are eliminated.

a) Eddy currents are caused by movements of the larger conducting surfaces of the aircraft in the earth's magnetic field, whereby electric currents are generated, causing magnetic fields. By placing the sensor at the greatest practical distance from these surfaces and by not flying in turbulent wind conditions, eddy current noise can be minimized.

b) Aircraft electrical systems with varying loads can lead to serious noise problems if consistent operations procedures and circuit layout are not properly designed. The switching of the aircraft's 28 volt DC to almost any component during
survey will create a variation in the static field existing under normal operating conditions. The three component compensator in the aircraft will see electrical system noise as DC level shifts from a heading invariant datum.

c) Induced magnetic fields are produced by ferromagnetic parts (mainly engines) in the earth's magnetic field. For a major change in magnetic latitude, it is necessary to check for variation of the aircraft's induced magnetic field. This is also dependant on the aircraft's heading and altitude. Compensation is accomplished by critical positioning of permalloy strips near the sensor. These produce fields opposite to the induced magnetic field of the aircraft, effectively cancelling it.

d) Permanent magnetism is produced by ferromagnetic parts within the aircraft. Compensation is accomplished with three orthogonal coils, through each of which an electrical current is passed, to create a resultant stable field opposite in polarity to the permanent field.

The compensation process has as its main objective the reduction of heading errors. These may be checked by flying the aircraft at survey altitude over a well defined non-anomalous landmark in the four cardinal headings. In addition, the effects of aircraft flight characteristics on the magnetometer installation are simulated by performing roll, pitch and yaw manoeuvres.
The aircraft has been originally compensated in Toronto, Ontario, where the induced field has been cancelled. In the survey area, a check is made to ensure that the permanent field does not induce heading dependant, magnetic field errors.

MAGNETOMETER SURVEY AND DATA ACQUISITION

The magnetometer survey is an integral part of INPUT operations, with no special procedures being required; with the exception of a ground magnetic recording station to monitor daily diurnal variations. The diurnal survey specifications relate to the control line spacing to minimize the possibilities of erroneous contours in area of low magnetic gradient.

The maximum diurnal gradient permitted is 20 gammas change within 5 minutes. The maximum control line spacing allowed is 8 kilometres. Where possible, control lines are routed through areas of low magnetic gradient over easily identified topographic points. As the time for the survey aircraft to span two control lines is approximately 2 minutes, a maximum diurnal anomaly of 4 nT (nanoTeslas) may exist after the data has been levelled.

The daily variation of the earth's magnetic field is monitored and recorded with a Geometrics G-826 Base Station Magnetometer and a GULTON or Hewlett Packard Strip Chart Recorder. The recorder has a 10 cm. chart width with a 100 nT full scale deflection, providing scaling of 1 nT/MM. An event marker provides time reference marks every minute. The chart speed is set to 20 cm/hour, with magnetometer readings taken every 4 or 10 seconds.
These readings may be digitally recorded using a portable data acquisition system synchronized with the aircraft data system, if required.

The magnetometer readings in the aircraft are recorded every second onto industry standard, 9-track tapes using the IBM NRZI Format.
APPENDIX I

Bibliography

Barringer Research Limited, The Quantitative Interpretation of Airborne INPUT Electromagnetic Data: Barringer Research Technical Note;

Lazenby, P.G., 1972, Examples of Field Data Obtained with the INPUT Airborne Electromagnetic System: Questor Surveys Limited;

Lodha, G. S., West, G. F., 1976, Practical Airborne EM (AEM) Interpretation Using a Sphere Model: Geophysics, volume 41, page 1157-1169;

Mallick, K., 1972, Conducting Sphere in Electromagnetic INPUT Field: Geophysical Prospecting, volume 20, page 293-303;

Type of Survey(s)

Northern Development and Mines (Geophysical, Geological, Geochemical and Expenditures)

Claim Holder(s)

