REPORT ON LINE CUTTING, MAGNETOMETER AND VLF-EM GEOPHYSICAL SURVEYS ON THE CTL, LAC GAUTHIER, SUDBURY CONTACT AND WALHARNA PROPERTIES, VICTORIA LAKE GRID GAUTHIER TWP., KIRKLAND LAKE AREA, NORTHERN ONTARIO

On Behalf Of:

SUDBURY CONTACT MINES LTD.
c/o W.A. Hubacheck Consultants Ltd.
Suite 1401, 141 Adelaide St. West
Toronto, Ontario
M5H 3L5

Contact: Peter Hubacheck, Dave Christie
Telephone: (416) 364-2895
Fax: (416) 364-5384

By:

JVX LIMITED
60 West Wilmot St., Unit #22
Richmond Hill, Ontario
L4B 1M6

Contact: Blaine Webster
Telephone: (905) 731-0972
Fax: (905) 731-9312

JVX Ref: 9401-C
July, 1994
TABLE OF CONTENTS

1. INTRODUCTION 1

2. SURVEY LOCATION AND CLAIM GROUP 2
 2.1 Survey Location 2
 2.2 Claim Group 2

3. SURVEY GRID AND COVERAGE 2

4. PERSONNEL 4

5. GEOPHYSICAL INSTRUMENTATION 4
 5.1 Magnetometer/VLF Receiver 4

6. SURVEY METHOD AND FIELD PROCEDURES 4
 6.1 Field Procedures (Mag/VLF) 6
 6.2 Magnetic method 5
 6.3 Very Low Frequency EM 6

7. DATA PROCESSING AND PRESENTATION 7
 7.1 Summary 7
 7.2 Magnetics/VLF-EM 7
 7.3 Anomaly Classification (Mag./VLF-EM) 7

8. DISCUSSION OF RESULTS AND RECOMMENDATIONS 7
 8.1 Description of magnetic and VLF anomalies 8

9. CONCLUSIONS AND RECOMMENDATIONS 9
FIGURES

Figure 1 Location Map, scale 1:600,000
Figure 2 Grid Map, Scale 1:20,000
Figure 2a Grid Map, with topography, Scale 1:50,000
Figure 3 Claim Map

TABLES

Table 1 Mag/VLF Production Summary

APPENDICES

Appendix A Instrument Specification Sheets
Appendix B Plates 1 to 4

PLATES

SUDBURY CONTACT MINES LTD., VICTORIA CREEK PROJECT

Plate 1: Total Field Magnetic
 Contours
 Scale 1:5000

Plate 2: Profils/Posted Values
 Scale 1:5000

Plate 3: VLF Profiles
 Scale 1:5000

Plate 4: Compilation/Anomaly Plan Map
 Scale 1:5000
REPORT ON LINE CUTTING, MAGNETOMETER AND VLF-EM GEOPHYSICAL SURVEYS
CTL, LAC GAUTHIER, SUDBURY CONTACT AND WALHANNA PROPERTIES,
VICTORIA LAKE GRID GAUTHIER TWP., KIRKLAND LAKE AREA, NORTHERN ONTARIO

On Behalf Of

SUDBURY CONTACT MINES LTD.

1. INTRODUCTION

From January 2nd to January 30th, 1994, Line Cutting, Total Field Magnetics, and VLF Electromagnetic surveys were conducted by JVX Ltd. on behalf of Sudbury Contact Mines Ltd. c/o W.A. Hubacheck Consultants Ltd., (Suite 1401, 141 Adelaide St. West, Toronto, Ontario, M5H 3L5) on the CTL, Lac Gauthier, Sudbury Contact and Walhanna properties, Victoria Lake grid, Gauthier Twp., Kirkland Lake area, Northern Ontario.

The objective of the survey was to outline Vlf conductors and Magnetic trends which may help define areas of disseminated and massive metallic sulphides. The final products of this survey are recommendations concerning targets which are thought to be areas for further exploration. The targets are summarized in section "conclusions and Recommendations".

The total field magnetics and VLF-EM surveys were taken at a nominal 12.5 meter station separation on 100m spaced lines. A total of 99.158 km of total field magnetics was read including crossline and baseline. Crossline ranging in length from 637.5 to 3,300 meters were cut at 100 meter intervals with baselines and tielines of 9.36 line km. Mag/VLF surveys were conducted on all 45 lines (incl. base and tie lines). The line distances are outlined in table 1.

This report describes the survey logistics, field procedures, and data processing/presentation. An interpretation of the results is included. The results are presented as a compilation/anomaly plan map, contour plan maps and profiles/posted values plan maps.
LOCATION MAP

SUDBURY CONTACT MINES LTD.
VICTORIA CREEK PROJECT
GAUTHIER TWP., ONT.
N.T.S. 32 D/4
GROUND GEOPHYSICAL SURVEY

SURVEY BY
JVX LTD.

Scale: 1 : 1,600,000

Figure 1
GRID MAP
SUDBURY CONTACT MINES LTD.
VICTORIA CREEK PROJECT
GAUTHIER TWP., ONT.
N.T.S. 32 D/4
GROUND GEOPHYSICAL SURVEY
Survey by JVX Ltd.
Scale: 1:20,000
Figure 2
GRID MAP

SUDBURY CONTACT MINES LTD.
VICTORIA CREEK PROJECT
GAUTHIER TWP., ONT.
N.T.S. 32 D/4
GROUND GEOPHYSICAL SURVEY
Scale: 1:50,000

Figure 2a
CLAIM MAP
SUDBURY CONTACT MINES LTD.
VICTORIA CREEK PROJECT
GAUTHIER TWP., ONT.
N.T.S. 32 D/4
GROUND GEOPHYSICAL SURVEY

Survey by JVX Ltd.
Scale: 1 : 20,000
Figure 3
2. SURVEY LOCATION AND CLAIM GROUP

2.1 SURVEY LOCATION

Figure 1 shows the location of the survey area with respect to nearby population centres at a scale of 1:600 000. The survey grid is located on the entire Victoria Grid cut to date which is situated approximately 15 km east of Kirkland Lake, Ontario across Northwestern Gauthier Township.

