REPORT ON GEOLOGICAL MAPPING ON THE DKO PROPERTY
GAUTHIER TOWNSHIP
DISTRICT OF TIMISKAMING, ONT.
FOR
T. O'BRA DOVICH

S.J. CARMICHAEL CONSULTANTS
KIRKLAND LAKE, ONTARIO

JULY 14, 1994
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction</td>
<td>1</td>
</tr>
<tr>
<td>Property Location, Access and Facilities</td>
<td>1</td>
</tr>
<tr>
<td>Land Tenure and Ownership</td>
<td>1</td>
</tr>
<tr>
<td>Previous Work</td>
<td>2</td>
</tr>
<tr>
<td>Regional Geology</td>
<td>3</td>
</tr>
<tr>
<td>Property Geology</td>
<td>4</td>
</tr>
<tr>
<td>Economic Geology</td>
<td>5</td>
</tr>
</tbody>
</table>

APPENDICES

- Appendix 1. Certificate of Qualifications
- Appendix 2. References and Sources of Information
- Appendix 3. Whole Rock and Assay Certificates
- Jenson Cation Plot, FeO+TiO2-Al2O3-MgO
- Irvine and Barrager, FeO-Na2O+K2O-MgO
- Cox, Na2O+K2O-SiO2

List of Figures

- Figure 1 - General Location Plan.............. 1
- Figure 2 - Regional Location Plan.............. 2
- Figure 3 - Claim Location Plan................ 3
- Figure 4 - Regional Geology.................... 3

Back Pocket

Surface Geology, DKO Property, 1"=400 ft.
REPORT ON GEOLOGICAL MAPPING ON THE DKO PROPERTY
GAUTHIER TOWNSHIP
DISTRICT OF TIMISKAMING, ONT.
FOR
T. O'BRAKOVICH

INTRODUCTION

Geological mapping on the DKO gold property for T. O'Brodovich was completed at a scale of 1"=400 ft. over a total of sixteen grid miles with grid lines cut at 300' centres.

Lithologies mapped comprised for the most part pyroclastic intermediate volcanics of the Gauthier Volcanics with lesser greywacke and conglomerate sediments of the Timiskaming Series. The Timiskaming sediments are located over the extreme south portion of the property.

Outcrop exposure is limited and estimated at less than 10%. Most of the bedrock exposures are located north of the baseline and south of the 24+00S tie line. Extensive muskeg and swamp cover most of the property and flat magnetics over the volcanics limits stratigraphic interpretation. The most obvious magnetic feature are the Timiskaming sediments which are relatively highly magnetic.

PROPERTY LOCATION, ACCESS AND FACILITIES

The DKO property is located in the central portion of Gauthier Township, within the District of Timiskaming and under the jurisdiction of the Larder Lake Mining Division. Access to the claims is by highway 66 east from the Town of Kirkland Lake to the Esker Lakes Provincial Park Road (Harker-Holloway Road), a distance of eleven kilometres. A network of old logging roads suitable for 4-wheel drive vehicles and all-terrain vehicles leads east from the Esker Lakes road 2.4 kilometres to the northwest portion of the DKO property.

A north-south flowing creek cuts through the east portion of the claims and a small beaver pond located on the northwest portion of the claims provides an adequate source of water for drilling and/or stripping operations.

LAND TENURE AND OWNERSHIP

The DKO property comprises six contiguous unpatented mining claims totalling 20 16Ha units with a total area of approximately 320 Ha. (800 acres). A review of the claim abstracts shows that the registered claim holders own the mineral rights only and suitable notification must be given to the surface rights holders prior to initiation of exploration. The surface rights holders, by law, cannot prevent access to the property for exploration but may be entitled to compensation for destruction of trees, etc.

All claims are recorded in the name of T. O'Bradoovich, address 5 Balsam Avenue, Kirkland Lake, Ontario, P2N 1W7, and M. Dyment and J. Kidston, address P.O. Box 66, Swastika, Ontario, P0X 1C0.

O'Bradoovich owns 50% interest while Dyment and Kidston own 25% interest each.

The claims along with the recording dates and required assessment obligations are listed below.
A total of $8,000.00 must be spent on the property by June 11, 1995 in order to maintain the claims in good standing.

