NEPHELINE DRILLING
DUNGANNON TOWNSHIP PROPERTY
REPORT # 12

for Pipawa Explorations Limited
and Jayfran Enterprises Limited

by Robert H. Morse, Ph.D., P.Eng.
December 28, 1988

OM88-9-JV-026.
SUMMARY

Diamond drilling of nepheline gneisses on the Dungannon Township property was carried out as follows:

Pipawa claims 840009 and 973169 -- 779 feet in 5 holes
Jayfran lot 20, Con XIV -- 255 feet in 2 holes.

Once laboratory work has been completed this exploration program will have provided an initial evaluation of a large portion of the property down to a depth of 100 feet.

It is next to impossible to identify nepheline in drill core by eye; however, with the aid of a staining technique, our knowledge of surface geology and our experience with the 1984 drilling some tentative conclusions can be reached.

The best looking core is from holes 88-1, 88-2 and 88-3 on the boundary of claims 840009 and 973169. Assuming the lab results confirm the quality of this core a block of 2 to 3 million short tons is suggested, open at depth.

A thousand feet to the south hole 88-4 intersected substantial amounts of pegmatite and the hole was not sampled. Hole 88-5, on the same section, intersected gneiss which appears to contain nepheline. It is likely that the pegmatite is fairly local and it is possible that substantial nepheline tonnage could be proven by drilling further north and south along the band of nepheline gneisses in claim 840009 and the two claims to the south.

On the Jayfran ground holes 88-6 and 88-7 appear to support the surface geology and if confirmed by the lab tests these two holes will indicate another block of 2 to 3 million tons, open at depth.

The newly outlined tonnage is in addition to 1.4 million tons of high grade and 0.4 million tons of low grade identified in the 1984 drilling in the northeast part of the Jayfran ground. All the tonnage described is at a high elevation and mineable by open pit with little or no stripping.

Major chemical studies are required. Materials to be tested include the 1988 core, the 1984 core, and surface samples which should be collected from the drilled areas. Increased tonnage should be sought by drilling and bulldozing new targets.

Respectfully submitted,

December 28, 1988

Robert H. Morse, Ph.D., P.Eng.
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Summary</td>
<td>1</td>
</tr>
<tr>
<td>Property</td>
<td>3</td>
</tr>
<tr>
<td>Access</td>
<td>3</td>
</tr>
<tr>
<td>Previous work</td>
<td>3</td>
</tr>
<tr>
<td>Objectives</td>
<td>5</td>
</tr>
<tr>
<td>Drilling program</td>
<td>5</td>
</tr>
<tr>
<td>Results</td>
<td>7</td>
</tr>
<tr>
<td>Tonnage indications</td>
<td>8</td>
</tr>
<tr>
<td>Recommendations</td>
<td>9</td>
</tr>
<tr>
<td>Appendix I -- Summary logs</td>
<td>10</td>
</tr>
<tr>
<td>Appendix II -- Staining technique</td>
<td>11</td>
</tr>
<tr>
<td>Appendix III -- Description of thin sections from 1984 core</td>
<td>14</td>
</tr>
<tr>
<td>Appendix IV -- Project summary by Anne Casselman</td>
<td>17</td>
</tr>
<tr>
<td>Appendix V -- Detailed logs</td>
<td>in pocket</td>
</tr>
<tr>
<td>Figure 1 -- Portion of Dungannon Township showing property</td>
<td>4</td>
</tr>
<tr>
<td>Figure 2 -- Dungannon Township compilation</td>
<td>in pocket</td>
</tr>
<tr>
<td>Figure 3 -- Pipawa map</td>
<td>in pocket</td>
</tr>
<tr>
<td>Figure 4 -- Jayfran map</td>
<td>in pocket</td>
</tr>
<tr>
<td>Figure 5 -- Pipawa sections</td>
<td>in pocket</td>
</tr>
<tr>
<td>Figure 6 -- Jayfran sections</td>
<td>in pocket</td>
</tr>
</tbody>
</table>
PROPERTY

The Jayfran-Pipawa property in Dungannon Township comprises 10 patented lots owned by Jayfran Enterprises Limited and 10 mining claims owned by Pipawa Explorations Limited, a closely associated company (see figure 1). The present report describes drilling carried out on claims 840009 and 973169 and on the north half of lot 20 Concession XIV.