2.2 CLAIM GROUP

The property is composed of four groups of claims for a total of 69 claims. (Figure 3).

The four groups are:

1.) Lac Gauthier Option (23 single unit claims):
Consisting of: 821260 - 821274 incl.; 821351 - 831358.

2.) Walhanna Option (6 single unit claims):
Consisting of: 37310 - 37312 incl.; 37259 - 37260.

3.) Sudbury Contact (2 claims consisting of 3 units):
Consisting of: 1200506 (2 units), 1186618 (1 unit)

4.) CTL Option (38 single unit claims):
Consisting of: 30800 - 30803 incl.; 30806; 30809 - 30814 incl.; 30883; 9338 - 9353 incl.; 599071 - 599079 incl.; 16134.

3. SURVEY GRID AND COVERAGE

Approximately 99.158 line kilometres of magnetometer/VLF data were acquired over the grid at a station spacing of 12.5 meters. All north-south trending lines utilized the VLF transmitter frequency of 24.0 kHz generated from Cutler, Maine (NAA). A detailed production summary of the magnetometer/VLF coverage is given in Table 1 below.

TABLE 1

TOTAL FIELD MAGNETIC / VLF PRODUCTION SUMMARY

VLF station NAA, Cutler, NA

12.5-meter station separation

<table>
<thead>
<tr>
<th>Line</th>
<th>Station</th>
<th>Length (metres)</th>
<th>Number of Readings</th>
</tr>
</thead>
<tbody>
<tr>
<td>2000W</td>
<td>2500S - 800N</td>
<td>3300.00</td>
<td>264</td>
</tr>
<tr>
<td>1900W</td>
<td>2315S - 825N</td>
<td>3140.00</td>
<td>253</td>
</tr>
<tr>
<td>1800W</td>
<td>2312S - 800N</td>
<td>3112.50</td>
<td>250</td>
</tr>
<tr>
<td>1700W</td>
<td>2325S - 800N</td>
<td>3125.00</td>
<td>251</td>
</tr>
<tr>
<td>1600W</td>
<td>2450S - 800N</td>
<td>3250.00</td>
<td>261</td>
</tr>
<tr>
<td>1500W</td>
<td>2280S - 800N</td>
<td>3080.00</td>
<td>249</td>
</tr>
<tr>
<td>1400W</td>
<td>2275S - 800N</td>
<td>3075.00</td>
<td>248</td>
</tr>
<tr>
<td>1300W</td>
<td>2575S - 800N</td>
<td>3375.00</td>
<td>271</td>
</tr>
<tr>
<td>1200W</td>
<td>2825S - 800N</td>
<td>3625.00</td>
<td>291</td>
</tr>
<tr>
<td>1100W</td>
<td>2750S - 800N</td>
<td>3450.00</td>
<td>277</td>
</tr>
</tbody>
</table>
TABLE 1 (Cont’d)

TOTAL FIELD MAGNETIC / VLF PRODUCTION SUMMARY

VLF station NAA, Cutler, MA

12.5-meter station separation

<table>
<thead>
<tr>
<th>Line</th>
<th>Station From</th>
<th>Station To</th>
<th>Length (metres)</th>
<th>Number of Readings</th>
</tr>
</thead>
<tbody>
<tr>
<td>1000W</td>
<td>2675S</td>
<td>850N</td>
<td>3525.00</td>
<td>284</td>
</tr>
<tr>
<td>900W</td>
<td>2200S</td>
<td>800N</td>
<td>3000.00</td>
<td>242</td>
</tr>
<tr>
<td>800W</td>
<td>2175S</td>
<td>800N</td>
<td>2975.00</td>
<td>240</td>
</tr>
<tr>
<td>700W</td>
<td>2150S</td>
<td>800N</td>
<td>2950.00</td>
<td>238</td>
</tr>
<tr>
<td>600W</td>
<td>2300S</td>
<td>800N</td>
<td>3100.00</td>
<td>250</td>
</tr>
<tr>
<td>500W</td>
<td>2300S</td>
<td>800N</td>
<td>3100.00</td>
<td>250</td>
</tr>
<tr>
<td>400W</td>
<td>2300S</td>
<td>800N</td>
<td>3100.00</td>
<td>223</td>
</tr>
<tr>
<td>300W</td>
<td>2300S</td>
<td>800N</td>
<td>3100.00</td>
<td>249</td>
</tr>
<tr>
<td>200W</td>
<td>1875S</td>
<td>737N</td>
<td>2612.50</td>
<td>210</td>
</tr>
<tr>
<td>100W</td>
<td>1825S</td>
<td>00</td>
<td>1825.00</td>
<td>147</td>
</tr>
<tr>
<td>00</td>
<td>1825S</td>
<td>00</td>
<td>1825.00</td>
<td>147</td>
</tr>
<tr>
<td>100E</td>
<td>1825S</td>
<td>00</td>
<td>1825.00</td>
<td>147</td>
</tr>
<tr>
<td>200E</td>
<td>1625S</td>
<td>00</td>
<td>1625.00</td>
<td>248</td>
</tr>
<tr>
<td>300E</td>
<td>1600S</td>
<td>00</td>
<td>1600.00</td>
<td>129</td>
</tr>
<tr>
<td>400E</td>
<td>1600S</td>
<td>50N</td>
<td>1650.00</td>
<td>133</td>
</tr>
<tr>
<td>500E</td>
<td>1600S</td>
<td>200S</td>
<td>1400.00</td>
<td>114</td>
</tr>
<tr>
<td>600E</td>
<td>1550S</td>
<td>250S</td>
<td>1300.00</td>
<td>90</td>
</tr>
<tr>
<td>700E</td>
<td>1562S</td>
<td>200S</td>
<td>1362.50</td>
<td>111</td>
</tr>
<tr>
<td>800E</td>
<td>1575S</td>
<td>200S</td>
<td>1375.00</td>
<td>111</td>
</tr>
<tr>
<td>900E</td>
<td>1550S</td>
<td>212S</td>
<td>1337.50</td>
<td>108</td>
</tr>
<tr>
<td>1000E</td>
<td>1175S</td>
<td>350S</td>
<td>825.00</td>
<td>67</td>
</tr>
<tr>
<td>1100E</td>
<td>1200S</td>
<td>400S</td>
<td>800.00</td>
<td>65</td>
</tr>
<tr>
<td>1200E</td>
<td>1150S</td>
<td>462S</td>
<td>687.50</td>
<td>55</td>
</tr>
<tr>
<td>1300E</td>
<td>1100S</td>
<td>462S</td>
<td>637.50</td>
<td>52</td>
</tr>
<tr>
<td>1400E</td>
<td>1125S</td>
<td>400S</td>
<td>725.00</td>
<td>59</td>
</tr>
<tr>
<td>1500E</td>
<td>1125S</td>
<td>800N</td>
<td>1925.00</td>
<td>155</td>
</tr>
<tr>
<td>1600E</td>
<td>1100S</td>
<td>800N</td>
<td>1900.00</td>
<td>152</td>
</tr>
<tr>
<td>1700E</td>
<td>1100S</td>
<td>800N</td>
<td>1900.00</td>
<td>153</td>
</tr>
<tr>
<td>1800E</td>
<td>1125S</td>
<td>800N</td>
<td>1925.00</td>
<td>155</td>
</tr>
<tr>
<td>1900E</td>
<td>1100S</td>
<td>800N</td>
<td>1900.00</td>
<td>153</td>
</tr>
<tr>
<td>2000E</td>
<td>1100S</td>
<td>800N</td>
<td>1900.00</td>
<td>153</td>
</tr>
<tr>
<td>2000W</td>
<td>2000W</td>
<td>100W</td>
<td>1900.00</td>
<td>83</td>
</tr>
<tr>
<td>TL 1450S</td>
<td>2000W</td>
<td>1612E</td>
<td>3612.50</td>
<td>291</td>
</tr>
<tr>
<td>TL 500S</td>
<td>1400W</td>
<td>700W</td>
<td>700.00</td>
<td>57</td>
</tr>
<tr>
<td>TL 400S</td>
<td>1400W</td>
<td>700W</td>
<td>700.00</td>
<td>57</td>
</tr>
</tbody>
</table>

