
TECHNICAL REPORT

GUNFLINT PROPERTY, THUNDER BAY MINING DISTRICT, ONTARIO

FOR

CANADA IRON INC.

330 Bay Street, Suite 1500
Toronto, Ontario M5H 2S8

BY

George Sharpe

George C. Sharpe, P.Geo, Limited., QP, MCIM, CGT
Mineral Exploration Geoscientist
APEGS Member #: 09697 with P. to C. (Permission to Consult)
P.Geo. Ltd., APGO Member #: 1639
Certified Geomatics Technologist, Saskatchewan Registration #227

318 – 2125 Osler Street Regina Saskatchewan CANADA S4P 4G9

Phone: 306-525-6013 Fax: 306-525-3688 Mobile: 306-535-1713

August 10, 2011
TABLE OF CONTENTS

Title Page .. 1
Table of Contents ... 2-4
1. EXECUTIVE SUMMARY ... 5
2.0 INTRODUCTION AND TERMS OF REFERENCE .. 5-6
 2.1 Introduction .. 5-6
 2.2 Terms of Reference and Units .. 6-7
3.0 GLOBAL GEOLOGICAL QUALIFICATIONS ... 7-8
4.0 PROPERTY DESCRIPTION AND LOCATION ... 8-12
 4.1 Area and Location ... 8-11
 4.2 Description and Ownership ... 11-12
 4.3 Environmental Liabilities .. 12
 4.4 Permits ... 12
5.0 ACCESS, CLIMATE, INFRASTRUCTURE, PHYSIOGRAPHY, NATURAL
 RESOURCES AND CORPORATE SOCIAL RESPONSIBILITY 12-17
 5.1 Access .. 12-13
 5.2 Climate ... 13
 5.3 Infrastructure .. 13
 5.4 Physiography ... 13-14
 5.5 Natural Resources ... 14
 5.6 Corporate Social Responsibility .. 14-15

6.0 HISTORY ... 15-16

6.1 Past Production ... 16

6.2 Previous Exploration and Drilling 16

7.0 GEOLOGICAL SETTING ... 17-22

7.1 Regional Geology ... 17-22

7.2 Local and Property Geology .. 22

7.3 Geophysics ... 22-24

8.0 DEPOSIT TYPES ... 25-27

9.0 MINERALIZATION .. 27-28

10.0 EXPLORATION .. 28

11.0 DRILLING ... 28

12.0 SAMPLING METHOD AND APPROACH 28

13.0 SAMPLE PREPARATION, ANALYSES AND SECURITY 28

14.0 DATA VERIFICATION .. 28-29

15.0 ADJACENT PROPERTIES ... 29-30

16.0 MINERAL RESOURCE ESTIMATE 30

17.0 OTHER RELEVANT DATA AND INFORMATION 30

18.0 INTERPRETATION AND CONCLUSIONS 30-34

19.0 RECOMMENDATIONS ... 34-35

19.1 Cost Estimate .. 35

20.0 SELECTED REFERENCES .. 36-37
21.0 CERTIFICATE OF QUALIFIED PERSON Appendix 1

22.0 SIGNATURE PAGE Appendix 1

23.0 CONSENT OF QUALIFIED PERSON Appendix 1

Appendix 1 Certificate of Qualified Person, Signature Page, Consent of Qualified Person

Appendix 2 Sample Descriptions, Assay Results, and Specific Gravity Results

Appendix 3 Site Visit Photographs
1.0 EXECUTIVE SUMMARY: During the period, July 3rd to 14th, the author undertook a site visit to the Canada Iron Inc., (CII) Gunflint Property in Jean and Strange Townships, Ontario, at the request of Gary Handley, the President and CEO. The main purpose of this site visit was to confirm, sample and evaluate the previously recognized very extensive outcrops and occurrences of the Animikie Gunflint Iron Formation as it was detected in a VTEM Airborne survey conducted in 2010 by Geotech Ltd. During this time the author and his assistant undertook to obtain a >500 Kg bulk sample from the best exposure of the Gunflint Iron Formation, and to visit as much as possible all the other areas of the property. With the exception of a small isolated area north of the Whitefish River, this was accomplished. Twenty-five other locations were sampled throughout the Gunflint Property and on July 13 a visit was undertaken to the iron ranges of Minnesota to obtain a sample of similar type of material from a location that had undergone extensive past and present mining activity. As well as obtaining this sample from a Taconite ore pile near Hibbing, Minnesota, a visit was made to the Cliffs Natural Resources Hull Rust Mine on the north side of the town of Hibbing.