ACCESS

Access to the drill sites on the claims is by a forest access road which runs north from Highway 28 just east of York River bridge. The forest access road, which is usually passable by car, passes through the centre of claim 840009 and reaches almost to the south boundary of claim 973169. The drill sites are not far from this road but moving the drill is difficult due to the rugged terrain. The drill sites on the patented lot can be reached by car in dry weather.

PREVIOUS WORK

The properties have been the subject of geological investigations by the writer commencing in 1983. This work included, in 1984, drilling seven holes totalling 833 feet for nepheline and four holes totalling 367 feet for uranium. The nepheline holes were near the northeast corner of the Jayfran land, on lot 16, Con XIV. A high-grade zone amounting to about 1.4 million tons of nepheline gneiss was identified, underlain by a low-grade zone of about 0.5 million tons. The high-grade zone was tested in the lab. The deposit is at the top of a hill and mineable by open pit with no stripping.
Figure 1 -- Portion of Dungannon Township Showing Property

Nepheline outcrops

Scale: 1" = ½ mile
OBJECTIVES

The objective of the 1988 nepheline drilling is to increase the 1984 tonnage. The drill program was designed to test the surface exposures at depth and to get representative samples of unweathered rock for lab tests.

DRILLING PROGRAM

The drilling was carried out by Eastern Ontario Diamond Drilling Ltd. using a Longyear #24 wireline drill. Core size is BQ, 36.4 mm in diameter. The drilling commenced September 29 and finished November 23, 1988.

The program was laid out as follows:

claim 840009-973169 boundary -- hole 88-1 100 feet
 hole 88-2 120
 hole 88-3 220

center of claim 840009 -- hole 88-4 220
 hole 88-5 119

N½ lot 20 Con XIV -- hole 88-6 148
 hole 88-7 107

TOTAL 1,034 feet

Note that the 1984 holes are numbered 1 to 11 with no prefix.

Survey control for the location of the drill holes was by reference to flag line grids established by chain and compass in previous years. Elevations were established by chain and brunton and are relative to an arbitrary local datum of 973 feet for York River.

Core recovery was good except near the surface. The main problem encountered in the drilling was on the Pipawa claims, where moving the drill was time consuming due to the rugged terrain.

The core was examined briefly by the writer and logged in detail by Anne Casselman, geologist, at the Ontario Core Library in Bancroft. Logs are included in the appendix.
To aid in the recognition of nepheline and related minerals Ms. Casselman used a staining technique consisting of leaching a polished surface with phosphoric acid to create a thin film of silica gel and then staining the silica gel with methylene blue. Notes describing the staining technique are included in the appendix.

Besides logging the 1988 core Ms. Casselman examined thin sections from the 1984 core and briefly examined the 1984 core itself. Her thin-section description is included in the appendix. Besides nepheline she recognized large amounts of nepheline alteration products, namely muscovite, sericite, white mica and calcite. Up to now we have assumed that the mineral dissolved in the lab to produce silica and alumina is nepheline. Muscovite, sericite and white mica may also be soluble, especially as they are very fine grained. All contain large amounts of alumina and silica.

Favourable sections of core totalling 602 feet were split by Ms. Casselman at the core library using a diamond saw. Half the split core was delivered to I.M.D. Laboratories for testing for soluble alumina and silica. The remainder of the core, along with the 1984 core, is stored at the core library. At the lab the samples are being grouped into three composites as follows:

- Holes 88-1, 88-2 and 88-3 -- composite 88D
- Hole 88-5 -- composite 88E
- Holes 88-6 and 88-7 -- composite 88F.

