GEOPHYSICAL SURVEY REPORT
OF
(NEW NORTH GRID)
MAGNETOMETER AND ELECTROMAGNETIC SURVEYS
ELLIOTT TOWNSHIP
LARDER LAKE MINING DIVISION
DISTRICT OF TIMISKAMING, ONTARIO
NTS 32D/5

FOR

TIGER GOLD EXPLORATION CORPORATION

MARCH 31, 2003

MISS WENDY K. WELLER
GEOTECH

RECEIVED
APR 01 2003
GEOSCIENCE ASSESSMENT OFFICE
# TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>SUMMARY</td>
<td>i</td>
</tr>
<tr>
<td>INTRODUCTION</td>
<td>1</td>
</tr>
<tr>
<td>LOCATION AND ACCESS</td>
<td>1</td>
</tr>
<tr>
<td>PREVIOUS HISTORY</td>
<td>2</td>
</tr>
<tr>
<td>TOPOGRAPHY</td>
<td>2</td>
</tr>
<tr>
<td>GENERAL GEOLOGY</td>
<td>2</td>
</tr>
<tr>
<td>INSTRUMENTATION</td>
<td>3</td>
</tr>
<tr>
<td>PRESENTATION AND DISCUSSION OF RESULTS</td>
<td>3, 4</td>
</tr>
<tr>
<td>OBSERVATIONS AND CONCLUSIONS</td>
<td>4</td>
</tr>
<tr>
<td>LIST OF CLAIMS</td>
<td>5</td>
</tr>
<tr>
<td>TECHNICAL DATA</td>
<td>6</td>
</tr>
<tr>
<td>ASSESSMENT DATA FORM</td>
<td>8</td>
</tr>
<tr>
<td>BIBLIOGRAPHY</td>
<td>9</td>
</tr>
<tr>
<td>CERTIFICATE</td>
<td>10</td>
</tr>
</tbody>
</table>

# MAPS, FIGURES AND TABLES

<table>
<thead>
<tr>
<th>Map/Figure</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>CLAIM LOCATION MAP - FIGURE 1a)</td>
<td>1a)</td>
</tr>
<tr>
<td>LOCATION MAP - FIGURE 1d)</td>
<td>1b)</td>
</tr>
<tr>
<td>TABLE 1 - TABLE OF LITHOLOGIC UNITS - FIGURE 1c</td>
<td>2a)</td>
</tr>
<tr>
<td>AEROMAGNETIC (ONT. GEOL. SURVEY 1983) - FIGURE 1b</td>
<td>7</td>
</tr>
<tr>
<td>GROUND MAGNETOMETER SURVEY 2000 - Map No. ELN/2003/mag</td>
<td>IN BACK POCKET</td>
</tr>
<tr>
<td>GROUND VLF - EM SURVEY 2000 - Map No. ELN/2003/vlf</td>
<td>IN BACK POCKET</td>
</tr>
</tbody>
</table>
This report is a geophysical survey as required by The Ministry of Northern Development and Mines for assessment work purposes, following the recommendation set forth in The Mining Act Regulations 1991.

The report includes an introduction to the property, general geology, field results and conclusions based on the field survey.

Technical data is provided on The Assessment Data form found at the back of the report. Field Data is compiled on the accompanying plan maps found at the back of this report, Map No. ELN/2003/vlf and ELN/2003/mag.
INTRODUCTION

The claim group consists of 73 unpatented mining claims, 1 block of 10 and 1 claim which are included in this report.

On March 10, 2003, Mr. Roy Newman and Crew were contracted out by Tiger Gold Exploration to cut a detail 50 meter grid on the Elliott-73 claims. All picket lines were turned off the original 1997 baseline at intervals of 50 meters, stations were chained every 25 meters.

The grid was read by both magnetometer and 1 VLF-EM survey, to help define the strong north-east anomalies found in the original grid.

The magnetometer survey was performed by Mr. John E. Perron and the electromagnetic survey was performed by Mr. John E. Perron. All drafting, contouring and report writing was done by Miss Wendy K. Weller.