It is well known that the Gunflint Formation is the northern continuation of the Biwabik Formation that is being mined in Minnesota, and has a past history of mining that goes back more than 120 years. Current escalating demand for iron ore has generated renewed interest in new sources and supplies of these lower grade “Taconite” ores.

2.0 INTRODUCTION AND TERMS OF REFERENCE

2.1 Introduction

George Sharpe, the Chief Geologist for Global Geological Ltd., of Saskatoon, Saskatchewan, was retained by Mr. Gary Handley the President of Canada Iron Inc. of Toronto, Ontario, conduct a site visit and locate and map out as much of the exposed Gunflint Iron Formation as would be possible to access, and obtain samples for assay of this formation. On July 4th, in the company of Mr. Ken Kukkee, P.Geo, of Thunder Bay, Ontario, took this author and his assistant, Mr. David Kalik of Thunder Bay, Ontario, to the best exposure of Gunflint, from which a bulk sample could be obtained and additionally, a well exposed section of the Upper Gunflint could be examined and studied. On July 5th a >500 Kg bulk sample was obtained from this road cut exposure in the Divide Ridge area of Mt. Edna.
The property, located in Jean Township, Ontario, approximately 50 Km west of the City of Thunder Bay, Ontario, Canada, consists of three unpatented 16 unit mining units totaling 820 ha, registered 100% in the name of Mr. Kenneth Kukkee of Thunder Bay, Ontario. The target commodity is iron ore contained entirely within the upper and lower Gunflint Formation of the Paleoproterozoic Anikimie Series in the form of taconite, very similar to what has been mined from the equivalent Biwabik Formation in Minnesota where mining has been on-going for more than 100 years. The potential exists here to find a similar type of deposit of similar grades to what is currently being mined in Minnesota.

This report is based on exploration and property information supplied by CII, the results of this author’s site visit and an extensive review of published material carried out by government geologists and non-published sources from work carried out by previous operators. The purpose of this report is two-fold, (1) to obtain assessment work credits necessary to keep the CII claims in good standing, and (2) to supply the necessary information to CII, for the purposes of presentation to investor groups. The Qualified Person for this report is Mr. George Sharpe, Chief Geologist for Global Geological of Saskatoon, Saskatchewan, who visited the property with his assistant, Mr. David Kalik of Thunder Bay, Ontario, between July 3rd and 14th, 2011.

2.2 Terms of Reference and Units

The Metric System or System International (SI) is the primary system of measure and length used in this report. Conversions from the Metric System to the Imperial System are provided below and are quoted where practical. The more recent geological publications and more recent assessment files now use the SI System, but older assessment work files almost exclusively refer to the Imperial System of measuring. Metals and minerals acronyms used in this report conform to the mineral industry accepted usage. Further information is available online from a number of sources including www.maden.hacettepe.edu.tr/dmmrt/index.html.

Conversion factors utilized in this Report include: 1 pound (lb.) = 0.454 kilograms (kg); 1 foot (ft) = 0.3048 metres (m); 1 mile (mi) = 1.609 kilometres (km); 1 acre (ac) = 0.405 hectares (ha); and, 1 sq mile = 2.59 square kilometres. The term gram/tonne or g/t is expressed as “gram per tonne” where 1 gram/tonne = 1 ppm (parts per million) = 1000 ppb (parts per billion). Other abbreviations include ppb.
2.3 Global Geological Qualifications

Global Geological Services Ltd., is an international consulting company based in Saskatoon, Saskatchewan, Canada. Global provides a wide range of geological and engineering services to the mineral exploration and development industry. With its main office in Saskatoon and affiliates and contacts throughout Canada and overseas, Global is well positioned to service its international client base.