Some minor inconsistencies in the sample measurements mean that they should be checked against the core before detailed plans are made.
RESULTS

It is next to impossible to identify nepheline visually in drill core. Nepheline (possibly including its alteration products) can readily be recognized in surface exposures due to its differential weathering. All the holes were drilled beneath good exposures of nepheline-rich rocks. From the general geology and the 1984 drilling we know that the main non-nepheline rocks in the area are marble, pink gneiss, granite and pegmatite. These rocks can be readily recognized in core and the tentative assumption made that the remainder is rich in nepheline and/or its alteration products. Staining supports this assumption but the final conclusion rests with the lab.

Using this logic we have described much of the core as mixed nepheline gneiss and identified these sections in the summary logs (Appendix I) and on the drill sections (figures 5 and 6). It is these mixed nepheline gneisses that were split and sent to the lab. Other major rock units are marble and pegmatite along with minor granite.

Marble comprises a section of 73 feet in the lower part of hole 88-3 and can be correlated with two small outcrops. This large block of marble would be left out in any nepheline mining. It is below and to the west of the nepheline tonnage indicated by holes 88-1, 38-2, and 88-3.

Hole 4 intersected a sequence of mixed nepheline gneiss, pegmatite and pink gneiss. It was not sampled. The large amount of pegmatite in this hole places a major constraint on development of nepheline tonnage on section 7+00N. The pegmatite, however, is likely to be local, leaving much of the belt of nepheline gneiss to the north and south of section untested by the drill.

On the Jayfran ground holes 88-6 and 88-7 appear to be rich in nepheline and, with favourable lab results, will indicate a major block of tonnage.
TONNAGE INDICATIONS

Estimates of tonnage at this point are limited by the absence of lab results and by the paucity of drill holes. Assuming favourable lab results, however, some estimates can be made.

Of the three blocks tested the hill at the boundary of claims 840009 and 973169 (section 17+00N) appears the most promising from visual examination of the core. Holes 88-1, 88-2 and 88-3 intersected mixed nepheline gneiss to depths of about 100 feet. The major marble unit here, in hole 88-3, is below and to the west of these intersections. Multiplying a width (E-W) of 400 feet by a length of 700 feet and a depth of 100 feet and dividing by a density of 12 gives a rough estimate of 2 to 3 million short tons. Most of this tonnage is above the level of York River and all is accessible by open pit with little or no stripping. The deposit is open at depth.

The gneiss belt to the south, which extends through claim 840009 into claims 840010 and 820095, has been tested by two holes on section 7+00S. The large block of pegmatite intersected by hole 88-4 downgrades the potential here. To the north and south of this section, however, the belt has not yet been drilled and considerable tonnage might be found to add to the above.

On the Jayfran ground holes 88-6 and 88-7 support the projection of surface occurrences to depth and using a calculation similar to the above indicate a further tonnage of 2 to 3 million tons, again assuming favourable lab results. This tonnage too is readily accessible to open pit, on high ground, with little or no stripping, and open at depth.
RECOMMENDATIONS

Remaining Targets

The belt of nepheline gneiss on claims 840009, 840010 and 820095, which extends south from section 13+00N for a distance of 2,000 feet, has been tested by only two drill holes, 88-4 and 88-5. More are recommended.

On the Jayfran land the area between the new drill holes (88-6 and 88-7) and the two nepheline outcrops 1,400 feet to the east has not been tested and contains no outcrops. Bulldozing and/or drilling is recommended.

Between the above and the 1984 drilling is a small nepheline-rich outcrop (shown as "sample 2, 1983" on the figures in the earlier reports). This area should be tested by a drill hole or two or by a small amount of bulldozing.

Lab Tests

Lab tests to determine the amount of soluble alumina and silica (from nepheline and its alteration products) in the new core are under way.