PREVIOUS WORK

The earliest recorded work on the DKO property was in 1949 by Lardon Gold Mines Ltd. Five short packsack drill holes were completed in an area of approximately 300-200 ft. The holes averaged 64 ft. in depth. The deepest hole was 140 ft., the shortest being 12 ft. All holes were collared in Timiskaming sediments. No significant mineralization was reported and no samples were taken for assay. Lardon blasted some trenches which were subsequently sampled in 1982 by H.E. Neal & Associates.

In 1967, International Mine Services Ltd. held a group of 25 claims (Gracie Option) in the northeast portion of Gauthier Township. Part of this group covered part of present claim 1200346. The property was covered with a grid at 200' centres. Geologic mapping, horizontal and vertical loop electromagnetics and ground magnetometer were completed. No electromagnetic anomalies were located, however, this type of survey is not conducive to locating disseminated sulfide mineralization or areas of alteration. The north-south flowing creek on the east section of the DKO property was mentioned as being a possible fault, possibly analogous to the structure which hosts the Upper Beaver Mine. No further work was completed on the claims by International Mine Services.

The property remained dormant until 1982 when Hoffman Exploration and Minerals Limited staked the ground and proceeded with an exploration program managed by H.E. Neal & Associates. An initial program of re-opening trenches and sampling was completed in 1982. Sampling was confined to an area marking the Timiskaming Sediments/Gauthier Group volcanic contact over the southeast portion of present claim 1200345 and included sampling of trenches opened in 1949 by Lardon Gold Mines Ltd. Sampling was confined to quartz veins and silicified zones. Trace gold assays were returned from five of the samples (<100 ppb Au).

In June of 1983, H.E. Neal & Associates completed griding at 400 ft. centres over the entire property followed by geological mapping and ground geophysical surveys (magnetometer, VLF). The magnetometer survey clearly outlined the Timiskaming Series-Gauthier Group contact trending west-northwest through the southern portion of the property. A number of weak to moderate strength VLF-EM anomalies were located as well and further work to include reverse circulation drilling was recommended as a follow-up program.

In early 1984, H.E. Neal & Associates completed a VLF-EM survey utilizing the Seattle Washington station (24.3 KHz) which more or less verified the anomalies located in 1983 which used the Cutler Maine station (24.3 KHz).

In October of 1984 H.E. Neal completed a twenty-five hole reverse circulation drilling program. Most of the holes were
drilled in the southern to central portions of the property. A total of 38 till samples were taken. Seven of the holes had heavy mineral concentrate assays greater than 1,000 ppb Au and are listed below:

<table>
<thead>
<tr>
<th>DRILL HOLE & SAMPLE No.</th>
<th>ASSAY (Au ppb)</th>
</tr>
</thead>
<tbody>
<tr>
<td>GE84-01-01</td>
<td>1010</td>
</tr>
<tr>
<td>GE84-05-04</td>
<td>1100</td>
</tr>
<tr>
<td>GE84-09-01</td>
<td>2775</td>
</tr>
<tr>
<td>GE84-16-01</td>
<td>1190</td>
</tr>
<tr>
<td>GE84-18-01</td>
<td>1985</td>
</tr>
<tr>
<td>GE84-19-01</td>
<td>1530</td>
</tr>
<tr>
<td>GE84-21-01</td>
<td>1058</td>
</tr>
</tbody>
</table>

A number of the samples also contained grains of gold, all of which were classified as either being irregular or abraded. Those samples containing abraded grains indicate a distal source whereas irregular or delicate grains may indicate a closer source. Samples which contained irregular grains are listed below:

<table>
<thead>
<tr>
<th>DRILL HOLE & SAMPLE No.</th>
<th># AND TYPE OF GOLD GRAINS</th>
</tr>
</thead>
<tbody>
<tr>
<td>GE08-02</td>
<td>2 IR</td>
</tr>
<tr>
<td>GE09-02</td>
<td>3 IR</td>
</tr>
<tr>
<td>GE19-03</td>
<td>2 IR</td>
</tr>
</tbody>
</table>

The above three holes are from the central west to northwest portion of the property and indicate a possible gold train originating from the northwest.