Global Geological Services Ltd. has a mandate to provide professional geological and engineering services to the mineral exploration and development industry at competitive rates and without compromise. The services provided include:

- Exploration Project Generation, Design and Management
- Data Compilation and Exploration Target Generation
- Property Evaluation and Due Diligence Studies
- Independent Technical Reports (NI 43-101) Competent Person’s Reports
- On-Site Engineering and Project Management

In addition, Global has access to the most current software for data management, interpretation, and viewing, manipulation, and target generation.

The Qualified Person for this report is Mr. George Sharpe, the Chief Geologist for Global Geological Services Ltd, and is a member in good standing of the Association of Professional Geoscientists of Ontario, (P.Geo., Limited, #1639). Mr. Sharpe has over 24 years of experience in mineral exploration including gold, base metals, iron, rare earths, industrial minerals, diamonds, PGE’s and uranium, and has authored/co-authored Independent Technical Reports (NI 43-101). A Certificate of Qualification for Mr. Sharpe is provided in Appendix 1.

The background information used for this report was derived from numerous sources, such as published Ontario Geological Survey, the Geological Survey of Canada, and the University of Minnesota,
assessments files from the Ontario Ministry of Northern Development of Mines and Forestry, and data supplied by Canada Iron Inc. A full listing of these sources of information is listed in the References Section.

3.0 RELIANCE ON OTHER EXPERTS

The technical report titled "NI 43-101 Technical Report Gunflint Iron Property, District of Thunder Bay, Ontario" and dated 10 August, 2011, was prepared for Canada Iron Inc. ("CII") by George C. Sharpe, P. Geo. Limited, a Qualified Person as defined in Part 1, Section 1.1(7) of Companion Policy 43-101CP, Standards of Disclosure for Mineral Projects. The report was prepared from the author's personal observations and field investigations, including collecting geologic samples and mapping certain sites of the subject property during a site visit to the Gunflint Iron Property in the period July 3 to July 14, 2011, and from materials supplied by the client, Canada Iron Inc., and from other sources, including Government of Canada and Government of Ontario technical papers presented in recognized academic and technical monographs, journals, from both U.S. and Canadian sources.

The author in preparing this technical report relied upon data that are included in those publications, technical papers and assessment reports with respect to historic and background information. In all instances, I believe that the materials quoted or otherwise referred to are reasonable and objective observations and conclusions by persons suitably experienced and otherwise qualified to discuss such matters. The author was unable to obtain any of the historic drill cores from the drilling programs described in this report, for the purposes. No prior NI 43-101 reports have been done on this property and all of the background information used for this report is from the sources described above.

Source material documents are listed in Section 20 "Selected References".

George C. Sharpe, P. Geo., Limited, accepts responsibility for the contents of the accompanying report.

4.0 PROPERTY DESCRIPTION AND LOCATION

4.1 Area and Location
The three claims described in this report are situated just north of Whitefish Lake, 50 Km west of the City of Thunder Bay, Ontario, in the Thunder Bay Mining Division, centered around 48 degrees, 15 minutes north latitude, and 97 degrees, 2 minutes, thirty seconds west longitude in the southern third and eastern area of Jean Township. Ontario Provincial Highway 622, is just to the south of the claim block.

Table 4-1 Summary of mining claims on the Canada Iron Inc., Gunflint Property

<table>
<thead>
<tr>
<th>Claim</th>
<th>Recorded</th>
<th>Due</th>
<th>Units</th>
<th>Area (ha)</th>
<th>Work Required</th>
</tr>
</thead>
<tbody>
<tr>
<td>3012585</td>
<td>August, 15 2009</td>
<td>August 15, 2011</td>
<td>16</td>
<td>256</td>
<td>$6,500.00</td>
</tr>
<tr>
<td>4224787</td>
<td>August, 15 2009</td>
<td>August 15, 2011</td>
<td>16</td>
<td>256</td>
<td>$6,500.00</td>
</tr>
<tr>
<td>4224788</td>
<td>August, 15 2009</td>
<td>August 15, 2011</td>
<td>16</td>
<td>256</td>
<td>$6,500.00</td>
</tr>
<tr>
<td>TOTAL:</td>
<td></td>
<td></td>
<td>48</td>
<td>768</td>
<td>$19,500.00</td>
</tr>
</tbody>
</table>
Ontario Iron
Past Producers/Deposits Not Being Mined:
A - Kenora - Red Lake
B - Thunder Bay South (Rainy River)
C - Thunder Bay North
D - Wawa
E - Kirkland Lake
F - Sudbury (Nipissing)
G - Southern Ontario

Figure 4-1: Gunflint Property Location
4.2 Description and Ownership

The Gunflint Property consists of three contiguous sixteen unit claims, numbered 3012585, 4224787 and 4224788.