Total: 99.158 km 3886
JVX

4. PERSONNEL

Mr. Fred Moher - Geophysical Technician - Party Chief. Mr. Moher operated the IGS mag/vlf instrumentation, compiled the data with the IBM 486 microcomputer GEOPAK software for plan map plotting and was responsible for the data quality, day to day operation and direction of the surveys.

Mr. Dean Fraser - Geophysicist, B.Sc. Mr. Fraser operated the magnetometer/VLF instrumentation, edited the data and prepared this report.

Mr. Steve Bortnick - Geophysical Technician. Mr. Bortnick cut the base line and supervised the linecutting.

Three field assistants were also engaged by JVX.

Mr. Albert Vickers - Geophysicist, B.Sc. Mr. Vickers compiled the data in Larder Lake and assisted in the data compilation.

Mr. Jan Kozel - Geophysicist, M.Sc. Mr. Kozel compiled the data in Richmond Hill and prepared the plan maps.

Mrs. Dagmar Piska - Cartographer. Prepared the merged compilation maps and assembled the reports with all plates and colored pseudosections plates.

Mr. Blaine Webster - Geophysicist, B.Sc. - President, JVX Ltd. Mr. Webster provided overall supervision of the survey and this report.

5. GEOPHYSICAL INSTRUMENTATION

JVX supplied the following geophysical instruments, accessories and software.

5.1 MAGNETOMETER/VLF RECEIVER

The Scintrex IGS-2/MP-4/VLF-4 proton precession magnetometer/VLF microprocessor-based receiver system was employed to measure the total magnetic field and VLF field components (Vertical in-phase, vertical quadrature, and horizontal field components) over the grid. Measurements were taken along the line at 12.5 meter station intervals. The geophysical measurements, time and position information are recorded in the instrument's solid state memory. A second base magnetometer was used to monitor the diurnal change, the base magnetometer was set to take readings at 10 second intervals. At the end of each day the correction for the diurnal shift was made automatically by either linking the base station magnetometer to the field magnetometer or by dumping each magnetometer to an IBM compatible computer and running appropriate JVX software for the drift correction.

Specification sheets for the Scintrex IGS-2 are appended to this report (appendix A).

6. SURVEY METHOD AND FIELD PROCEDURES

6.1 FIELD PROCEDURES

The total field component of the magnetic field was measured along line at 12.5 meter intervals. The base station monitor was taking readings at a fixed locale at 10 second intervals. At the completion of each days work the two magnetometers were linked and the diurnal correction proceeded automatically.
The In-phase and quadrature components of the Vertical field and the Horizontal field strength (Primary Field) were read along line at 12.5 meter intervals. The transmitter used on the survey lines was Cutler, Maine (NAA) with a frequency of 24.0 KHz.

6.2 MAGNETIC METHOD

The magnetic method consists of measuring the magnetic field of the earth as influenced by rock formations having different magnetic properties and configurations. The measured field is the vector sum of primary, induced and remanent magnetic effects. Thus, there are three factors, excluding geometric factors which determine the magnetic field. These are the strength of the earth's magnetic field, the magnetic susceptibilities of the rocks present and their remanent magnetism.

The earth's magnetic field is similar in form to that of a bar magnet. The flux lines of the geomagnetic field are vertical at the north and south magnetic poles where the strength is approximately 60,000 nT (or gammas). In the equatorial region, the field is horizontal and its strength is approximately 30,000 nT.

The primary geomagnetic field is, for the purposes of normal mineral exploration surveys, constant in space and time. Magnetic field measurements may, however, vary considerably due to short term external magnetic influences. The magnitude of these variations is unpredictable. In the case of sudden magnetic storms, it may reach several hundred nT over a few minutes. It may be necessary therefore, to take continuous readings of the geomagnetic field with a base station magnetometer while the magnetic survey is done.

The intensity of magnetization induced in rocks by the geomagnetic field F is given by:

$$I = kH$$

where:

I is the intensity of magnetisation
k is the volume magnetic susceptibility
H is the magnetic field intensity

The susceptibilities of rocks are determined primarily by their magnetite content since it is strongly magnetic and widely distributed.