The results of this initial program warranted follow-up work which was completed in 1985 and comprised thirty-eight holes, most of which were concentrated in the northwest portion of the property. From this program, a total of 182 gold grains were recovered in till samples. 153 of the grains were abraded indicating considerable transport from the northwest and likely beyond the property border. A cluster of holes, GE85-39, 43, 44, 50, 59, & 60 also contained irregular gold grains. GE85-44 contained one delicate gold grain indicating a short transport distance. These holes are summarized in the following table:

<table>
<thead>
<tr>
<th>HOLE # & SAMPLE</th>
<th># & TYPE OF GOLD GRAINS</th>
</tr>
</thead>
<tbody>
<tr>
<td>GE85-33-01,02</td>
<td>3 IR</td>
</tr>
<tr>
<td>GE85-39-01</td>
<td>3 IR</td>
</tr>
<tr>
<td>GE85-43-02</td>
<td>2 IR</td>
</tr>
<tr>
<td>GE85-44-01</td>
<td>2 IR, 1 IR</td>
</tr>
<tr>
<td>GE85-45-03</td>
<td>2 IR</td>
</tr>
<tr>
<td>GE85-50-02,03</td>
<td>2 IR</td>
</tr>
<tr>
<td>GE85-55-01</td>
<td>3 IR</td>
</tr>
<tr>
<td>GE85-57-01</td>
<td>2 IR</td>
</tr>
<tr>
<td>GE85-59-01</td>
<td>2 IR</td>
</tr>
<tr>
<td>GE85-60-01</td>
<td>1 IR</td>
</tr>
</tbody>
</table>

Gold trains were indicated in two sections of the property including the northwest and north central.
FIGURE 4 - REGIONAL GEOLOGY

The reverse circulation program was followed by a three-hole diamond drill program in September-October 1985. These holes are summarized in the following table:

<table>
<thead>
<tr>
<th>DRILL HOLE</th>
<th>DIP</th>
<th>AZIMUTH</th>
<th>COORDINATES</th>
<th>DEPTH</th>
</tr>
</thead>
<tbody>
<tr>
<td>HG-1</td>
<td>-45</td>
<td>034</td>
<td>4+30E, 16+00N 719'</td>
<td></td>
</tr>
<tr>
<td>HG-2</td>
<td>-55</td>
<td>034</td>
<td>11+20E, 15+60N 555'</td>
<td></td>
</tr>
<tr>
<td>HG-3</td>
<td>-55</td>
<td>015</td>
<td>29+40E, 16+00N 825'</td>
<td></td>
</tr>
</tbody>
</table>

The first hole appears to have tested the delicate gold grain found in R.C. hole 85-44 which also had a slightly anomalous bedrock anomaly of 31 ppb Au. The intended targets for the remaining two holes are not clear but may have been aimed at results from the reverse circulation drilling as well. None of the stronger VLF-EM anomalies appear to have been tested.

The drill logs show that no samples were taken for assay although minor chalcopyrite mineralization was noted in HG-1 and throughout HG-3. An examination of the core from HG-3 shows strong carbonate alteration with 2% quartz veining from 75.5-131.0' which was assayed. A second zone of weaker carbonate alteration from 157.0-167.0' was not split. No other sections from the hole were split.

After completion of the diamond drilling no further work was done and the claims were allowed to lapse which were subsequently staked by the present owners in June, 1993.

In 1994 the present owners completed a limited amount of surface stripping and sampling on present claim 1200344. A number of samples were taken with best assay being 936 ppb Au grab. This work is not documented and is relayed to the author by personal conversations with M. Dyment.

REGIONAL GEOLOGY

The DKO property lies within the Abitibi Greenstone Belt located in the southeastern portion of the Superior tectonic province. The Abitibi belt is the largest and most continuous greenstone belt in the Canadian Shield, extending some 700 km from east to west with a width of approximately 200 km and is of Archean age. It is bound to the east by the Grenville Front and to the west by the Kapuskasing Structure. The belt consists of repetitive volcanic cycles ranging from ultramafic to felsic in composition. Clastic sediments are intercalated with the volcanic rocks, and in narrow fault bounded zones. Ultramafic to mafic intrusions as well as granitoid complexes exist.