Major chemical studies are required to determine the feasibility of production of alumina and silica products from the property. These studies can be carried out on the 1984 core, on the 1988 core and on surface samples to be collected.
APPENDIX I -- SUMMARY LOGS

Hole 88-1 (Section 17+00N) TD=100'
0' to 5': no core
5' to 100': mixed nepheline gneiss
sampled 10' to 100' and put into composite 88D

Hole 88-2 (Section 17+00N) TD=120'
0' to 6': no core
6' to 120': mixed nepheline gneiss
sampled 6' to 120' and put into composite 88D

Hole 88-3 (Section 17+00N) TD=220'
0' to 23': no core
23' to 135': mixed nepheline gneiss
135' to 208': gray marble
208' to 220': mixed nepheline gneiss
sampled 23' to 135' and put into composite 88D

Hole 88-4 (Section 7+00N) TD=220'
0' to 19': no core
19' to 220': mixed nepheline gneiss, pegmatite and non-nepheline gneiss
not sampled

Hole 88-5 (Section 7+00N) TD=119'
0' to 15': no core
15' to 22': granite
22' to 25': nepheline gneiss
25' to 34': no core
34' to 119': mixed nepheline gneiss
sampled 22' to 25' and 34' to 119' and put into composite 88E

Hole 88-6 (lot 20 Con XIV) TD=148'
0' to 18': no core
18' to 140': mixed nepheline gneiss
140' to 148': granite and mixed nepheline gneiss
sampled 18' to 140' and put into composite 88F

Hole 88-7 (lot 20 Con XIV) TD=107'
0' to 20': no core
20' to 26': mixed nepheline gneiss
26' to 37': granite gneiss
37' to 107': mixed nepheline gneiss and granite gneiss
sampled 20' to 26' and 37' to 107' and put into composite 88F
The samples for staining were prepared by first sawing the core then polishing it in some cases to remove the saw marks. Sawing samples to produce a smooth surface is minimal in order to reduce pooling of acids in depressions that may produce a differential etching. The samples were then washed and dried to remove any excess clay and liquids from the surface. Using a plastic rod under ventilated conditions i.e. a fume hood wearing gloves and safety goggles, a thin coat of syrupy phosphoric acid was evenly placed on the sample and allowed to sit for 3 minutes. The acid then corrodes or alters any feldspathoid material to produce a silica gel. Using forceps the samples were then gently dipped in distilled demineralized water to remove the remaining acid. The sample was then placed in a solution of methylene blue for 1 min. The methylene blue stains the silica gel produced by the reaction of the acid with the feldspathoid material. The sample is then rinsed with running water until all excess stain is removed.

It is necessary to immediately photograph the sample as once dry the stain is difficult to see and will readily brush off when rubbed. A permanent stain is produced by covering the area as one would a normal thin section with Durofix plus amyl acetate in a one : three ratio and a glass cover slip. This procedure may be repeated with a slight polishing to freshen the surface.

The nepheline will appear stained dark blue as well as analcime (analcite). Analcime is a zeolite-like mineral and a hydrothermal alteration product of nepheline and forms at higher temperature than due true zeolites. The author has examined approximately 83 thin sections of nepheline gneiss and related materials in the area and has observed analcime in only one section. Sodalite will also stain a deep blue but is easily recognized in hand sample in its true form or its hackamanite form which is pink.

Melilite also stains but is a mineral that is found in recent subsilicic basalts and artificial slags and may be considered a pyroxene like mineral. Melilite would stain a pale blue. Generally alteration products stain a light blue, such minerals would include zeolites, sericite (a cryptocrystalline muscovite with the Na molecule replacing some of the K in the molecule) and white mica (this may be considered hydromica that contains more Al and OH).

Stained Samples

6601 - Most of the nepheline is concentrated in the biotite rich area, finer grain material can be seen in the white
area. Light uniform blue on this section is a pooling of excess liquid.

6602 - Generally not much nepheline concentrated in the white area.

6603 - Most of this sample is stained light blue and is mostly alteration products.

6604 - Stain centered in white portions.

6605 & 6606 - Generally not much as the feldspar material is brown/reddish.

6607 - Large amounts of coarse grained material.

6608 - Mostly alteration product is found.

6609 - Mostly milky alteration product.

6610 - High amounts of coarse grained material.

6611 - Sparse amounts of fine grain material.