The remanent magnetization of rocks depends both on their composition and their previous history. Whereas the induced magnetization is nearly always parallel to the direction of the geomagnetic field, the natural remanent magnetization may bear no relation to the present direction and intensity of the earth's field. The remanent magnetization is related to the direction of the earth's field at the time the rocks were last magnetized. Interpretation of most magnetometer surveys is normally done by assuming no remanent magnetic component.

Since the distribution of magnetic minerals (magnetite, pyrrhotite) will, in general, vary with different rock types, the magnetic method is often used to aid in geologic mapping. In gold exploration, the magnetic survey is of particular importance because it may map areas of structural complexity, carbonization, and silicification.
6.3 Very Low Frequency (VLF - EM)

The Very Low Frequency (VLF) Electromagnetic Method measures variations in the components of the electromagnetic fields set up by communication stations operating in the 15 to 25 kHz frequency range. These stations, located around the world, generate signals for the purposes of navigation and communication with submarines.

Above a uniform earth, the groundwave of the vertically polarized VLF radiowave has three field components:

1) a radial, horizontal electrical field,
2) a vertical electrical field, and
3) a tangential, horizontal magnetic field.

When these three fields meet conductive bodies in the ground, eddy currents are induced causing secondary fields to radiate outwards from the conductors.

The primary field from a VLF station can vary considerably. For the most part, the field fluctuates moderately during the course of the day due to changes in atmospheric conditions. More dramatic changes are however possible. Towards evening there is a large upward swing in the field strength. At several points during the day, both partial and total drops in the field amplitude can be observed. In the light of these irregularities, the horizontal field data should always be considered with reservation as it is difficult to know whether changes are caused by conductors or by variations in the station's signal. If the primary field strength is constant, changes in the amplitude of the horizontal magnetic field reflect variations in the conductivity of the earth.

Normally there will be no vertical magnetic field. However, near a conductor, a vertical field will be observed. The relative amplitudes of the in-phase and quadrature components may be used to interpret the conductivity-size characteristics of the conductor.

A normalized Horizontal Field (Hn) may be derived as follows:

\[Hn = \left(\frac{H - \text{background}}{\text{background}} \right) \times 100\% \]

where \(H \) is the observed Horizontal Field. The computation of Hn provides a first pass removal of the diurnal component on an individual line basis only. The resulting profile map may be used to outline major conductive linear trends and differentiate between relative high and low conductive units. The use of a VLF base station would give a more accurate Hz as well as survey line to survey line continuity of the Hz, resulting with a data set reliable enough to contour.
7. DATA PROCESSING AND PRESENTATION

7.1 MAGNETICS/VLF-EM

To allow for the computer processing of the Magnetic and VLF data, the data resident in the IGS-2/MP-4 system's memory was transferred via a serial communication link to the Compaq 286 computer - thereby facilitating editing, processing and presentation operations. All data was archived on floppy disk.

In the JVX office at Richmond Hill, ON all data was reviewed and necessary editing performed. The corrected data was ink-plotted in plan map format as contour and profiles with posted values on a Nicolet Zeta drum plotter and in colour with a Fujitsu dot matrix and/or Tecktronics printer plotter, interfaced to an IBM PC compatible 486DX-66MHz microcomputer.

Contours and profiles with posted values and plan maps of the corrected data were computer generated and fine-drafted on mylar at the Richmond Hill office, at a scale of 1:5000 with appropriate contour intervals.

A list of all final maps can be found in Appendix B

The ACAD drawing files of the plates and a complete data set including all the field measurements made and any calculated products is available, on floppy disk or printed listing, upon request from JVX Ltd. on a time and material basis.

7.2 ANOMALY CLASSIFICATION (Magnetic/VLF-EM)

The total field magnetic data have been studied for lateral changes of the strength of the magnetic field. The representative contours have been chosen and included into Compilation Maps, expressing the physical boundaries that are thought to be related to local geology and/or lithology.

Assuming the background level of 58200 nT, the values above are to be considered local magnetic highs and values below the base level, as magnetic lows.

The VLF-EM crossovers and Hz highs anomalies are generally considered to be local conductors. The conjunction with the geological sources is more less depending on the local topography, because VLF method is often responding to the topographical changes in the area, wet spots (swamps, creeks ...) and the culture (powerlines, roads ...). Therefore the classification of VLF responses should be modified according to the specific grid conditions.

8. DISCUSSION OF RESULTS

The total field Magnetic data is of uniform good quality and helps outline geological trends and structural dislocations. The Vlf coverage has enabled the mapping of conductors of variable sources and orientation. This discussion is based on the combined evaluation of the grid areas within the Victoria Creek Project.
8.1 DESCRIPTION OF MAGNETIC AND VLF ANOMALIES

The Mag/Vlf survey located 5 major magnetic features and 11 Vlf trends. These features are outlined on the Mag/Vlf compilation map.

MAGNETIC TRENDS

The first series of small east-west trending magnetic anomalies labelled MH-1a to MH-1d are located in the northeast corner of the grid. The anomalies range in length from 100 to 800 meters and 100 to 1000 nT in strength.

Anomaly MH-1b appears to be shallow and may dip to the south. When plotted in profile form this anomaly looks like the closure of a nose fold and therefore should be carefully mapped.

Anomaly MH-2, MH-2a, MH-2b and MH-2c are a series of weak to moderate magnetic responses crossing the entire grid about 600 meters south of the northern claim boundary.

Magnetic anomaly MH-3 is a broad weak north-south magnetic response occurring in the northwestern part of the grid. The anomaly may be associated with a dike.

Magnetic anomaly MH-4 is a broad 500 to 750 nT magnetic response located near the central-southern boundary of the property. The source of MH-4 is a deep mafic body dipping steeply to the south.

Magnetic anomaly MH-5 is a 750 to 1000 nT south dipping magnetic response located in the southwestern part of the grid. The anomaly appears to be shallow (25 to 50 meters) and is likely mafic in composition. The contours suggest the response (MH-5 south) may merge with MH-5 east as it continues to the east.