The dominant structural style of the belt reflects the presence of local granitoid bodies with concordant external structures, the east-west trending isoclinal folds of regional extent. The belt has been deformed into a major east-west trending synclinorium that transects the central portion of the Ontario segment of the Abitibi belt.

Within the southern part of the belt, many steeply dipping, east-west trending discontinuous shear zones of undetermined displacement have been identified. Two major breaks have been identified including the Porcupine-Destor and Larder Lake breaks. These breaks follow lithofacies boundaries for the most part, including sedimentary volcanic interfacies. Many of the gold
deposits of the area are closely associated with the shear zones especially in the Kirkland Lake-Larder Lake and Malartic-Cadillac areas. Approximately 75% of historical gold production in Canada is derived from the Abitibi belt.

The Kirkland Lake area is dominated by what is called the Upper Volcanic Cycle comprising a lower ultramafic sequence (Larder Lake Group) disconformably overlain by a tholeiitic sequence (Kinojevis Group) which is in turn disconformably overlain by a calc-alkaline sequence (Blake River Group). This entire sequence is unconformably overlain by the late Archean Timiskaming Series of clastic sediments and felsic volcanics. All of the above have been intruded by stocks and bosses of mafic to syenitic composition and diabase, also of late Archean age.

A general stratigraphic column through the area is as follows:

PLEISTOCENE AND RECENT DEPOSITS

UNCONFORMITY

KIMBERLITIC INTRUSIVES

UNCONFORMITY

LATE ARCHEAN DIABASE DIKES

UNCONFORMITY

FELSIC INTRUSIVES (GRANITIC MASSIFS, SYENITIC STOCKS)

UPPER SUPERGROUP

TIMISKAMING GROUP

Mafic, intermediate, felsic trachyte, K-rich dacite and rhyolite flows and tuffs, fluvial conglomerates, sandstone and argillite. Stocks and dikes of syenodiorite, quartz monzonite and lamprophyre)

UNCONFORMITY

BLAKE RIVER GROUP

Calc-Alkalic basalt, andesite dacite and rhyolitic flows and tuffs. Stocks and dikes of gabbro, quartz gabbro, hornblende gabbro, diorite, quartz diorite and subvolcanic rhyolite domes

KINOJEVIS GROUP

Mg-rich and Fe-rich basalts and tholeiitic andesite, dacite and rhyolite. Sills of Mg-rich and Fe-rich gabbro.

LARDER LAKE GROUP

Flows of peridotitic and basaltic komatiite, Mg-rich tholeiitic basalt, minor Fe-tholeiitic basalt, rhyolite tuff-breccia
A lower Supergroup comprising a similar cyclical volcanic sequence is present south of the Larder Lake Break.

PROPERTY GEOLOGY

1) Lithologies

The DKO property is underlain almost entirely by Gauthier Group volcanics comprised entirely of pyroclastic rocks. Pyroclastic units are dominated by agglomerate and to a lesser extent lapilli tuffs and tuff breccias with interstitial crystal tuff. The size of the agglomerate fragments (up to 8 cm) suggests a proximal source, likely 5-10km from the property. The pyroclastic deposits are poorly sorted, however, a bedded sequence of agglomerate and lapilli tuff located at the north end of the stripped area at 15+00E, 10+00N gave an orientation of 280° with a south dip of 80°.

Four field samples were taken for whole rock analysis. Their locations are as follows:

5479 32+50E, 24+00S Andesite
5480 22+00E, 17+00N Andesite
5481 27+00E, 7+00N Andesite/Basalt
5482 15+00E, 10+00N Andesite/Basalt

The results are plotted on two ternary diagrams (Jenson, Irvine and Barrager) plus SiO₂ vs Na₂O+K₂O (Appendix 3).

All samples lie along the Calc-Alkaline/Tholeiitic boundary and cannot be classified as either tholeiitic or calc-alkaline but show a slight tendency towards tholeiitic chemistry. Their chemistry is similar to that found near the Kinojevis/Blake River Groups boundary (lower Blake River), however, one should not infer an age relationship (Gauthier younger than Kinojevis) from this data. There may be a trend towards a more basaltic composition over the south portion of the DKO property.