Ownership of the aforementioned unpatented mining claims has been attested to by 559505 Ontario Ltd., Mr. Alexander H. Perron, and the Perron Gold Corp., and was not independently ascertained by the writer.

LOCATION AND ACCESS

Highway 672, better known as the Harker-Holloway Road, extends north-south across the eastern boundary of the mapped area. The property is therefore reached from Kirkland Lake by travelling 13 KM east on Highway 66, then 36 KM north on Highway 672 to the claims. Conversely, the claims may be reached by travelling 45 KM east from Matheson on Highway 101 and then 14 KM south on Highway 672. (See Figure 1a) and Figure 1d).
PREVIOUS HISTORY

Perrons Inc. 1986, Air Electromagnetic and Air Magnetometer report can be seen at the Regional Office.


All above reports can be seen at the Regional Office.

TOPOGRAPHY

The majority of the property has been logged, and second growth consisting of tag alder and/or willow is present. Some of the logged area has been sprayed in order to stop the growth of deciduous trees and shrubs. Considerable areas have been replanted with pine. A few stands of spruce have been spared; generally cedar swamp have been left uncut.

Relief over the claims does not exceed 20 or 25 meters. The terrain is flat to gently rolling to rugged with the development of cliffs.

GENERAL GEOLOGY

(OGS-Geology) of Thackeray, Elliott, Tannahill and Dokis Townships) by L. S. Jensen states «The area is underlain by Early Precambrian (Archean) volcanic rocks. Northeast trending diabase dikes of Middle to Late Precambrian age intrude the volcanic rocks».

The tholeiitic volcanic rocks occur in Elliott Township. The theoleiitic sequence is composed of three rock types, low-iron, magnesium rich theoleiitic basalt, iron-rich theoleiitic basalt and theoleiitic rhyolite.

Table of Lithologic Units for Elliott Township, (See Figure 1c).
FIGURE 1C

TABLE 1 | TABLE OF LITHOLOGIC UNITS FOR THE THACKERAY, ELLIOTT, TANNAHILL, AND DOKIS TOWNSHIPS.

| PHANEROZOIC | CENOZOIC |
| QUATERNARY | PLEISTOCENE AND RECENT |
| Till, reworked till, esker sand and gravel, varved clay, dune sand, alluvium and peat |

UNCONFORMITY

PRECAMBRIAN |
| MIDDLE TO LATE PRECAMBRIAN (PROTEROZOIC) |
| MAFIC INTRUSIVE ROCKS |
| Diabase and quartz diabase |

INTRUSIVE CONTACT

EARLY PRECAMBRIAN (ARCHEAN) |
| FELdic INTRUSIVE ROCKS |
| SYENITIC INTRUSIVE ROCKS |
| Equigranular and porphyritic syenodiorite, monzonite, syenite, feldspar porphyry, pegmatite and lamprophyre |

INTRUSIVE CONTACT

GRANITIC INTRUSIVE ROCKS |
| Quartz diorite, granodiorite, trondhjemite, feldspar porphyry, and hybrid rocks |

INTRUSIVE CONTACT

MAFIC INTRUSIVE ROCKS |
| Gabbro, quartz gabbro, diorite, quartz diorite, hornblende gabbro, and anorthositic gabbro |

INTRUSIVE CONTACT

VOLCANIC ROCKS |
| RHYOLITIC AND DACITIC VOLCANIC ROCKS |
| Calc-Alkaline Suite |
| Massive breccia, flow-breccia, pyroclastic breccia, tuff, crystal tuff, amygdaloidal, rhyolitic and dacitic rocks feldspar, and quartz porphyry, rhyolitic and dacitic rocks |

Tholeiitic Suite |
| Spherulitic tuff and tuff-breccia, and cherty tuff, rhyolitic and dacitic rocks |

BASALTIC AND ANDESITIC VOLCANIC ROCKS |
| Calc-Alkaline Suite |
| Massive, pillowowed breccia, pyroclastic breccia, tuff and lapilli-tuff, amygdaloidal, porphyritic feldspar basaltic and andesitic rocks and greenschist and amphibolite facies, meta-basaltic and meta-andesitic rocks |