VLF TRENDS

Listed below are the Vlf trends which have been grouped with associated magnetic highs or magnetic lows. The strengths of the anomalies have been given as well.

Vlf trends associated with magnetic highs:

1 VLF-1a Moderate 10 VLF-1h Strong
2 VLF-1b Weak-moderate 11 VLF-2c Weak-moderate
3 VLF-1c Weak-Strong 12 VLF-2d Moderate
4 VLF-1d Moderate-Strong 13 VLF-2f Weak-Strong
5 VLF-1e Moderate-Strong 14 VLF-3a Moderate-Strong
6 VLF-1f Moderate 15 VLF-7b Weak-Strong
7 VLF-1f' Weak 16 VLF-7c Weak-Strong
8 VLF-1f'' Weak-Moderate 17 VLF-11 Moderate
9 VLF-1g Moderate
JVX

VLF trends associated with magnetic lows:

1. VLF-2a Weak-Moderate
2. VLF-2b Weak-Strong
3. VLF-2b' Weak-Strong
4. VLF-2e Moderate
5. VLF-2e' Weak
6. VLF-3b Weak
7. VLF-3c Weak
8. VLF-4a Weak
9. VLF-4b Moderate
10. VLF-5a Weak
11. VLF-5b Moderate
12. VLB-5bf Weak
13. VLF-5c Weak-Moderate
14. VLF-6 Strong
15. VLF-7a Weak
16. VLF-7a' Weak
17. VLF-8a Moderate-Strong
18. VLF-8b Weak
19. VLF-8c Weak-Moderate
20. VLF-9 Moderate
21. VLF-9a Weak-Moderate
22. VLF-9b Weak-Moderate
23. VLF-10 Moderate

9. CONCLUSIONS AND RECOMMENDATIONS

From January 2nd to January 30th, 1994, Line Cutting, Total Field Magnetics, and VLF Electromagnetic surveys were conducted by JVX Ltd. on behalf of Sudbury Contact Mines Ltd. c/o W.A. Hubacheck Consultants Ltd., (Suite 1401, 141 Adelaide St. West, Toronto, Ontario, M5H 3L5) on the CTL, Lac Gauthier, Sudbury Contact and Walhanna properties, Victoria Lake grid, Gauthier Twp., Kirkland Lake area, Northern Ontario.

The total field magnetics and VLF-EM surveys were taken at a nominal 12.5 meter station separation on 100m spaced lines. A total of 99.158 km of total field magnetics was read including crossline and baseline. Crossline ranging in length from 637.5 to 3,300 meters were cut at 100 meter intervals with baselines and tielines of 9.36 line km. Mag/VLF surveys were conducted on all 45 lines (incl. base and tie lines). The line distances are outlined in table 1.

The results are presented as a compilation/anomaly plan map, contour plan maps and profiles/posted values plan maps.

The anomaly compilation map includes the magnetic trends and the VLF conductors.

Data from the mag/vlf survey helped to define several targets for further investigation. Five (5) major magnetic highs were mapped as well as an area of low magnetic signature. The mag low region which occurs between the baseline and 2100 south could be a region of acid volcanics. Associated with the magnetic highs are seventeen (17) vlf trends which are good targets for further work.

We recommend to assess geologically/geochemically all Vlf zones that are marked on the compilation map. If the following anomalies are favourable geologically/geochemically we suggest following the entire VLF zone.

The following 17 VLF trends (with associated strength) appear to be good exploration targets and warrant further investigation. The Vlf conductors lie on magnetic highs or occur on the flanks of the magnetic anomalies.
EXPLORATION TARGETS:

<table>
<thead>
<tr>
<th>Number</th>
<th>VLF Code</th>
<th>Magnitude</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>VLF-1a</td>
<td>Moderate</td>
</tr>
<tr>
<td>2</td>
<td>VLF-1b</td>
<td>Weak-moderate</td>
</tr>
<tr>
<td>3</td>
<td>VLF-1c</td>
<td>Weak-Strong</td>
</tr>
<tr>
<td>4</td>
<td>VLF-1d</td>
<td>Moderate-Strong</td>
</tr>
<tr>
<td>5</td>
<td>VLF-1e</td>
<td>Moderate-Strong</td>
</tr>
<tr>
<td>6</td>
<td>VLF-1f</td>
<td>Moderate</td>
</tr>
<tr>
<td>7</td>
<td>VLF-1f'</td>
<td>Weak</td>
</tr>
<tr>
<td>8</td>
<td>VLF-1f''</td>
<td>Weak-Moderate</td>
</tr>
<tr>
<td>9</td>
<td>VLF-1g</td>
<td>Moderate</td>
</tr>
<tr>
<td>10</td>
<td>VLF-1h</td>
<td>Strong</td>
</tr>
<tr>
<td>11</td>
<td>VLF-2c</td>
<td>Weak-moderate</td>
</tr>
<tr>
<td>12</td>
<td>VLF-2d</td>
<td>Moderate</td>
</tr>
<tr>
<td>13</td>
<td>VLF-2f</td>
<td>Weak-Strong</td>
</tr>
<tr>
<td>14</td>
<td>VLF-3a</td>
<td>Moderate-Strong</td>
</tr>
<tr>
<td>15</td>
<td>VLF-7b</td>
<td>Weak-Strong</td>
</tr>
<tr>
<td>16</td>
<td>VLF-7c</td>
<td>Weak-Strong</td>
</tr>
<tr>
<td>17</td>
<td>VLF-11</td>
<td>Moderate</td>
</tr>
</tbody>
</table>

To determine the anomaly source (geological contact, shear zone, sulphide or graphite zone) we recommend further geophysical exploration in the area. Particularly Max-Min and/or Spectral IP/Resistivity surveys would further quantify character of anomalies.

If you have any questions regarding the data processing or the data compilation, please call the undersigned at JVX LTD.

Respectfully submitted

JVX LIMITED

[Signatures]

Blaine Webster, B.Sc.
President
Appendix A

SPECIFICATION SHEETS
Scintrex has used low power consumption microprocessors and high density memory chips to create the IGS Integrated Portable Geophysical System; instrumentation which will change the way you do ground geophysics.