These three claims are due on August 15, 2011, and each of these claims has $6,500 worth of work owing on it, on or before the above named date. These claims are held in the name of Mr. Ken Kukkee, P.Geo., of Thunder Bay, Ont. These three claims are under option to Canada Iron, Inc., of Toronto, Ontario, and this report is prepared in partial fulfillment of the required work credits of $6,500 for each claim.
4.2 **Environmental Liabilities**

Currently, there are no outstanding environmental liabilities pending on or within the area of these claims, to the best of this author’s knowledge.

4.3 **Permits**

At the present time there are no permits required until such time as more advanced exploration work such as line cutting, ground geophysics, trenching and drilling, at some future date, as market conditions, and additional funding will permit. When such work is to be undertaken, using the prerequisite funding to be raised, application will be made to acquire all the require permits from the Ontario and Canadian ministries as per regulations.

5.0 **ACCESS, CLIMATE, INFRASTRUCTURE AND PHYSIOGRAPHY**

5.1 **Access**

Access to this property is, for the most part, quite easy by means of paved highways all the way from Thunder Bay, and thence via an all-weather gravel and dirt road along the Jean/Strange Townships boundary, north from Highway 622 a distance of less than three kilometres. Other roads constructed by the Abitibi Bowater Company in the 1980’s and 1990’s, to access their timber permits were constructed into other parts of this property and can be accessed by 4 wheel drive vehicles or all-terrain vehicle. Some of these roads and trails are well overgrown and will require re-clearing to be useable for access. Portions of this property not accessible by any of the trails, can be reached by foot traverses, however secondary growth and loggers’ slash piles can make foot traverses quite problematic in much of this area.

5.2 **Climate**

The climate is mid-continental, with cold winters and moderate to warm summers. The area is classified as having a sub-humid high boreal eco-climate. The mean temperatures for January and July are -21°C and 18°C, respectively. Temperature ranges from -40°C in the winter to 30°C in the summer can be expected. Annual precipitation averages about 350 mm of rain and 1,450 mm of snow. There are on average 119 frost-free days per year. Lakes begin to freeze in November and thaw in April.
Ground exploration work including diamond drilling can be carried out on the property during most of the year in most areas of this property, where existing, all-weather access roads and trails can be used. For swampy locations or adjacent to ponds, activities such as line cutting, ground geophysics, and drilling in such places can only be accomplished when the ground and lakes are frozen.

5.3 Infrastructure

Thunder Bay, Ontario, (pop: 115,000) is the closest major center to this property and has all the required services and supplies that would be required by any company undertaking any phase of exploration work ranging from basic grass roots phase up to advanced exploration and mining production. (www.cityofthunderbay.com). As such there is a large source of skilled exploration and mining personnel, as well as mine related services. Thunder Bay offers modern shopping facilities, a full service regional hospital, numerous medical clinics, as well as all types of social amenities, restaurants, hotels and other services.

5.4 Physiography

The maximum topographic relief in this area is in the order of 140 metres and this is due to the presence of large erosion resistant diabase sills that form the tops of the large, round mesas of Mt Edna and Mt. Marny on the property and other area mesas such as Mink Mountain and Sun Mountain to the west and Silver Mountain to the southeast. Low areas are formed by swamps, ponds and the two branches of the Whitefish River. The southern and western areas drain to the south to the Pigeon River, which drains into Lake Superior at Pigeon Point. To the north, the drainage is into the Whitefish River which drains into the Kaministikwia River which flows into Lake Superior in Fort William Ward, at Thunder Bay. Exposures of the Gunflint Formation are most frequent around and just below the diabase capped mesas, and along river and stream banks. Outcrop exposures are scarce in all of the low-lying areas due to extensive drift cover.
5.5 Natural Resources

In past years from the early twentieth century until the mid-1990's, considerable commercial timber harvesting was undertaken in this area by the Abitibi Bowater Company Ltd., for use at their Thunder Bay pulp mill. The timber harvested was primarily red and white pine. Areas on the property that were untouched by this earlier activity have stands of mature pines over 100 years old with minimal secondary growth. In low lying regions alders, willows and jackpine predominate. Other areas where there is a history of logging and/or forest fires, contain stands of poplar, birch, maple, and widespread areas of dense undergrowth.