Tholeiitic Suite |
| Black to dark green, high-iron, massive, pillowowed flow-top breccia, pillow-breccia, hyaloclastic, variolitic and amygdaloidal basaltic and andesitic rocks and interflow sediments |

Grey to green, high-magnesium massive, pillowowed, flow-top breccia, pillow-breccia, hyaloclastic, porphyritic feldspar, variolitic and amygdaloidal basaltic rocks and interflow sediments |
INSTRUMENTATION

Magnetometer Survey:

This system uses a backward motion of spinning protons of a hydrogen atom within fluid of hydrogen and carbon. The spinning magnetic protons are caused to have two opposite poles by applying a magnetic fluid using a current within a coil of wire. This frequency of precision is proportional to the earth's total magnetic field.

This instrument is read directly in gammas which is the absolute value of the earth's total field for that station.

The diurnal variation was monitored by closing each loop at any secondary check station, at a grid line, baseline intersection. Diurnal corrections were applied by linear distribution of any observed variation over the time between base station.

Electromagnetic Survey:

The VLF-EM method uses as a source, several of the main submarine communications transmitters in the 15 to 25 kHz band found throughout the world.

The submarine communication radio waves travel in a single mode parallel to the surfaces of the earth along the earth-air interface.

VLF instruments are capable of picking up any structures that change the direction of the waves by measuring the tilt angle being zero on flat ground, but when a conductor is present, the tilt angle will acquire a finite value. The direction of tilt indicates the direction of the conductor.

Calculations of such parameters as depth, depth extent, dip and width of the conductors is very minimal.

The VLF easily illustrates the location of the upper limit of dipping structures which can be seen or plotted as VLF profiles as areas of greatest change in tilt angle per unit of distance.

The instrument used for this survey was a Geonics EM-16 Unit. The sensitivity of this unit is 1% for the inphase and 1% for the quadrature. The operating frequency for the EM-16 from 15-25 kHz and the station is made by plug-in units.

Further information on the VLF and the magnetometer can be found in the back of this report on the Technical Data and Assessment forms.

PRESENTATION AND DISCUSSION OF RESULTS

i) Magnetometer Survey 2002:

The field data is presented on Map No. ELN/2000/mag at a scale of 1:50,000 found in the back pocket of this report.

The magnetic data is illustrated as isomagnetic contours, contour intervals 100 gammas, on a map of corrected magnetic values recorded at each station.
The magnetic trend is in an east to north-east direction. The magnetic relief ranges from 57,001 gammas to 60,968 gammas (difference of 3,967 gammas).

Many of the magnetic responses can be directly related to topographical features indicating exposed outcrop and overburden, over small outcrops to flat areas of two large creeks and beaver ponds.

1994, Mr. R. K. Germundson conducted a detail geological survey. The outcrops were described to be in the Kinojevis Group.
1 a) Coarse grained flows: diorite
1 b) Fine grained flows: dacite and andesite
1 c) Pillow: dacite and andesite

ii) Electromagnetic Survey:

The field date is presented on the map LLN/2003/vlf at a scale of 1:50000 M. found at the back of this report. In this survey 3 distinctive contacts were noted.

C1 - Crosses PL650N 500W to PL585W. The topography of the area ranges from very wet cedar bogs to the west slope of a glacial wash hill covered in thick second growth. The contact is in the same direction as the linear magnetic low in this section of the grid.

C2 - Crosses PL1000N 1105W to PL1300N 1245W. The topography of the area ranges from three small overburdened outcrops to the south/east slope of a glacial wash hill. The contact crosses the magnetic trend (north/east direction) indicating a possible south-east shear or fault. The quadrature is negative.

C3 - Crosses PL950N 1850 to PL1300W 2060W. The topography of the area is flat to the north east cliff of a large overburdened outcrop. The quadrature is negative.

OBSERVATIONS AND CONCLUSIONS

Parallel magnetic highs associated with magnetic lows are very important. Other discovered features are magnetic lines that are broken up or intruded by north-striking formation.

At the present time the south end of this grid is also being cut and two man chained to be read with a different VLF-EM station and magnetometer, To help define the origin of the first survey's anomalies.