UCEN ANDEN RESOURCES LIMITED/DAVAO JONES

Address

Box 1037 Timmins Ontario P4R 7P8 / 1007 Jean St Timmins Ontario

Survey Company

QUESTER SURVEYS LIMITED

Name and Address of Author of Geo-Technical report

MARCEL LENNING AND NADIA GAIRA

Credits Requested per Each Claim in Columns at right

<table>
<thead>
<tr>
<th>Mining Claim</th>
<th>Exp. Days Cr.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prefix</td>
<td>Number</td>
</tr>
<tr>
<td>L</td>
<td>879 715</td>
</tr>
<tr>
<td></td>
<td>879 717</td>
</tr>
<tr>
<td></td>
<td>879 720</td>
</tr>
<tr>
<td></td>
<td>879 722</td>
</tr>
<tr>
<td></td>
<td>879 724</td>
</tr>
<tr>
<td></td>
<td>879 726</td>
</tr>
<tr>
<td></td>
<td>879 728</td>
</tr>
<tr>
<td></td>
<td>879 730</td>
</tr>
<tr>
<td></td>
<td>879 732</td>
</tr>
<tr>
<td></td>
<td>879 735</td>
</tr>
</tbody>
</table>

Special Provisions

- Geophysical
 - Electromagnetic
 - Magnetometer
 - Radiometric
 - Other
- Geological
- Geochemical

Expenditures (excludes power stripping)

Date of Survey (from & to) 26/11/86 15/12/86

Total Miles of line Cut

90C

Prospector's License No. 7-1915/19140

Received

RECEIVED

Date of Survey (from & to) 26/11/86 15/12/86

Total Days of line Cut

90C

Date Approved as Recorded

JAN 26 1987

Date Certified

JAN 19/87

Certification Verifying Report of Work

I hereby certify that I have a personal and intimate knowledge of the facts set forth in the Report of Work annexed hereto, having performed the work or witnessed same during and/or after its completion and the annexed report is true.

Name and Postal Address of Person Certifying

NADIA GAIRA Box 1037 Timmins Ontario P4R 7P8

Total number of mining claims covered by this report of work. 24
Claim Holder: CLEN AUDEN RESOURCES LIMITED

Address: Box 1037 Timmins Ontario

Survey Company: CLOWER SURVEYS LIMITED

Date of Survey: From: 23/11/86 To: 5/12/86

Total Miles of line Cut:

CREDITS REQUESTED PER EACH CLAIM IN COLUMNS AT RIGHT

<table>
<thead>
<tr>
<th>Geophysical</th>
<th>Days per Claim</th>
</tr>
</thead>
<tbody>
<tr>
<td>Electromagnetic</td>
<td>40</td>
</tr>
<tr>
<td>Magnetometer</td>
<td>20</td>
</tr>
<tr>
<td>Radiometric</td>
<td>20</td>
</tr>
<tr>
<td>Other</td>
<td></td>
</tr>
<tr>
<td>Geological</td>
<td></td>
</tr>
<tr>
<td>Geochemical</td>
<td></td>
</tr>
</tbody>
</table>

Airborne Credits

<table>
<thead>
<tr>
<th>Type</th>
<th>Days per Claim</th>
</tr>
</thead>
<tbody>
<tr>
<td>Electromagnetic</td>
<td>30</td>
</tr>
<tr>
<td>Magnetometer</td>
<td>30</td>
</tr>
<tr>
<td>Radiometric</td>
<td></td>
</tr>
</tbody>
</table>

Expenditures (Excludes Power Stripping)

Type of Work Performed

Performed on Claim(s):

<table>
<thead>
<tr>
<th>Mining Claim</th>
<th>Expended Days Cr.</th>
</tr>
</thead>
<tbody>
<tr>
<td>See attached claim list</td>
<td></td>
</tr>
</tbody>
</table>

Calculation of Expenditure Days Credits

<table>
<thead>
<tr>
<th>Total Expenditures</th>
<th>Total Days Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>S + 15 =</td>
<td></td>
</tr>
</tbody>
</table>

For Office Use Only

Total Days Cr.

Date Certified: Dec 15/86

Certification Verifying Report of Work

I hereby certify that I have personal and intimate knowledge of the facts set forth in the Report of Work annexed hereto, having performed the work or witnessed same during and/or after its completion and the annexed report is true.