Timiskaming sediments comprising greywacke and minor conglomerates underlie the extreme southwest portion of the property. The sediments unconformably overlie the Gauthier volcanics and bedding suggests a strike of 282° with a south dip of 82°. A distinct high magnetic signature marks the Timiskaming/Gauthier contact, is likely caused by detrital magnetite in the greywacke. Reverse circulation holes completed by H.E. Neal in 1985 report bedrock chips of poorly defined sediments on the southeast portion of the property. This would result in a strong flexure to the northeast of the Timiskaming trend. There is no magnetic signature to support the flexure and it is likely the bedrock chips from the three R.C. holes were mis-identified, understandable given the size (1/4") of the chips. The contact is marked as well by a linear VLF-EM anomaly possibly representing a sheared or faulted contact.

2) Structural Interpretation

The DKO property is more structurally complex than represented by earlier workers. At least two strong shears and a weaker third shear are located north of the baseline. All are associated with moderate strength pervasive carbonate alteration with minor
sericitic alteration. The pyroclastic rocks could be considered as being relatively porous and conducive to extensive hydrothermal alteration. Minor quartz veining and stringers are present within the alteration zones but are generally isolated occurrences. Silicification and sulfide mineralization is almost totally absent, however, there is very little exposure and surface stripping over the shears could uncover stronger alteration and possible sulfide mineralization.

The shears as mapped show a general west-northwest trend with steep north dips. Some of the shears show apparent south dips due to difficulties in obtaining true dips because of the bedrock exposure. The overall trend should be accepted as west northwest with a north dip. There is no hard data in support of an anticline axis through the north portion of the property.

ECONOMIC GEOLOGY

The only significant mineralization located to date on the DKO property was a grab sample which assayed 0.03 oz/ton Au; taken by M. Dyment in 1993 on the stripped area at 17+00E, 9+00N within altered (carbonate/sericite) volcanics. Sampling by T. O'Bradovich in July, 1994 from sheared volcanics returned negligible gold assays. These samples are shown on the geology map as well as the whole rock sample locations.

The results of the Induced Polarization survey will determine possible drill targets. It is hoped that the survey will identify broad section of relatively high resistivity coupled with anomalous chargeability, indicating alteration (silicification) with sulfide mineralization.

Respectfully submitted

Stewart J. Cameron, B.Sc., FGAC
I, Stewart J. Carmichael, of the Town of Kirkland Lake, in the District of Timiskaming, in the Province of Ontario, Canada, do hereby certify that:

1) I am a consulting geologist with address 42 Rand Avenue East, Kirkland Lake, Ont. P2N 1X1.

2) I am a graduate of McMaster University, Hamilton, Ontario, having received the degree of Bachelor of Science, Geology from the Faculty of Science in 1982. I have since practised in the field of mineral exploration continuously since graduation.

3) I am a Fellow of the Geological Association of Canada.

4) I have no direct or indirect interest, nor do I expect to receive any direct or indirect interest in the DKO property.

5) In addition to my personal knowledge of the area, I have made use of the records of the Ministry of Natural Resources of Ontario, and of Mike Dyment's records in the preparation of this report.

Dated this 19th day of July, 1994

Stewart J. Carmichael, B.Sc., FGAC
APPENDIX 2

SOURCES OF INFORMATION

Ministry of Northern Development and Mines Assessment Files Kirkland Lake

XL-1154 - Hoffman Explorations & Minerals Limited
"Gauthier F Project" Gauthier and Lebel Twps.

XL-1261 - International Mine Services, "Gracie Option"

XL-1576 - Lardon Gold Mines Limited
APPENDIX C

WHOLE ROCK AND ASSAY CERTIFICATES
FeO*

Irvine & Baragar 1971 (fig 2)