Respectfully submitted,

March 31, 2003
Miss Wendy K. Weller
Geotech
WORK PERFORMED ON THE FOLLOWING CLAIMS

ELLIOIT TOWNSHIP

L-821894
L-821895
L-821896
L-821897
L-1242996
L-1248883  6 CLAIMS
Technical Data:

Line (mi/km): 31.55
No. of samples/stations: 1262

ELECTROMAGNETIC SURVEY:

Instrument: GEONICS EM-16
Coil configuration: VERTICAL AND HORIZONTAL
Method: FIXED TRANSMITTER
Vertical scale: 1 INCH = 1/40
Frequency: 24.0 kHz
Operational technique: ALL READINGS FACING NORTH/EAST.

MAGNETIC SURVEY:

Instrument: NCPHAR GP-S PROTON
Base station: EL 0+00 E
Base station time: EVERY 60 MINUTES
Contour interval: 100 GAMMAS
Contoured by: MISS WENDY K. WELKER
Operational technique: SPENCER POLE MOUNT

INDUCED POLARIZATION SURVEY

Transmitter used: Receiver used:
Method: Frequency:
On time: Range:
Off time: Delay time:
Power source: Output:
Electrode array: Electrode spacing:
Readings taken: Other data:
Operational technique:
Assessment Data Form

Type of Work:
- Prospecting: Geological:
- Physical: LINE CUTTING AND CHAINING
- Geophysical: ELECTROMAGNETIC (1 STATION) AND MAGNETOMETER SURVEY
- Geochemical:
- Assays/Analyses:
- Drilling:
- Other work:

Cost of Work: $17,265.00

Dollars Applied: $17,265.00

Recorded Holder:
- Name: THE PERRON GOLD CORPORATION
- Address: 103 GOVERNMENT ROAD EAST, KIRKLAND LAKE, ONTARIO P2N 1A9

Survey/Report Information:
- Start of work: MARCH 10, 2003
- Draughting time: MARCH 28, 2003
- Completion of report: MARCH 31, 2003
- Author: MISS WENDY K. WELLER

Survey Company:
- Name: TIGER GOLD EXPLORATION CORPORATION
- Address: 103 GOVERNMENT ROAD EAST, KIRKLAND LAKE, ONTARIO P2N 1A9

Persons who performed work (supervisor first):
- TIGER GOLD EXPLORATION CORPORATION
- WENDY K. WELLER
- JOHN E. PERRON
- ROY NEWMAN AND CREW

Work performed on claim(s):
- L-821894, L-821895, L-821896, L-821897, L-1242996, L-1248883.

Work applied to claim(s):
BIBLIOGRAPHY


CERTIFICATE

I, Wendy K. Weller, of Virginiatown, Ontario, do hereby certify:

1) That I am a Geotech and reside at:
   204 Connell Avenue, Box 252,
   Virginiatown, Ontario
   POK IXO

2) That I graduated from the Haileybury School of Mines as a certified Diamond Driller in 1982. I have had a staking licence for the past 15 years.

3) That I was employed as a Diamond Driller for Heath & Sherwood for 1 year.

4) That I have been practising as a Geotech for a period of fifteen (15) years and I am qualified to write this report.

5) That I supervised and participated in this survey.

March 31, 2003
Wendy K. Weller
Geotech
## Work Report Summary

Transaction No: W0380.00516
Recording Date: 2003-MAR-31
Approval Date: 2003-APR-02
Status: APPROVED
Work Done from: 2003-MAR-10 to: 2003-MAR-23