Name and Postal Address of Person Certifying: Maria Caira

Box 1037 Timmins Ontario P4N 7H8

Date Certified: Dec 15/86

Certified By (Signature): Maria Caira
876997	879201	879301	879355	879745	879842
876998	879202	879310	879356	879746	879943
879999	879203	879311	879357	879747	879944
877000	879204	879312	879358	879748	879945
879205	879313	879359	879749	879946	
877284	879206	879314	879360	879750	
877285	879207	879315	879361	879751	880111
877286	879208	879316	879362	879752	880112
877287	879209	879317	879363	879753	880113
879210	879318	879364	880114		
877291	879211	879319	879365	879886	880115
877292	879212	879366	879887	880116	
877293	879213	879328	879367	879888	880117
877294	879214	879329	879368	879889	880118
879215	879330	879369	879890	880119	
877298	879216	879331	879370	879891	880120
877299	879217	879332	879371	879892	880121
877300	879218	879333	879372	880122	
879219	879334	879373	879926	880123	
877701	879220	879335	879374	879927	880124
877705	879221	879336	879375	879928	880125
877706	879222	879337	879376	879929	880126
877707	879268	879343	879377	879930	880127
877708	879269	879344	879378	879931	880128
878603	879270	879345	879379	879932	880129
878604	879271	879346	879380	879933	880130
878607	879272	879347	879733	879934	880131
878608	879273	879348	879738	879935	880132
878612	879274	879349	879739	879936	880133
878617	879275	879350	879740	879937	880134
879276	879351	879741	879938		
879277	879352	879742	879939		
879353	879743				
879744					
April 8, 1987

Mining Recorder
Ministry of Northern Development and Mines
4 Government Road East
Kirkland Lake, Ontario
P2N 1A2

Dear Sir:

RE: Notice of Intent dated March 20, 1987
Geophysical (Electromagnetic & Magnetometer)
Surveys on Mining Claims L 879715, et al.,
in St. Laurent Township

The assessment work credits, as listed with the above-mentioned Notice of Intent, have been approved as of the above date.

Please inform the recorded holder of these mining claims and so indicate on your records.

Yours sincerely,

J.C. Smith, A/Manager
Mining Lands Section
Mineral Development and Lands Branch
Hines and Minerals Division

Whitney Block, Room 6610
Queen's Park
Toronto, Ontario
M7A 1W3

Telephone: (416) 965-4888

SH/mc

cc: Glen Auden Resources Limited
Box 1637
Timmins, Ontario
P4N 7W8

Mr. G.H. Ferguson
Mining & Lands Commissioner
Toronto, Ontario

Nadia Cairo
Box 1637
Timmins, Ontario
P4N 7W8

Resident Geologist
Kirkland Lake, Ontario

David Jones
1007 Jean Street
Timmins, Ontario
P4P 1A8

Encl.
Recorded Holder

GLEN AUDEN RESOURCES LIMITED/DAVID JONES

Township or Area

ST. LAURENT TOWNSHIP

<table>
<thead>
<tr>
<th>Type of survey and number of Assessment days credit per claim</th>
<th>Mining Claims Assessed</th>
</tr>
</thead>
<tbody>
<tr>
<td>Geophysical</td>
<td></td>
</tr>
<tr>
<td>Electromagnetic</td>
<td>30 days</td>
</tr>
<tr>
<td>Magnetometer</td>
<td>30 days</td>
</tr>
<tr>
<td>Radiometric</td>
<td></td>
</tr>
<tr>
<td>Induced polarization</td>
<td></td>
</tr>
<tr>
<td>Other</td>
<td></td>
</tr>
</tbody>
</table>

Section 77 (19) See "Mining Claims Assessed" column

Geological

Geochemical

Man days [] Airborne [x]

Special provision [] Ground []

[] Credits have been reduced because of partial coverage of claims.

[x] Credits have been reduced because of corrections to work dates and figures of applicant.