6613 - Central portions of the core alteration product and outside displays nepheline stain.

6614 - High amounts of fine grain nepheline.

6615 - Sparse amounts of fine grained nepheline.

6616 - No stain.

6616, 6618 & 6619 - High Mounts of Coarse grained Nepheline.

6620 - No Stain.

6621 - Mostly Coarse grained alteration product.

6622 - No Stain.

6623 - High amounts of coarse grain alteration product.

6624 - No Stain.

6625 - High Amounts of fine grain nepheline.

6626 - Coarse grain material concentrated in one area.

6627 - '' '' '' '' ''

6628 - Mostly alteration product in the lower portion and nepheline in the upper portion.
6629, 6630, 6631 and 6632 - No Stain.

6633 - Mostly alteration product.

6634 - No Stain.

6642 - High Amounts of coarse grain nepheline.

References

University of Toronto, Age and Petrological Relationships
of Some Igneous-Textured and Gneissic Alkaline Rocks in the
Haliburton-Bancroft Area.

Moorhouse, W. W., 1959, The Study of Rocks in Thin Section:

3, Mineral Industries Bulletin, Research Foundation, Inc.,
Colorado School of Mines.
APPENDIX III

Description of Thin Sections from 1984 Core

by Anne Casselman

The nepheline content ranges from 4-26 %, with a size range of 2.3mm to .5 mm. Nepheline can usually be identified by its low birefringence, low relief uniform extinction, alteration along parting planes and in some sections almost complete alteration. Alteration to muscovite, sericite, white mica, and calcite are the most common. Mode of occurrence is interstitial to the plagioclase or perthite, embayment structures in the formerly mentioned minerals or in a more massive format that has replaced the feldspar. These ameboid areas are almost entirely replaced by white mica. In some sections a more undulatory extinction is apparent as a result of tectonic stress. Thye best nepheline is observed in section 403-2 taken at the 105 foot level. There is a strong correlation between the amount of carbonate and the presence of chloritized biotite. Where biotite is found in high percentage in the section the amount of calcite increases as well as the degree of alteration of the feldspars and feldspathoids. Nepheline generally alters before feldspars and can be identified by this means also. Nepheline is the only feldspathoid seen in these sections.

Carbonate in the form of calcite occurs as rounded anhedral replacement of plagioclase and nepheline, particularly high levels are association with the presence of biotite. The calcite displays conjugate twinning, feathering structures and polysynthetic deformation as a result of tectonic stress. The percentage ranges from 1-13 with a size range of 3.75 to 0.07 mm.

Plagioclase ranges in percent from 55 to 8, and is probably albite in composition. Inclusions consists of biotite, apatite, zircon, and nepheline. Alteration to muscovite, sericite, white mica and calcite are common. The plagioclase exhibits polysynthetic deformation, cross twinning and some undulatory extinction due to tectonic stress. Where in contact with the nepheline the boundary is scalloped or sutured especially where embayment structures occur. There is a small amount of plag in plag texture. Size range of 5mm to 0.05mm, generally greater than the nephline unless the nepheline is occurring massively.

Perthite, the intergrowth of plagioclase and orthoclase is found in high amount in some sections and is totally absent in others up to 24.5 %. It is present with a lensic
texture with the same inclusions as does the plagioclase with the same nepheline relation as the plagioclase. The size range is 4.7 mm to 0.35 mm.

Orthoclase is found in very small amounts up to 3% related to the perthite and displaying the typical microcline twinning.

Biotite ranging from 18 to 6% is chloritized or hematized and is generally altering to opaques. Good shagreen surface is apparent, frequently rimmed by chlorite as it is found rimming the larger opaques. The biotite is intergrown with itself or with muscovite. Size range form 5 mm to 0.03 mm.

Muscovite is found as an alteration of nepheline and plagioclase or is intergrown with biotite. As it is an alteration product it is frequently found as an inclusion in the feldspars and feldspathoid. Muscovite is found in higher concentrations where there is free muscovite. A good shagreen surface can normally be seen. The size ranges between 2.3 mm to 0.08 mm.