Client(s): 200912 THE PERRON GOLD CORPORATION

Survey Type(s): LC MAG VLF

### Work Report Details:

<table>
<thead>
<tr>
<th>Claim#</th>
<th>LC Perform</th>
<th>LC Approve</th>
<th>LC Applied</th>
<th>MAG Perform</th>
<th>MAG Approve</th>
<th>MAG Applied</th>
<th>VLF Perform</th>
<th>VLF Approve</th>
<th>VLF Applied</th>
<th>Assign</th>
<th>Assign Approve</th>
<th>Reserve</th>
<th>Reserve Approve</th>
<th>Due Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>L 821894</td>
<td>$985</td>
<td>$985</td>
<td>$0</td>
<td>$0</td>
<td>$0</td>
<td>$985</td>
<td>985</td>
<td>0</td>
<td>$0</td>
<td></td>
<td></td>
<td></td>
<td>$0 2003-MAY-30 E</td>
<td></td>
</tr>
<tr>
<td>L 821895</td>
<td>$2,088</td>
<td>$2,088</td>
<td>$0</td>
<td>$0</td>
<td>$0</td>
<td>$2,088</td>
<td>2,088</td>
<td>0</td>
<td>$0</td>
<td></td>
<td></td>
<td></td>
<td>$0 2003-MAY-30 E</td>
<td></td>
</tr>
<tr>
<td>L 821896</td>
<td>$2,493</td>
<td>$2,493</td>
<td>$0</td>
<td>$0</td>
<td>$0</td>
<td>$2,493</td>
<td>2,493</td>
<td>0</td>
<td>$0</td>
<td></td>
<td></td>
<td></td>
<td>$0 2003-MAY-30 E</td>
<td></td>
</tr>
<tr>
<td>L 821897</td>
<td>$1,152</td>
<td>$1,152</td>
<td>$0</td>
<td>$0</td>
<td>$0</td>
<td>$1,152</td>
<td>1,152</td>
<td>0</td>
<td>$0</td>
<td></td>
<td></td>
<td></td>
<td>$0 2003-MAY-30 E</td>
<td></td>
</tr>
<tr>
<td>L 980257</td>
<td>$0</td>
<td>$0</td>
<td>$45</td>
<td>$45</td>
<td>$0</td>
<td>0</td>
<td>0</td>
<td>$0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>$0 2004-APR-13</td>
<td></td>
</tr>
<tr>
<td>L 980258</td>
<td>$0</td>
<td>$0</td>
<td>$400</td>
<td>$400</td>
<td>$0</td>
<td>0</td>
<td>0</td>
<td>$0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>$0 2004-APR-13</td>
<td></td>
</tr>
<tr>
<td>L 980259</td>
<td>$0</td>
<td>$0</td>
<td>$400</td>
<td>$400</td>
<td>$0</td>
<td>0</td>
<td>0</td>
<td>$0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>$0 2004-APR-13</td>
<td></td>
</tr>
<tr>
<td>L 980260</td>
<td>$0</td>
<td>$0</td>
<td>$400</td>
<td>$400</td>
<td>$0</td>
<td>0</td>
<td>0</td>
<td>$0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>$0 2004-APR-13</td>
<td></td>
</tr>
<tr>
<td>L 980261</td>
<td>$0</td>
<td>$0</td>
<td>$400</td>
<td>$400</td>
<td>$0</td>
<td>0</td>
<td>0</td>
<td>$0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>$0 2004-APR-13</td>
<td></td>
</tr>
<tr>
<td>L 980262</td>
<td>$0</td>
<td>$0</td>
<td>$400</td>
<td>$400</td>
<td>$0</td>
<td>0</td>
<td>0</td>
<td>$0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>$0 2004-APR-13</td>
<td></td>
</tr>
<tr>
<td>L 980263</td>
<td>$0</td>
<td>$0</td>
<td>$400</td>
<td>$400</td>
<td>$0</td>