Wildlife in this area includes white tail deer, moose, black bears, beavers, otters, martens, mink, foxes, wolves, raccoons, skunks, squirrels, chipmunks and field mice. A wide variety of bird species exists in this area, including, ravens, seagulls, pigeons, robins, ducks, Canada Geese, cranes, loons, mourning doves, and blue jays.

Other natural resources in this immediate area include sand and gravel which has been produced from a quarry on the west side of Mt. Edna. It is reported that road metal for highway and rail construction was obtained from pits excavated into the diabase mesas in this area.

5.6 Corporate Social Responsibility

Canada Iron, Inc. (CII) and its consultants, employees and agents are committed to following the Corporate Social Responsibility (CSR) guidelines as has been set forth by the Prospectors and Developers Association of Canada. This would include the utmost courtesy and professionalism when dealing with landholders, local residents, government employees, and to keep all concerned parties appraised at all times of activities undertaken or to be undertaken by CII on its ground. Where it is deemed necessary advance meetings with affected stakeholders will be held at a venue of most convenience to them. Any activities that will affect the environment, surface rights holders, and First Nations will not be undertaken until all the required permits/permissions have been obtained and the proposed activities have been approved in advance.
6.0 EXPLORATION HISTORY

The area described by this report has a long history of exploration for silver, gold, base metals and iron, dating back more than 100 years. Local residents report that numerous pits, and trenches by silver prospectors in the period from 1880 to 1910 exist around the base of Mts Edna and Marny, but the dense secondary growth prevented locating these in the time allotted for the initial site visit. No records of this early work were found in the assessment files, and based on a report done in Strange Township in 1988 by Ken Germundson for Bel ore Mines Ltd., on a site visit to locate silver showings in some of the older historical workings failed to locate any silver showings and only located small, isolated occurrences of amethyst.

The first exploration for iron in this area is a limited drilling program in 1924 in Strange Township, but no records of this work were located in the assessment files in Thunder Bay.

In 1952, L.K. Johnson Explorations Ltd. drilled one 329 foot hole, part of an eight hole regional drilling program, for which no record has been found to date. A detail of this drilling program is show on pages 46 and 47 of A.M Goodwin’s 1960 Report. In 1960, Flintrock Mines undertook a seven hole, 2010 foot program and in 1962, they undertook another 6 hole, 2,000 foot program. Reported resources based on the two drilling programs were 270 million tons averaging 26.29% contained in an area of 6,000 by 1,500 feet to a depth of 30 feet. (Shklanka, 1968, OGS, MRC #11) Samples obtained from the NW side of Divide Ridge assayed 34.1 and 33.9% Fe at -200 M, with a 30.2 and a 35% weight recovery.

From 1962 to the present time, no further exploration work was undertaken on this property.

These reported “resources” are historic in nature and they do not conform to current NI43-101 standards and should therefore not be relied upon

6.1 Past Production

This section does not apply to this report.

6.2 Previous Exploration and Drilling

No other drilling was undertaken, other than the two Flintrock Mines drilling programs of 1960 and 1962, mentioned above. Figure 6-1 on the next page is an overlay illustration of the historic Flintrock drilling in 1960 & 1962.
7.0 GEOLOGICAL SETTING

7.1 Regional Geology

The geology of Jean Township was described and mapped by AM. Goodwin (1960). Unless otherwise noted, the information provided in this section is from this source. All of the consolidated rocks in this area are of Precambrian age.
The Property lies in the western portion of the Wawa Subprovince, an Archean granite-greenstone gneiss terrain ranging between 2.6 and 2.8 Ga. (Jackson and Fyon, 1991) which is part of the Superior Province of the Canadian Shield. Unconformably overlying this Archean terrain is the paleoproterozoic Anikimie series of sediments containing the Gunflint Formation, a thick series of iron formation, chert and argillite, which is in a conformable contact with the overlying Rove shales and argillites. Intruding into the Rove Formation is the Keeweenawan diabase in the form of dikes and sills.