Tholeitic

Calc-Alk.aline

Na2O + K2O

MgO

- 5479
- 5480
- 5481
- 5482
<table>
<thead>
<tr>
<th>Sample</th>
<th>5479</th>
<th>5480</th>
<th>5481</th>
<th>5482</th>
</tr>
</thead>
<tbody>
<tr>
<td>Northing</td>
<td>32°45'E</td>
<td>22°00'E</td>
<td>7°00'E</td>
<td>10°00'E</td>
</tr>
<tr>
<td>Easting</td>
<td>24°00S</td>
<td>17°00E</td>
<td>27°00E</td>
<td>15°00E</td>
</tr>
<tr>
<td>Symbol</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>YM Colour</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>Lock Type</td>
<td>U01</td>
<td>U02</td>
<td>L01</td>
<td>6203</td>
</tr>
<tr>
<td></td>
<td>101</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

| Density | 2.51 | 2.41 | 2.40 | 2.43 |
I.C.A.P. TOTAL OXIDE ANALYSIS

Lithium Metaborate Fusion

<table>
<thead>
<tr>
<th>SAMPLE #</th>
<th>SiO₂</th>
<th>Al₂O₃</th>
<th>Fe₂O₃</th>
<th>CaO</th>
<th>MgO</th>
<th>Na₂O</th>
<th>K₂O</th>
<th>TiO₂</th>
<th>P₂O₅</th>
<th>Ba</th>
<th>Sr</th>
<th>Y</th>
<th>Sc</th>
<th>Nb</th>
<th>V</th>
<th>Cr</th>
<th>Ni</th>
<th>Cu</th>
<th>V</th>
<th>Co</th>
<th>Sn</th>
<th>LOI TOTAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>5479</td>
<td>59.52</td>
<td>14.43</td>
<td>7.99</td>
<td>9.50</td>
<td>3.05</td>
<td>3.49</td>
<td>1.72</td>
<td>0.91</td>
<td>0.23</td>
<td>0.22</td>
<td>220</td>
<td>210</td>
<td>80</td>
<td>27</td>
<td>13</td>
<td>35</td>
<td>35</td>
<td>100</td>
<td>220</td>
<td>15</td>
<td>95</td>
<td>9.58</td>
</tr>
<tr>
<td>5480</td>
<td>60.48</td>
<td>16.61</td>
<td>7.22</td>
<td>3.50</td>
<td>1.54</td>
<td>4.17</td>
<td>1.76</td>
<td>0.62</td>
<td>0.10</td>
<td>0.16</td>
<td>910</td>
<td>120</td>
<td>110</td>
<td>20</td>
<td>13</td>
<td>9</td>
<td>95</td>
<td>115</td>
<td>100</td>
<td>15</td>
<td>140</td>
<td>4.06</td>
</tr>
<tr>
<td>5481</td>
<td>61.58</td>
<td>17.05</td>
<td>5.52</td>
<td>3.67</td>
<td>0.85</td>
<td>3.80</td>
<td>1.70</td>
<td>0.62</td>
<td>0.11</td>
<td>0.20</td>
<td>350</td>
<td>240</td>
<td>120</td>
<td>14</td>
<td>10</td>
<td>30</td>
<td>35</td>
<td>695</td>
<td>10</td>
<td>95</td>
<td>10</td>
<td>105</td>
</tr>
<tr>
<td>5482</td>
<td>69.16</td>
<td>18.49</td>
<td>6.05</td>
<td>6.18</td>
<td>2.34</td>
<td>3.00</td>
<td>1.40</td>
<td>0.70</td>
<td>0.16</td>
<td>0.20</td>
<td>320</td>
<td>220</td>
<td>120</td>
<td>20</td>
<td>16</td>
<td>30</td>
<td>25</td>
<td>135</td>
<td>15</td>
<td>120</td>
<td>15</td>
<td>90</td>
</tr>
</tbody>
</table>

REPORT No.: M3555
Page No.: 1 of 1
File No.: JN30RA
Date: JUL-06-1994
Report of Work Conducted
After Recording Claim
Mining Act

Personal information collected on this form is obtained under the authority of the Mines and Minerals Conservation Act and is protected under the Freedom of Information and Protection of Privacy Act.

Instructions:
- Please type or print and submit in duplicates.
- Refer to the Mining Act and Regulations for required information.
- A separate copy of this form must be completed for each Work Group.
- Technical reports and maps must accompany this form in duplicate.
- A sketch, showing the claims the work is assigned to, must accompany this form.

Recorded Holder:

L.M. DYMEN

Client No. 98504

Address:
BOX 66 SWASTIKA, ONT P0K1T0

LARDE LAKE
GAUTHIER

Mining District

Mineral Deposits

M & II Plan No.