<td>0</td>
<td>0</td>
<td>$0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>$0 2004-APR-13</td>
<td></td>
</tr>
<tr>
<td>L 980264</td>
<td>$0</td>
<td>$0</td>
<td>$400</td>
<td>$400</td>
<td>$0</td>
<td>0</td>
<td>0</td>
<td>$0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>$0 2004-APR-13</td>
<td></td>
</tr>
<tr>
<td>L 980265</td>
<td>$0</td>
<td>$0</td>
<td>$400</td>
<td>$400</td>
<td>$0</td>
<td>0</td>
<td>0</td>
<td>$0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>$0 2004-APR-13</td>
<td></td>
</tr>
<tr>
<td>L 980266</td>
<td>$0</td>
<td>$0</td>
<td>$400</td>
<td>$400</td>
<td>$0</td>
<td>0</td>
<td>0</td>
<td>$0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>$0 2004-APR-13</td>
<td></td>
</tr>
<tr>
<td>L 980267</td>
<td>$0</td>
<td>$0</td>
<td>$400</td>
<td>$400</td>
<td>$0</td>
<td>0</td>
<td>0</td>
<td>$0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>$0 2004-APR-13</td>
<td></td>
</tr>
<tr>
<td>L 980268</td>
<td>$0</td>
<td>$0</td>
<td>$400</td>
<td>$400</td>
<td>$0</td>
<td>0</td>
<td>0</td>
<td>$0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>$0 2004-APR-13</td>
<td></td>
</tr>
<tr>
<td>L 980269</td>
<td>$0</td>
<td>$0</td>
<td>$400</td>
<td>$400</td>
<td>$0</td>
<td>0</td>
<td>0</td>
<td>$0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>$0 2004-APR-13</td>
<td></td>
</tr>
<tr>
<td>L 980270</td>
<td>$0</td>
<td>$0</td>
<td>$400</td>
<td>$400</td>
<td>$0</td>
<td>0</td>
<td>0</td>
<td>$0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>$0 2004-APR-13</td>
<td></td>
</tr>
<tr>
<td>L 980271</td>
<td>$0</td>
<td>$0</td>
<td>$400</td>
<td>$400</td>
<td>$0</td>
<td>0</td>
<td>0</td>
<td>$0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>$0 2004-APR-13</td>
<td></td>
</tr>
<tr>
<td>L 980272</td>
<td>$0</td>
<td>$0</td>
<td>$400</td>
<td>$400</td>
<td>$0</td>
<td>0</td>
<td>0</td>
<td>$0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>$0 2004-APR-13</td>
<td></td>
</tr>
<tr>
<td>L 980317</td>
<td>$0</td>
<td>$0</td>
<td>$20</td>
<td>$20</td>
<td>$0</td>
<td>0</td>
<td>0</td>
<td>$0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>$0 2003-MAY-30 E</td>
<td></td>
</tr>
<tr>
<td>L 980329</td>
<td>$0</td>
<td>$0</td>
<td>$400</td>
<td>$400</td>
<td>$0</td>
<td>0</td>
<td>0</td>
<td>$0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>$0 2004-APR-13</td>
<td></td>
</tr>
<tr>
<td>L 980330</td>
<td>$0</td>
<td>$0</td>
<td>$400</td>
<td>$400</td>
<td>$0</td>
<td>0</td>
<td>0</td>
<td>$0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>$0 2004-APR-13</td>
<td></td>
</tr>
<tr>
<td>L 980331</td>
<td>$0</td>
<td>$0</td>
<td>$400</td>