Here are the main benefits which you will derive from the IGS family of instrumentation:

1. Depending on your choice of optional sensors you can make one, two or all of: magnetic, VLF and electromagnetic measurements. Thus, you may optimize the IGS system for different geophysical conditions and production requirements.

2. You will save time and money in the acquisition, processing and presentation of ground geophysical survey data.

3. You will achieve an improvement in the quality of data through enhanced reading resolution, an increase in the number of different parameters measured and/or a higher density of observations. Further, errors which occur in manual transcription and calculation will be eliminated.

4. Your operator will appreciate the simplicity of operation achieved through automation.

5. Since add-on sensors are relatively less expensive, your investment in a range of IGS instrumentation may be much less than it would be with a number of different instruments, each dedicated to a different measurement.

Appendix B

PLATES

SUDBURY CONTACT MINES LTD., VICTORIA CREEK PROJECT

<table>
<thead>
<tr>
<th>Plate</th>
<th>Description</th>
<th>Scale</th>
</tr>
</thead>
<tbody>
<tr>
<td>Plate 1:</td>
<td>Total Field Magnetic Contours</td>
<td>1:5000</td>
</tr>
<tr>
<td>Plate 2:</td>
<td>Total Field Magnetic Profiles/Posted Values</td>
<td>1:5000</td>
</tr>
<tr>
<td>Plate 3:</td>
<td>VLF Profiles</td>
<td>1:5000</td>
</tr>
<tr>
<td>Plate 4:</td>
<td>Compilation/Anomaly Plan Map</td>
<td>1:5000</td>
</tr>
</tbody>
</table>
Report of Work Conducted After Recording Claim

Ministry of Northern Development and Mines

Ontario

Instructions:
- Please type or print and submit in duplicate.
- Refer to the Mining Act and Regulations for requisites and Recorder.
- All copies of this form must be completed for each Work Group.
- Technical reports and maps must accompany this form in duplicate.
- A sketch, showing the claims the work is assigned to, must accompany this form.

<table>
<thead>
<tr>
<th>Recorded Holder(s)</th>
<th>Agreed for</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sudbury Contract Mines Ltd.</td>
<td>Sept. 1986</td>
</tr>
<tr>
<td>Address</td>
<td>401 Bay Street, Suite 2300, Toronto, Ont. M5H 2W4</td>
</tr>
<tr>
<td>Telephone No.</td>
<td>(416) 947-1212</td>
</tr>
<tr>
<td>Client No.</td>
<td>98617</td>
</tr>
<tr>
<td>Mining Division</td>
<td>Larder Lake</td>
</tr>
<tr>
<td>Township/</td>
<td>Gauthier Twp</td>
</tr>
<tr>
<td>Id or # Plan No.</td>
<td>6-3-211</td>
</tr>
<tr>
<td>Date</td>
<td>Sept. 28, 1993</td>
</tr>
<tr>
<td>Work Performed From:</td>
<td>Jan. 30, 1994</td>
</tr>
</tbody>
</table>

Work Performed (Check One Work Group Only)

<table>
<thead>
<tr>
<th>Work Group</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>Geotechnical Survey</td>
<td>Linecutting and Magnetic/VLF Survey</td>
</tr>
<tr>
<td>Physical Work, Including Drilling</td>
<td>MINING EMPIRE MINE</td>
</tr>
<tr>
<td>Rehabilitation</td>
<td>OC1</td>
</tr>
<tr>
<td>Other Authorized Work</td>
<td>Mining Ltd. - Ranch</td>
</tr>
<tr>
<td>Assays</td>
<td></td>
</tr>
<tr>
<td>Assignment from Reserve</td>
<td></td>
</tr>
</tbody>
</table>

Total Assessment Work Claimed on the Attached Statement of Costs: $ 54,808.60

Note: The Minister may reject assessment work credit all or part of the assessment work submitted if the recorded holder cannot verify expenditures claimed in the statement of costs within 30 days of a request for verification.

Persons and Survey Company Who Performed the Work (Give Name and Address of Author of Report)

<table>
<thead>
<tr>
<th>Name</th>
<th>Address</th>
</tr>
</thead>
<tbody>
<tr>
<td>Blair Webster</td>
<td>60 West Wilmot Street, Unit 22</td>
</tr>
<tr>
<td>JUX Ltd.</td>
<td>Richmond Hill, Ontario, Canada, M4B 1M6</td>
</tr>
</tbody>
</table>

Certification of Beneficial Interest

I certify that I am a professional knowledgeable of the facts set forth in this Work report and that I performed the work or witnessed same during and/or after its completion and annexed report is true.

Name and Address of Person Certifying

David W. Christie

Telephone No: (416) 364-2815

Date: Sept. 21, 1994

For Office Use Only

Total Value Claimed: $54,808.60

Date Recorded: Sept. 21, 1994

Received Stamp: [Stamp]

Deemed Approval Date: [Date]

Date Approved: [Date]

Data Notice for Amendments Sent
Credits you are claiming in this report may be cut back. In order to minimize the adverse effects of such deletions, please indicate from which claims you wish to prioritize the deletion of credits. Please mark (✓) one of the following:

1. □ Credits are to be cut back starting with the claim listed last, working backwards.
2. ☑ Credits are to be cut back equally over all claims contained in this report of work.
3. □ Credits are to be cut back as prioritized on the attached appendix.

In the event that you have not specified your choice of priority, option one will be implemented.

Note 1: Examples of beneficial interest are unrecorded transfers, option agreements, memorandum of agreements, etc., with respect to the mining claims.