Special credits under section 77 (16) for the following mining claims

No credits have been allowed for the following mining claims

[] not sufficiently covered by the survey

[] insufficient technical data filed

The Mining Recorder may reduce the above credits if necessary in order that the total number of approved assessment days recorded on each claim does not exceed the maximum allowed as follows: Geophysical - 80; Geological - 40; Geochemical - 40; Section 77(19) - 60.
TO BE ATTACHED AS AN APPENDIX TO TECHNICAL REPORT
FACTS SHOWN HERE NEED NOT BE REPEATED IN REPORT
TECHNICAL REPORT MUST CONTAIN INTERPRETATION, CONCLUSIONS ETC.

Type of Survey(s) **AERIAL INPUT EM AND MAGNETIC SURVEY**
Township or Area **ST. LAURENT**
Claim Holder(s) **GLEN AUDEN RESOURCES LIMITED**

Survey Company **QUESTER AERIAL INPUT EM AND MAGNETIC**
Author of Report **MARCEL KONAS / MAGNA CAIRA**
Address of Author **7380 VISCOUNT RD. MISSISSAUGA/ON 1706, THAMES**
Covering Dates of Survey **NOV. 23/86 - DEC. 8/86**

Total Miles of Line Cut

SPECIAL PROVISIONS

<table>
<thead>
<tr>
<th>CREDITS REQUESTED</th>
<th>DAYS per claim</th>
</tr>
</thead>
<tbody>
<tr>
<td>Geophysical</td>
<td></td>
</tr>
<tr>
<td>Electromagnetic</td>
<td></td>
</tr>
<tr>
<td>Magnetometer</td>
<td></td>
</tr>
<tr>
<td>Radiometric</td>
<td></td>
</tr>
<tr>
<td>Other</td>
<td></td>
</tr>
<tr>
<td>Geological</td>
<td></td>
</tr>
<tr>
<td>Geochemical</td>
<td></td>
</tr>
</tbody>
</table>

AIRBORNE CREDITS (Special provision credits do not apply to airborne surveys)
Magnetometer **30**
Electromagnetic **30**
Radiometric **30**

DATE: **FEB. 13/87** **SIGNATURE:** **Madics**

Author of Report or Agent

Res. Geol. **26239**

Qualifications

PREVIOUS SURVEYS

<table>
<thead>
<tr>
<th>File No.</th>
<th>Type</th>
<th>Date</th>
<th>Claim Holder</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

TOTAL CLAIMS **202**
GEOPHYSICAL TECHNICAL DATA

GROUND SURVEYS — If more than one survey, specify data for each type of survey

Number of Stations __________________________ Number of Readings __________________________

Station interval __________________________ Line spacing __________________________

Profile scale __________________________

Contour interval __________________________

Instrument __________________________

Accuracy — Scale constant __________________________

Diurnal correction method __________________________

Base Station check-in interval (hours) __________________________

Base Station location and value __________________________

MAGNETIC

Instrument __________________________

Coil configuration __________________________

Coil separation __________________________

Accuracy __________________________

Method: □ Fixed transmitter □ Shoot back □ In line □ Parallel line

Frequency __________________________

(specify V.L.F. station)

Parameters measured __________________________

Instrument __________________________

Scale constant __________________________

Corrections made __________________________

Base station value and location __________________________

Elevation accuracy __________________________

ELECTROMAGNETIC

Instrument __________________________

Method: □ Fixed transmitter □ Shoot back □ In line □ Parallel line

Frequency __________________________

(specify V.L.F. station)

Electrode array __________________________

Electrode spacing __________________________

Type of electrode __________________________

GRAVITY

Instrument __________________________

Scale constant __________________________

Corrections made __________________________

Base station value and location __________________________

Elevation accuracy __________________________

INDUCED POLARIZATION

Instrument __________________________

Method □ Time Domain □ Frequency Domain

Parameters — On time __________________________ Frequency __________________________