<td>$400</td>
<td>$0</td>
<td>0</td>
<td>0</td>
<td>$0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>$0 2004-APR-13</td>
<td></td>
</tr>
<tr>
<td>L 980332</td>
<td>$0</td>
<td>$0</td>
<td>$400</td>
<td>$400</td>
<td>$0</td>
<td>0</td>
<td>0</td>
<td>$0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>$0 2004-APR-13</td>
<td></td>
</tr>
<tr>
<td>L 980333</td>
<td>$0</td>
<td>$0</td>
<td>$400</td>
<td>$400</td>
<td>$0</td>
<td>0</td>
<td>0</td>
<td>$0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>$0 2004-APR-13</td>
<td></td>
</tr>
<tr>
<td>L 980334</td>
<td>$0</td>
<td>$0</td>
<td>$400</td>
<td>$400</td>
<td>$0</td>
<td>0</td>
<td>0</td>
<td>$0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>$0 2004-APR-13</td>
<td></td>
</tr>
<tr>
<td>L 980335</td>
<td>$0</td>
<td>$0</td>
<td>$400</td>
<td>$400</td>
<td>$0</td>
<td>0</td>
<td>0</td>
<td>$0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>$0 2004-APR-13</td>
<td></td>
</tr>
<tr>
<td>L 980336</td>
<td>$0</td>
<td>$0</td>
<td>$400</td>
<td>$400</td>
<td>$0</td>
<td>0</td>
<td>0</td>
<td>$0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>$0 2004-APR-13</td>
<td></td>
</tr>
<tr>
<td>L 980337</td>
<td>$0</td>
<td>$0</td>
<td>$400</td>
<td>$400</td>
<td>$0</td>
<td>0</td>
<td>0</td>
<td>$0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>$0 2004-APR-13</td>
<td></td>
</tr>
<tr>
<td>L 980338</td>
<td>$0</td>
<td>$0</td>
<td>$400</td>
<td>$400</td>
<td>$0</td>
<td>0</td>
<td>0</td>
<td>$0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>$0 2004-APR-13</td>
<td></td>
</tr>
<tr>
<td>L 980339</td>
<td>$0</td>
<td>$0</td>
<td>$400</td>
<td>$400</td>
<td>$0</td>
<td>0</td>
<td>0</td>
<td>$0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>$0 2004-APR-13</td>
<td></td>
</tr>
<tr>
<td>L 980340</td>
<td>$0</td>
<td>$0</td>
<td>$400</td>
<td>$400</td>
<td>$0</td>
<td>0</td>
<td>0</td>
<td>$0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>$0 2004-APR-13</td>
<td></td>
</tr>
<tr>
<td>L 980341</td>
<td>$0</td>
<td>$0</td>
<td>$400</td>
<td>$400</td>
<td>$0</td>
<td>0</td>
<td>0</td>
<td>$0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>$0 2004-APR-13</td>
<td></td>
</tr>
<tr>
<td>L 980342</td>
<td>$0</td>
<td>$0</td>
<td>$400</td>
<td>$400</td>
<td>$0</td>
<td>0</td>
<td>0</td>
<td>$0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>$0 2004-APR-13</td>
<td></td>
</tr>
<tr>
<td>L 980343</td>
<td>$0</td>
<td>$0</td>
<td>$400</td>
<td>$400</td>
<td>$0</td>
<td>0</td>
<td>0</td>
<td>$0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>$0 2004-APR-13</td>
<td></td>
</tr>
</tbody>
</table>
Work Report Summary