Note 2: If work has been performed on patented or leased land, please complete the following:

<table>
<thead>
<tr>
<th>Claim Number</th>
<th>Work Hours</th>
<th>Materials</th>
<th>Total Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>15346</td>
<td>17</td>
<td>1</td>
<td>17</td>
</tr>
<tr>
<td>9346</td>
<td>17</td>
<td>1</td>
<td>17</td>
</tr>
<tr>
<td>9341</td>
<td>17</td>
<td>1</td>
<td>17</td>
</tr>
<tr>
<td>9339</td>
<td>17</td>
<td>1</td>
<td>17</td>
</tr>
<tr>
<td>30806</td>
<td>17</td>
<td>1</td>
<td>17</td>
</tr>
<tr>
<td>30807</td>
<td>17</td>
<td>1</td>
<td>17</td>
</tr>
<tr>
<td>30810</td>
<td>17</td>
<td>1</td>
<td>17</td>
</tr>
<tr>
<td>30811</td>
<td>17</td>
<td>1</td>
<td>17</td>
</tr>
<tr>
<td>30812</td>
<td>17</td>
<td>1</td>
<td>17</td>
</tr>
<tr>
<td>30813</td>
<td>17</td>
<td>1</td>
<td>17</td>
</tr>
</tbody>
</table>

Total Credits: 17
If you are claiming in this report may be cut back. In order to minimize the adverse effects of such deletions, please indicate from claims you wish to prioritize the deletion of credits. Please mark () one of the following:

1. Credits are to be cut back starting with the claim listed last, working backwards.
2. Credits are to be cut back equally over all claims contained in this report of work.
3. Credits are to be cut back as prioritized on the attached appendix.

If you have not specified your choice of priority, option one will be implemented.

Examples of beneficial interest are unrecorded transfers, option agreements, memorandum of agreements, etc., with respect to the mining claims.

If work has been performed on patented or leased land, please complete the following:

<table>
<thead>
<tr>
<th>Claim</th>
<th>Date</th>
<th>Type of Work</th>
</tr>
</thead>
<tbody>
<tr>
<td>000</td>
<td>01/01/2023</td>
<td>Exploration</td>
</tr>
<tr>
<td>000</td>
<td>02/02/2023</td>
<td>Development</td>
</tr>
<tr>
<td>000</td>
<td>03/03/2023</td>
<td>Production</td>
</tr>
</tbody>
</table>

RECEIVED:

[Date]

[Signature]

[Company]

MINING LANDS.
Credits you are claiming in this report may be cut back. In order to minimize the adverse effects of such deletions, please indicate from which claims you wish to prioritize the deletion of credits. Please mark (✓) one of the following:

1. □ Credits are to be cut back starting with the claim listed last, working backwards.
2. ◐ Credits are to be cut back equally over all claims contained in this report of work.
3. □ Credits are to be cut back as prioritized on the attached appendix.

In the event that you have not specified your choice of priority, option one will be implemented.

Note 1: Examples of beneficial interest are unrecorded transfers, option agreements, memorandum of agreements, etc., with respect to the mining claims.

Note 2: If work has been performed on patented or leased land, please complete the following:

<table>
<thead>
<tr>
<th>Work Done</th>
<th>Claim Work Added</th>
<th>Total Work Done</th>
<th>Claim Work Added</th>
<th>Total Work Done</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>608 98 8b</td>
<td>1</td>
<td>508 98 8b</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>808 98 8b</td>
<td>2</td>
<td>308 98 8b</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>±408 98 8b</td>
<td>3</td>
<td>298 98 8b</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>1808 98 8b</td>
<td>4</td>
<td>3808 98 8b</td>
<td>4</td>
</tr>
<tr>
<td>5</td>
<td>2808 98 8b</td>
<td>5</td>
<td>1908 98 8b</td>
<td>5</td>
</tr>
<tr>
<td>6</td>
<td>±1908 98 8b</td>
<td>6</td>
<td>2808 98 8b</td>
<td>6</td>
</tr>
<tr>
<td>7</td>
<td>99 8 9b</td>
<td>7</td>
<td>198 8 9b</td>
<td>7</td>
</tr>
<tr>
<td>8</td>
<td>918 8 9b</td>
<td>8</td>
<td>998 8 9b</td>
<td>8</td>
</tr>
<tr>
<td>9</td>
<td>989 8 9b</td>
<td>9</td>
<td>998 9 9b</td>
<td>9</td>
</tr>
<tr>
<td>10</td>
<td>999 8 9b</td>
<td>10</td>
<td>999 9 9b</td>
<td>10</td>
</tr>
</tbody>
</table>

Received: October 31, 2002

[Signature: Lee Mondy]
In the event that you have not specified your choice of priority, option one will be implemented.

Note 1: Examples of beneficial interest are unrecorded transfers, option agreements, memorandum of agreements, etc., with respect to the mining claims.

Note 2: If work has been performed on patented or leased land, please complete the following:

Credits you are claiming in this report may be cut back. In order to minimize the adverse effects of such deletions, please mark one of the following:

1. Credits are to be cut back starting with the claim listed last, working backwards.
2. Credits are to be cut back equally over all claims contained in this report of work.
3. Credits are to be cut back as specified in the attached appendix.

Received
Credits you are claiming in this report may be cut back. In order to minimize the adverse effects of such deletions, please indicate from which claims you wish to prioritize the deletion of credits. Please mark (X) one of the following:

1. Credits are to be cut back starting with the claim listed last, working backwards.
2. Credits are to be cut back equally over all claims contained in this report of work.
3. Credits are to be cut back as prioritized on the attached appendix.

In the event that you have not specified your choice of priority, option one will be implemented.

Note 1: Examples of beneficial interest are unrecorded transfers, option agreements, memorandum of agreements, etc., with respect to the mining claims.

Note 2: If work has been performed on patented or leased land, please complete the following:
Credits you are claiming in this report may be cut back. In order to minimize the adverse effects of such deletions, please indicate from which claims you wish to prioritize the deletion of credits. Please mark (X) one of the following:

1. ☐ Credits are to be cut back starting with the claim listed last, working backwards.
2. ☑ Credits are to be cut back equally over all claims contained in this report of work.
3. ☐ Credits are to be cut back as prioritized on the attached appendix.

In the event that you have not specified your choice of priority, option one will be implemented.

Note 1: Examples of beneficial interest are unrecorded transfers, option agreements, memorandum of agreements, etc., with respect to the mining claims.

Note 2: If work has been performed on patented or leased land, please complete the following:
Credits you are claiming in this report may be cut back. In order to minimize the adverse effects of such deletions, please indicate from which claims you wish to prioritize the deletion of credits. Please mark (+) one of the following:

1. Credits are to be cut back starting with the claim listed last, working backwards.
2. Credits are to be cut back equally over all claims contained in this report of work.
3. Credits are to be cut back as prioritized on the attached appendix.