Date

From: MAY 1/94

To: JULY 14/94

Work performed (Check one Work Group Only)

<table>
<thead>
<tr>
<th>Work Group</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>Geotechnical Survey</td>
<td>GEOLOGY</td>
</tr>
<tr>
<td>Physical Work, Including Drilling</td>
<td>LINECUTTING</td>
</tr>
<tr>
<td>Rehabilitation</td>
<td></td>
</tr>
<tr>
<td>Other Authorized Work</td>
<td></td>
</tr>
<tr>
<td>Assay</td>
<td></td>
</tr>
<tr>
<td>Assignment from Reserve</td>
<td></td>
</tr>
</tbody>
</table>

Total Assessment Work Claimed on the Attached Statement of Costs:

$8990.00

Notes:
The Minister may reject for assessment work credit all or part of the assessment work submitted if the recorded holder cannot verify expenditures claimed in the statement of costs within 30 days of a request for verification.

Persons and Survey Company Who Performed the Work (Give Name and Address of Author of Report)

<table>
<thead>
<tr>
<th>Name</th>
<th>Address</th>
</tr>
</thead>
<tbody>
<tr>
<td>T.M. OBRADOVICH SERVICES</td>
<td>75 BALSAM AVE, KIRKLAND LAKE P0K1T0</td>
</tr>
<tr>
<td>S.J. CAMACHO CONSULTANTS</td>
<td>42 MAIN AVE, EAST KIRKLAND LAKE P0K1T0</td>
</tr>
</tbody>
</table>

Signature of Beneficial Interest:

I certify that at the time the work was performed, the claims covered in this work report were recorded in the current holder's name or held under a beneficial interest by the current recorded holder.

Date: OCT. 31/94

Certification of Work Report:

I certify that I have a personal knowledge of the facts set forth in this Work report, having performed the work or assisted therein during and after its compilation and assumed report to true.

Date: OCT. 31/94

Received Stamped
In the event that you have not specified your choice of priority, options 1 and 2 will be implemented.

<table>
<thead>
<tr>
<th>Task</th>
<th>Hours/Day</th>
<th>Task Hours</th>
<th>Task Rate</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>69.00</td>
</tr>
<tr>
<td></td>
<td></td>
<td>899.00</td>
<td>899.00</td>
</tr>
<tr>
<td></td>
<td></td>
<td>380.00</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>333.00</td>
<td>899.00</td>
</tr>
<tr>
<td></td>
<td></td>
<td>178.00</td>
<td>178.00</td>
</tr>
</tbody>
</table>

Note 1: Examples of beneficial interest are guaranteed termination options, options agreements, compensation of agreements, etc. with respect to the design/development/operating/management of such facilities. Please indicate how many of each facility are to be cut back as prioritized by the above examples.

Note 2: If work has been performed on another facility it is to be cut back equally over all claims submitted in this report of work.
Statement of Costs for Assessment Credit
États des coûts aux fins du crédit d’évaluation

Mining Act/Loi sur les mines

Personal information collected on this form is obtained under the authority of the Mining Act. This information will be used to maintain a record and ongoing status of the mining claims. Questions about this collection should be directed to the Provincial Manager, Mining Land, Ministry of Northern Development and Mines, 4th Floor, 180 Cedar Street, Sudbury, Ontario P3E 6A6, telephone (705) 670-7284.

1. Direct Costs/Cûts directs

<table>
<thead>
<tr>
<th>Type</th>
<th>Description</th>
<th>Amount</th>
<th>Total Global</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wage</td>
<td>Labour</td>
<td>600</td>
<td>600</td>
</tr>
<tr>
<td></td>
<td>Main-d’œuvre</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Field Supervision</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Supervision sur le terrain</td>
<td>600</td>
<td>600</td>
</tr>
<tr>
<td></td>
<td>Field and Consultant’s</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Fees pour le consultant</td>
<td>6738.68</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>SOIL SAMPLE</td>
<td>1600.72</td>
<td></td>
</tr>
</tbody>
</table>

Total Direct Costs
Total des coûts directs

Note: The recorded holder will be required to verify expenditures claimed in this statement of costs within 30 days of a request for verification. If verification is not made, the Minister may reject the assessment work all or part of the assessment work submitted.