Chlorite as a chloritized biotite as well as individuals is found in amounts up to 3% generally rimming biotite. Its composition is that of clinochlore.

Zircon is a frequent constituent of the sections not comprising more than 0.5% With the largest individual being 1.5 mm. It occurs interstitially to plagioclase or as an inclusion in the same.

Apatite is another frequently encountered mineral not comprising more than 1% of the total. Apatites here are quite large being up to .6 mm. Mode of occurrence is interstitial or as an inclusion in plagioclase or biotite.

The opaques observed are primarily magnetite but some pyrite was seen. The larger grains are euhedral and rimmed by biotite. The more fine grain material is present as an alteration of biotite or epidote. The size range is form 3.5 mm to 0.01 mm and a percentage of 7 to 0.5%.

The pistacitic variety of epidote was observed on only one occasion totalling 0.5% with a size range of 0.4mm to
0.02 mm. It is altering to opaques and itself is an normal alteration product in this environment.

Hematite occurs as a stain radiating outward along the grain boundaries form biotite and opaques. Hematite is also a common stain on biotite.

White Mica and Sericite are unusually high in some areas totally replacing all feldspars and feldspathoids, and comprises up to 51% of the total on some cases. This alteration is selective electing to level some grains absent from any alteration while bordering grains are almost completely altered.

Amphibole and sphene are present only in the marble both are highly rounded and are closely associated with each other. No nepheline was seen in the marble but feldspar is present.
Currie (1976) called the Egan Chute area a classic example of nephelinization. The alkaline rock are generally poorly understood although much studied and well documented. Many theories of origin have been proposed from exhaustive studies that haven't produced any definite conclusions.

There are basically two modes of occurrence; those of nepheline syenite pegmatites and nepheline-rich to poor mafic or felsic gneiss. The nepheline syenite pegmatites are for the most part have been previously exploited by the ceramics industry. The nepheline gneisses or alkaline belt runs from Gooderham and Nephton past the Ontario/Quebec border this section of the Grenville continues to the alkali trend of the St. Lawrence - Mt. St. Hilaire where there is carbonatic relationship to the nepheline presence. There may be some connection in this area also to carbonatites (LeRoy 1988). The nepheline gneissic trend resurfaces in Scandanavia's Grenville age rocks in Norway.

More locally individual units are difficult to trace over long distances due to tectonic activity eg. faulting and folding, intrusions of pegmatitic bodies, difficulty in distinguishing and distinguishing individual units due to the fact that the units are conformable and frequently gradational into other units. It is also exceedingly difficult to estimate nepheline percentages accurately in the field. A modification of the staining technique if developed for field use would be most beneficial.

The formation of these gneissic units may be the result of metasomatic activity that is connected with the intrusion of the nepheline syenite pegmatites causing a saturation of the surrounding gniassic material. Various syenitic pods are found of differing sizes throughout the alkali belt and always with associated gneisses (Casselman, 1988).

The gneisses may be produced by the desilification reaction of granitic intrusions into a marble unit that alters the plagioclase of labradorite composition to that of albite and produces the nepheline-albite-corundum suite (Moyd, 1949).

Jayfran Core

Holes 1-3 were observed as being the best due to relative lack of pegmatitic intrusions and for the most uniform lengths of white material and low amounts of mafics. Hole 4 is poor due to the presence of a large pegmatitic body. Hole 5 has an abundance of hematitic and talcose material. Holes 5 & 6 contain a lot of orange/pink feldspar material.
From the Jayfran core as well as other holes drilled in the area the typical alternating pattern of the nepheline rich gniesses with nepheline poor gniessic units and gniesses that contain no nepheline. There is no definite pattern, whether or not a particular unit contains nepheline or not is dependent upon its proximity to an intrusive body (Less nepheline near a granitic body due to the availability of silica that would allow the nepheline to become a feldspar, and more if in close proximity to a nepheline syenitic body to allow saturation of the circulating fluids outward into the country rock), also the composition of the original paragniess that would allow of ease of movement of the circulating fluids may affect the nepheline content.