In the event that you have not specified your choice of priority, option one will be implemented.

Note 1: Examples of beneficial interest are unrecorded transfers, option agreements, memorandum of agreements, etc., with respect to the mining claims.

Note 2: If work has been performed on patented or leased land, please complete the following:
Personal information collected on this form is obtained under the authority of the Mining Act. This information will be used to maintain a record and ongoing status of the mining claim(s). Questions about this collection should be directed to the Provincial Manager, Mining Lands, Ministry of Northern Development and Mines, 4th Floor, 158 Cedar Street, Sudbury, Ontario P3E 8A5, telephone (705) 670-7264.

Statement of Costs for Assessment Credit
État des coûts aux fins du crédit d'évaluation

Mineral Act/Loi sur les mines
2.1563 6

1. Direct Costs/Coûts directs

<table>
<thead>
<tr>
<th>Type</th>
<th>Description</th>
<th>Amount Montant</th>
<th>Totals Total global</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wages Salaires</td>
<td>Labour Main-d'œuvre</td>
<td>1225.00</td>
<td>1225.00</td>
</tr>
<tr>
<td>Field Supervision Supervision sur le terrain</td>
<td>1635.13</td>
<td>1635.13</td>
<td></td>
</tr>
</tbody>
</table>

Total Direct Costs Total des coûts directs 5280.31

Note: The recorded holder will be required to verify expenditures claimed in this statement of costs within 30 days of a request for verification. If verification is not made, the Minister may reject any or part of the assessment work submitted.

2. Indirect Costs/Coûts indirects

** Note: When claiming Rehabilitation work indirect costs are not allowable as assessment work. Pour le remboursement des travaux de réhabilitation, les coûts indirects ne sont pas admissibles en tant que travaux d'évaluation.

<table>
<thead>
<tr>
<th>Type</th>
<th>Description</th>
<th>Amount Montant</th>
<th>Totals Total global</th>
</tr>
</thead>
<tbody>
<tr>
<td>Transportation Transport</td>
<td>2000</td>
<td>2000</td>
<td></td>
</tr>
<tr>
<td>Food and Lodging Nourriture et hébergement</td>
<td>2000</td>
<td>2000</td>
<td></td>
</tr>
</tbody>
</table>

Sub Total of Indirect Costs Total partiel des coûts indirects 4000

<table>
<thead>
<tr>
<th>Type</th>
<th>Description</th>
<th>Amount Montant</th>
<th>Totals Total global</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rental Location de matériel</td>
<td>5280.31</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Total Value of Assessment Credit Valeur totale du crédit d'évaluation

Filing Discounts

1. Work filed within two years of completion is claimed at 100% of the above Total Value of Assessment Credit.

2. Work filed three, four or five years after completion is claimed at 50% of the above Total Value of Assessment Credit. See calculations below:

Total Value of Assessment Credit X 0.50 = Total Assessment Claimed

Certification Verifying Statement of Costs

hereby certify:

that the amounts shown are as accurate as possible and these costs were incurred while conducting assessment work on the lands shown on the accompanying Report of Work form.

hat as (Recorded Holder, Agent, Postion in Company) I am authorized to make this certification

Remises pour dépôt

1. Les travaux déposés dans les deux ans suivant leur achèvement sont remboursés à 100 % de la valeur totale susmentionnée du crédit d'évaluation.

2. Les travaux déposés trois, quatre ou cinq ans après leur achèvement sont remboursés à 50 % de la valeur totale du crédit d'évaluation susmentionné. Voir les calculs ci-dessous.

Valeur totale du crédit d'évaluation X 0.50 = Évaluation totale demandée

Attestation de l'état des coûts

J'atteste par la présente :
que les montants indiqués sont le plus exact possible et que ces dépenses ont été engagées pour effectuer les travaux d'évaluation sur les terrains indiqués dans la forme de rapport de travail ci-joint.

Et qu'à titre de (Recorded Holder, Agent, Position in Company) je suis autorisé à faire cette attestation.

Signed Date

A. C. D. 2014
Sudbury Contact Mines Ltd
Victoria Creek Project
Certified Expenditure Statement 2.1563 6

Sept 31/94 Ground Geophysics
from work Sept 28, 1993 – November 5, 1993
and then from Jan 2, 1994 – January 30, 1994

Mobilization - Demobilization $2,000
Linecutting 106.133 km x $280.64/km $29,785.33
Magnetic/VLF Surveying 101.686 km x $178.75/km $17,662.88
Field Expenses $1,635.13
Report Preparation $2,500
Project Geologist 5 days x $245/day $1,225.00

Total: $54,808.31

O. Christ Sept 31/94

RECEIVED
OCT 1 1894
MINING LANDS BRANCH
December 5, 1994

Mr. Spooner:

RE: Approval of Assessment work on mining claims 30883 et al in Gauthier Township.

The assessment credits for Geophysics(MAG, VLF), section 14 of the Mining Act Regulations, as listed on the original Report of Work, have been approved as of November 29, 1994.

Please indicate this approval on the claim record sheets.

If you have any questions concerning this correspondence please contact Bruce Gates at 670-5856.

Yours sincerely,

Ron C. Gashinski
Senior Manager, Mining Lands Section
Mining and Land Management Branch
Mines and Minerals Division

Enclosures:

cc: Assessment Files Office
Sudbury, Ontario
Notice of Forestry Activity

This township land falls within the Department of Forest Management Unit. Operations under the Unit Forestry Plan may be subject to order and shall comply with the Plan. For more information, contact [insert contact information].

Acknowledging the importance of sustainable forestry practices, this area is being managed to ensure the long-term health and productivity of the forest resources.

The information on this map has been compiled from various sources and is accurate to the best of our knowledge. However, we cannot guarantee its complete accuracy. Users are advised to verify the data with local authorities and other relevant information sources.

The Crown Land Disposition Legend provides details of various types of documents related to land disposal, including patents, surface rights, and mining claims. This map illustrates the boundaries and features of the land within the Arnold Township area.