2. Indirect Costs/Cûts indirects
Note: When claiming Rehabilitation work indirect costs are not allowed as assessment work.
Pour le remboursement des travaux de réhabilitation, les coûts indirects ne sont pas admissibles en tant que travaux d’évaluation.

<table>
<thead>
<tr>
<th>Type</th>
<th>Description</th>
<th>Amount</th>
<th>Total Global</th>
</tr>
</thead>
<tbody>
<tr>
<td>Transportation</td>
<td>Type</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Description</td>
<td>800.50</td>
<td>50</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Sub Total of Indirect Costs</td>
<td></td>
<td>60.00</td>
</tr>
<tr>
<td></td>
<td>Total partial des coûts indirects</td>
<td>60.00</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Total Value of Assessment Credit</td>
<td>60.00</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Total de crédit d’évaluation</td>
<td>60.00</td>
<td></td>
</tr>
</tbody>
</table>

Note: Le titulaire encouragé sera tenu de vérifier les dépenses demandées dans le présent état des coûts dans les 30 jours suivant une demande à cet effet. Si la vérification n’est pas effectuée, le ministre peut rejeter tout ou partie des travaux d’évaluation présentés.

Remises pour dépôt

1. Les travaux dépenses dans les deux ans suivant leur achèvement sont remboursés à 100 % de la valeur totale de l’assistance de crédit d’évaluation.
2. Les travaux dépenses deux, quatre ou cinq ans après leur achèvement sont remboursés à 50 % de la valeur totale du crédit d’évaluation susmentionné. Voir les calculs ci-dessous.

Certification Verifying Statement of Costs

I hereby certify:
that the amounts shown are as accurate as possible and these costs were incurred while conducting assessment work on the lands shown on the accompanying Report of Work form.
that as [RECORDED HOLDER] I am authorized (Nom du titulaire, Agent, Position au Gouvernement) to make this certification.

[Signature]
Date: Oct. 3, 94

Note: Dans cette formule, lorsqu’il désigne des personnes, le recouvrement est utilisé au sens large.
January 3, 1995

Mining Recorder
Ministry of Northern
Development & Mines
4 Government Road East
Kirkland Lake, Ontario
P2N 1A2

Dear Sir/Madam:

Subject: APPROVAL OF ASSESSMENT WORK CREDITS ON MINING CLAIMS
L1200344 et al. IN GAUTHIER TOWNSHIP

Assessment work credits have been approved as outlined on the report of work form for the submission. The credits have been approved under Section 12 (Geology) and Section 17 (Assays) of the Mining Act Regulations.

The approval date is December 21, 1994.

If you have any questions regarding this correspondence, please contact Steven Beneteau at (705) 670-5855.

ORIGINAL SIGNED BY:

Yours sincerely,

Ron C. Gashinski
Senior Manager, Mining Lands Section
Mining and Land Management Branch
Mines and Minerals Division

cc: Resident Geologist
Kirkland Lake, Ontario

Assessment Files Library
Sudbury, Ontario
LITHOLOGIES

Timiskaming Series

- (Gr) Greywacke
- (Cg) Conglomerate
- Unconformity

Gauthier Volcanics

- Mainly Tholeiitic to Calc Alkaline Andesites, Minor Tholeiitic Rhyolites

SYMBOLS

- Glacial Striations
- Foliation (SI)
- Bedding
- Outerop
- Small Outcrop/Station
- Whole Rock Sample Location
- O'Bradovich Grab Sample
- Shear
- Carbonate Alteration
- Pyrite Mineralization
- Quartz Stringers
- Geological Contact (inferred)
- Boundary of Sandy Ridge
- Boundary of Low Ground
- 1985 Diamond Drill Hole
- Claim Post
- Line Post
- Claim Line
- Road
- Trail
- Swamp/Marsh

DKO PROPERTY

SURFACE GEOLOGY

GAUTHER TOWNSHIP
DISTRICT OF TIMISKAMING, ONT.
LARDER LAKE MINING DIVISION

DATE: JULY 1994
REVISED: NOVEMBER 1995
DRAWN BY: S. J. C.
DRAWING No. 4

SCALE 1"=400 FT.