TABLE 7-1 - TABLE OF FORMATIONS

<table>
<thead>
<tr>
<th>CENOZOIC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pleistocene and Recent</td>
</tr>
<tr>
<td>Till, sand, gravel, and clay</td>
</tr>
<tr>
<td>Unconformity</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>PRECAMBRIAN</th>
</tr>
</thead>
<tbody>
<tr>
<td>Keeweenawan</td>
</tr>
<tr>
<td>Diabase and related rocks</td>
</tr>
<tr>
<td>Intrusive Contact</td>
</tr>
<tr>
<td>Animikie</td>
</tr>
<tr>
<td>Rove Formation</td>
</tr>
<tr>
<td>Gunflint Iron Formation</td>
</tr>
<tr>
<td>Unconformity</td>
</tr>
<tr>
<td>Algoman Type (Archean)</td>
</tr>
<tr>
<td>Granite, granite gneiss, with inclusions of</td>
</tr>
<tr>
<td>chlorite and mica schist (may contain some</td>
</tr>
<tr>
<td>greenstone components)</td>
</tr>
</tbody>
</table>

The following is a brief description of the rock types as they were observed in the field.

The Algoman granite is described by A.M. Goodwin in his 1960 report. This rock type was observed along the north bank of the Whitefish River. At the location observed this granite was pale pink on a weathered surface, equigranular, and medium grained. Occasional minor clots and inclusions of chlorite schist were observed and the granite appeared mostly unaltered and fresh appearing.

Animikie Series: Resting unconformably upon the granite is the Lower Gunflint formation which consists of a basal conglomerate, a lower algal chert, lower shale, and a lower taconite. In portions of the
exposed Gunflint to the north towards and around Kakabeka Falls the Lower Gunflint is well exposed in the lower areas of the Kaministikwia River. In such areas the entire portion of the Lower Gunflint is well exposed. The Lower Taconite is thinner around Kakabeka Falls, and it is here where the Middle Gunflint Formation can be found, forming the face of Kakabeka Falls. This middle section is a thick sequence of argillite-tuff, and in this area is thick enough to displace both the upper and lower sections of the Gunflint, somewhat, indicating a different depositional environment compared to the other areas of the Gunflint in locations further south and west. The Upper Gunflint Formation is composed of from lower to upper, the Upper Algal Chert, the Upper Jasper, the Upper Shale, the Upper Shale and the Upper Taconite. A Upper Limestone unit was noted in L.K. Johnson’s hole number 1 of their 1952 drilling program, in the Mink Mountain area. (A.M. Goodwin, 1960, page 46).

In an area on the west side of Mt. Edna, Mt. Marny and around Mink Mountain, west of the claims, are exposures of Rove Argillite. These are black in colour, friable, and often contain vugs filled with quartz and calcite. Quartz-carbonate veining can be found around some of these areas, as well as weak to moderate gossan, especially near Mt. Marny.

The Keewanawan diabase intrudes the Animikie sediments most often as gently dipping, sills up to 100 m thick capping the Animikie Gunflint. This diabase is dark grey to black, medium grained and usually exhibits weak to moderate magnetism. Where the diabase has been observed in contact with the Gunflint taconite beds, the magnetite content is markedly higher and a chill margin can be observed in the diabase. Pieces of this diabase where it is in contact with the Gunflint taconite contain more magnetite than the usual diabase.