Transaction No: W0380.00516
Recording Date: 2003-MAR-31
Approval Date: 2003-APR-02
Status: APPROVED
Work Done from: 2003-MAR-10 to: 2003-MAR-23

Work Report Details:

<table>
<thead>
<tr>
<th>Claim#</th>
<th>Perform</th>
<th>Perform Approve</th>
<th>Applied</th>
<th>Applied Approve</th>
<th>Assign</th>
<th>Assign Approve</th>
<th>Reserve</th>
<th>Reserve Approve</th>
<th>Due Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>L 980344</td>
<td>$0</td>
<td>$0</td>
<td>$400</td>
<td>$400</td>
<td>$0</td>
<td>0</td>
<td>$0</td>
<td>$0</td>
<td>2004-APR-13</td>
</tr>
<tr>
<td>L 980347</td>
<td>$0</td>
<td>$0</td>
<td>$400</td>
<td>$400</td>
<td>$0</td>
<td>0</td>
<td>$0</td>
<td>$0</td>
<td>2004-APR-13</td>
</tr>
<tr>
<td>L 980348</td>
<td>$0</td>
<td>$0</td>
<td>$400</td>
<td>$400</td>
<td>$0</td>
<td>0</td>
<td>$0</td>
<td>$0</td>
<td>2004-APR-13</td>
</tr>
<tr>
<td>L 980349</td>
<td>$0</td>
<td>$0</td>
<td>$400</td>
<td>$400</td>
<td>$0</td>
<td>0</td>
<td>$0</td>
<td>$0</td>
<td>2004-APR-13</td>
</tr>
<tr>
<td>L 980350</td>
<td>$0</td>
<td>$0</td>
<td>$400</td>
<td>$400</td>
<td>$0</td>
<td>0</td>
<td>$0</td>
<td>$0</td>
<td>2004-APR-13</td>
</tr>
<tr>
<td>L 980351</td>
<td>$0</td>
<td>$0</td>
<td>$400</td>
<td>$400</td>
<td>$0</td>
<td>0</td>
<td>$0</td>
<td>$0</td>
<td>2004-APR-13</td>
</tr>
<tr>
<td>L 980352</td>
<td>$0</td>
<td>$0</td>
<td>$400</td>
<td>$400</td>
<td>$0</td>
<td>0</td>
<td>$0</td>
<td>$0</td>
<td>2004-APR-13</td>
</tr>
<tr>
<td>L 980353</td>
<td>$0</td>
<td>$0</td>
<td>$400</td>
<td>$400</td>
<td>$0</td>
<td>0</td>
<td>$0</td>
<td>$0</td>
<td>2004-APR-13</td>
</tr>
<tr>
<td>L 980354</td>
<td>$0</td>
<td>$0</td>
<td>$400</td>
<td>$400</td>
<td>$0</td>
<td>0</td>
<td>$0</td>
<td>$0</td>
<td>2004-APR-13</td>
</tr>
<tr>
<td>L 980355</td>
<td>$0</td>
<td>$0</td>
<td>$400</td>
<td>$400</td>
<td>$0</td>
<td>0</td>
<td>$0</td>
<td>$0</td>
<td>2004-APR-13</td>
</tr>
<tr>
<td>L 980356</td>
<td>$0</td>
<td>$0</td>
<td>$400</td>
<td>$400</td>
<td>$0</td>
<td>0</td>
<td>$0</td>
<td>$0</td>
<td>2004-APR-13</td>
</tr>
<tr>
<td>L 980357</td>
<td>$0</td>
<td>$0</td>
<td>$400</td>
<td>$400</td>
<td>$0</td>
<td>0</td>
<td>$0</td>
<td>$0</td>
<td>2004-APR-13</td>
</tr>
<tr>
<td>L 980358</td>
<td>$0</td>
<td>$0</td>
<td>$400</td>
<td>$400</td>
<td>$0</td>
<td>0</td>
<td>$0</td>
<td>$0</td>
<td>2004-APR-13</td>
</tr>
<tr>
<td>L 980359</td>
<td>$0</td>
<td>$0</td>
<td>$400</td>
<td>$400</td>
<td>$0</td>
<td>0</td>
<td>$0</td>
<td>$0</td>
<td>2004-APR-13</td>
</tr>
<tr>
<td>L 1242996</td>
<td>$8,176</td>
<td>$8,176</td>
<td>$0</td>
<td>$0</td>
<td>$8,176</td>
<td>8,176</td>
<td>$0</td>
<td>$0</td>
<td>2003-DEC-28</td>
</tr>
<tr>
<td>L 1248853</td>
<td>$2,371</td>
<td>$2,371</td>
<td>$0</td>
<td>$0</td>
<td>$2,371</td>
<td>2,371</td>
<td>$0</td>
<td>$0</td>
<td>2003-MAY-22</td>
</tr>
</tbody>
</table>

$17,265 $17,265 $17,265 $17,265 $17,265 $17,265 $0 $0

External Credits: $0

Reserve:

$0 Reserve of Work Report#: W0380.00516

$0 Total Remaining

Status of claim is based on information currently on record.
Dear Sir or Madam,

Subject: Approval of Assessment Work

We have approved your Assessment Work Submission with the above noted Transaction Number(s). The attached Work Report Summary indicates the results of the approval.

At the discretion of the Ministry, the assessment work performed on the mining lands noted in this work report may be subject to inspection and/or investigation at any time.

If you have any question regarding this correspondence, please contact STEVEN BENETEAU by email at steve.beneteau@ndm.gov.on.ca or by phone at (705) 670-5855.

Yours Sincerely,

Ron Gashinski
Senior Manager, Mining Lands Section

Cc: Resident Geologist
The Perron Gold Corporation
(Claim Holder)

Wendy Kathleen Weller
(Agent)

Assessment File Library
The Perron Gold Corporation
(Assessment Office)
SYMBOLS
- Claim post
- Claim line
- Hydro line
- Inphase
- Quadrature
- VLF Contact

INSTRUMENTATION
Instrument used: GEONICS EM 16
Station used: Cutler, Maine
Vertical scale: 40%

GWEN RES.
GROUND VLF-EM SURVEY
ELLIOTT TOWNSHIP

SCALE 1:5000 m

Report by W.K. Weger
March 2005