— Off time __________________________

— Delay time __________________________

— Integration time __________________________

Power __________________________

Electrode array __________________________

Electrode spacing __________________________

Type of electrode __________________________
<table>
<thead>
<tr>
<th>Claim Numbers</th>
</tr>
</thead>
<tbody>
<tr>
<td>876997</td>
</tr>
<tr>
<td>876998</td>
</tr>
<tr>
<td>876999</td>
</tr>
<tr>
<td>877000</td>
</tr>
<tr>
<td>877284</td>
</tr>
<tr>
<td>877285</td>
</tr>
<tr>
<td>877286</td>
</tr>
<tr>
<td>877287</td>
</tr>
<tr>
<td>877291</td>
</tr>
<tr>
<td>877292</td>
</tr>
<tr>
<td>877293</td>
</tr>
<tr>
<td>877294</td>
</tr>
<tr>
<td>877298</td>
</tr>
<tr>
<td>877299</td>
</tr>
<tr>
<td>877300</td>
</tr>
<tr>
<td>877701</td>
</tr>
<tr>
<td>877705</td>
</tr>
<tr>
<td>877706</td>
</tr>
<tr>
<td>877707</td>
</tr>
<tr>
<td>877708</td>
</tr>
<tr>
<td>878603</td>
</tr>
<tr>
<td>878604</td>
</tr>
<tr>
<td>878607</td>
</tr>
<tr>
<td>878608</td>
</tr>
<tr>
<td>878612</td>
</tr>
<tr>
<td>878617</td>
</tr>
</tbody>
</table>
SELF POTENTIAL
Instrument ______________________________________ Range __________________________________
Survey Method __
Corrections made ___

RADIOMETRIC
Instrument __
Values measured ___
Energy windows (levels) ___
Height of instrument __________________________ Background Count __________________
Size of detector ___
Overburden __ (type, depth – include outcrop map)

OTHERS (SEISMIC, DRILL WELL LOGGING ETC.)
Type of survey ___
Instrument ___
Accuracy __
Parameters measured ___
Additional information (for understanding results) __________________________

AIRBORNE SURVEYS
Type of survey(s) QUESTOR AIRBORNE INPUT EM AND MAGNETIC SURVEY
Instrument(s) QUESTOR/BARRINGER HKV 205, INPUT SYSTEM, GEOMETRICS G-813 PROTON MAG.
(specify for each type of survey)
Accuracy T/07, SIX CHANNELS (specify for each type of survey)
Aircraft used A short skycap C-GDRG
Sensor altitude 30 m.
Navigation and flight path recovery method __________________________

Aircraft altitude 122 metres Line Spacing 125 m.
Miles flown over total area 456.17 line-km Over claims only All
GEOCHEMICAL SURVEY – PROCEDURE RECORD

Numbers of claims from which samples taken

<table>
<thead>
<tr>
<th>Total Number of Samples</th>
<th>Type of Sample (Nature of Material)</th>
<th>Average Sample Weight</th>
<th>Method of Collection</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Soil Horizon Sampled</th>
<th>Horizon Development</th>
<th>Sample Depth</th>
<th>Terrain</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Drainage Development</th>
<th>Estimated Range of Overburden Thickness</th>
</tr>
</thead>
</table>

ANALYTICAL METHODS

Values expressed in:

- per cent □
- p. p. m. □
- p. p. b. □

Cu, Pb, Zn, Ni, Co, Ag, Mo, As-(circle)

Others □

Field Analysis (tests)

- Extraction Method
- Analytical Method
- Reagents Used

Field Laboratory Analysis

- No. (tests)
- Extraction Method
- Analytical Method
- Reagents Used

Commercial Laboratory (tests)

- Name of Laboratory
- Extraction Method
- Analytical Method
- Reagents Used

SAMPLE PREPARATION

(Include drying, screening, crushing, ashing)

Mesh size of fraction used for analysis

<table>
<thead>
<tr>
<th>General</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

Note: The image contains handwritten notes and partial text entries. The table structure is maintained for completeness.
NOTE
400' Surface Rights Reservation around all Lakes and Rivers.

St. Laurent
Larder Lake Mining Division
District of Cochrane

Scale - 40 Chains = 1 inch

Bradette

Province of Quebec
Ontario

M594
MINISTRY OF NATURAL RESOURCES
SURVEYS AND MAPPING BRANCH
APR 22 1966

NOTE
400' Surface Rights Reservation around all Lakes and Rivers.