The problem of the continuity of the units at depth have not as yet been resolved as drill holes to no great depth have been drilled. The possibility of finding similar deposits is extremely good and gneissic units are generally well documented in the literature. The drill hole are apparently typical of the gniessic belt in that they are associated and intruded by various pegmatitic bodies, they are intercalated with marble units and are obviously of metasomatic origin and have been further influenced by later circulating fluids.

Important Notes And Trends.

1. As a rule gneiss that appears orange/pink will not contain much if any nepheline due to the fact that when the nepheline is introduced by metasomatic means the laboritic composition (normally a dark brown/grey) and orthoclase (pink) is altered to albite that is white in colour. Nepheline is always associated with albite.

2. Presence of corundum almost ensures that nepheline is present as it is part of the nepheline-albite-corundum association. The corundum seen in the core ranges from black to grey or light blue. Having a hardness of 9 on Mohs scale next to diamond it is the hardest material known. This makes extraction and crushing of the material difficult and expensive due to equipment wear.

3. Other associations that almost guarantee the presence of nepheline include sodalite, hackamanite, scapolite and cancrinitite. Although none of these except hackamanite were observed in the core.

4. There are generally high amounts of metals found throughout, in the form of magnetite, pyrite and pyrrhotite (found particularly found at the upper and lower contacts of the pegmatitic unit in hole 88-4). Large amounts of
magnetite are indicative of the presence of corundum in his geological environment. This may provide a key to nepheline exploration as the metallics amy have been emplaced at the same time as the nepheline.

5. Nepheline alters faster than feldspar and is frequently present only in its altered form. Nepheline alters to white mica, sericite, zeolite, sodalite, cancrinite, gieskite and hydronephelite. These would generally appear milkly pale colours in hand sample that are especially present where there are later circulating fluids ie. a chlorite vien or where ther is surface exposure. As an alteration to sericite or white mica have approximately the same chemical composition the value as an economic quantity is the same. Alteration to carbonate is undesirable and was particularly present in close proximity to chloritized biotite.

Selected References

Casselman, A. E., 1988, BSc Thesis, A Petrological Study of the "Type Dungannonite " Locality, York River Area, Dungannon Township, Bancroft Ontario, Brock University.

North Boundary

Uranium occurrences

Proposed drilling
or bulldozing

Baseline 2

Dungannon Township Property
(Northwest Corner)

Nepheline Drilling
December, 1988
1 inch = 200 feet

Figure 4
LEGEND

18 FELDSPAR PEGMATITE
16 GRANITE
9 GNEISS (PINK)
7 NEPHELINES GNEISS
3 MARBLE
G GREEN GNEISS

1 INCH = 100 FEET OR 1:1200 VERTICAL AND HORIZONTAL

DECEMBER 1988

R. H. Morse & Associates Ltd.

PIPAMA EXPLORATIONS LIMITED

Dungannon Township Property
Claims 973169 and 840009

NEPHELINES DRILL SECTIONS

SCATTERED OUTCROPS OF 7

SECTION 1700N

DDH-1
DDH-2
DDH-3

100'
1000'

SECTION 700N

CLAIN LINE
3200 3000 2800 2600

DDH-4
DDH-5

3200 3000 2800 2600

WATER

100'
1000'
LEGEND

18 FELDSPAR PEGMATITE
16 GRANITE
9 GNEISS (PINK)
7 NEPHELINE GNEISS
3 MARBLE
G GREEN GNEISS

R. H. Morse & Associates Ltd.
JAYFRAN ENTERPRISES LIMITED
Dungannon Township Property
(Northwest Corner)

NEPHELINE DRILL SECTIONS
1 INCH = 100 FEET OR 1:1200
VERTICAL AND HORIZONTAL

DECEMBER 1968

SECTION 1052W

OUTCROSSES OF NEPHELINE GNEISS SHOWING DIP

SECTION 722W

RIDGE WITH OUTCROSSES OF NEPHELINE GNEISS