The structural geology of this area is relatively simple, with the Animikie sedimentary rocks resting on a platform of mostly granitic rocks of low relief. The average dip of the sediments is 5 degrees to the southeast, throughout this area. There is some local vertical displacement caused by normal gravity faults, one set trending N70° E, and the other one trending N-S. Where faults transect the Gunflint there is localized, intense folding and at Mink Mountain Gill, 1924 noted extreme brecciation in the area of Mink Mountain caused by this faulting. In the SW portion of the Gunflint near to the original type.
locality on Hunter Island in Quetico Provincial Park, Parsons, (1916) illustrates with photos and detailed descriptions, what are most likely strongly faulted and folded Gunflint iron formation beds, which are the result of considerable faulting. At the time of Parson’s report, the Gunflint as well as the American side of the Gunflint (Then known as the “Vermilion Range”), were included as part of the Keewatin series of rocks. The age relationships of the rocks in this area were poorly understood at this time.
Table 7-1 Geology Legend

George C. Sharpe, Global Geological Services Ltd. 412-619 Saskatchewan Cr. W. Saskatoon, SK S7M 0A5
7.2 Local and Property Geology
The map shown here covers the area of the claims covered by this report and within the property can be observed all the rock types previously described. The best exposures of the Gunflint have been found around Divide Ridge, and Mt. Edna. In the location where the bulk sample was taken, careful attention was paid to the detailed lithology within the Gunflint, as there is in this location a 35 m high vertical section of the Upper Gunflint exposed. Other large exposures of the Upper Gunflint were observed around the north side of Mt. Edna, and along some of the roads and trails on the east side of Divide Ridge. Where there was reasonable access, these were examined and sampled. Samples were obtained in some of the lower areas of the Lower Gunflint between Mt.Edna/Divide Ridge area and the Whitefish River. Along the west access trail, north of Mt. Edna, some localized quartz-carbonate vein occurrences were examined and sampled. The area north of the north branch of the Whitefish River, was not reached due to washed out bridges. It does appear that the mapping done by A.M. Goodwin is quite accurate in the area of the claims, and the Gunflint beds do appear to thin out and end in the area of the south branch of the Whitefish River, as outcrops of basal conglomerate exposures and the underlying granite occur here. The north boundary of the Gunflint Formation trends at N 30° E.

Other than the iron formation, there does not appear to be any other mineral commodities present here, with the exception of previously reported small amethyst occurrences.

7.3 Geophysics
The following is a brief overview of this author's interpretation of the airborne geophysical survey done in 2010 by Geotech Ltd. The strong magnetic highs covering the south area of the property coincide very closely with the diabase mesas that form the tops of Mts Marny and Edna, as well as Divide Ridge. The Gunflint that is exposed beneath these mesas, contains a thick section of magnetite rich beds that upon examination range from strongly magnetic just below the upper contact, to moderately magnetic, tens of metres below the upper contact of the diabase. The two very strong east-west EM conductors on Mt. Marny that coincide with a strong magnetic “bulls eye”, may represent some type of mineralization in addition to the iron formation. To the north of this conductor along the trail that passes just north of Mt. Marny extensive areas of weakly gossanized Rove argillite. This could be indicative of a more robust
type mineralization at depth below Mt. Marny. The magnetic lows adjacent to the strong highs may represent the Gunflint horizons where hematite-carbonate-jasper-greenalite predominate.

The target anomalies picked out by the author, based upon his interpretation of the airborne geophysics are described below.

Anomaly “A”: Trending east-west in a curvilinear fashion, and flanking the north side of Mt. Marny, this anomaly is the strongest magnetic and EM response of the entire airborne survey and it lies just within and to the east of a roughly circular magnetic “bulls eye”, that is clearly indicative of a large quantity of magnetite. To the south of this anomaly, and within an area of low magnetic intensity, is a short NE trending EM response, which may or may not be related to the main conductor to the north. Surface geological indications are that both of these anomaly trends coincide with exposures of the Rove Formation argillite along the north and south sides of Mt. Marny, which is well known to host most of the silver bearing vein systems of the area. Samples taken near this anomaly, however, did not indicate any values of silver, or any other metal for that matter, so the only means to determine with certainty the cause of this coinciding magnetic and EM high would by a drill hole from the north, collared on the road in the north side of Mt. Marny. A curious feature of this area, however is the large, angular boulders that are found just west of Mt. Marny, that were noted by A.M. Goodwin in his 1960 report, and seen by this author. These boulders were rusty weathering and contained what appear to be football sized concretions of specular hematite within them. As they do not match any of the in-place rock types of this area at all, it is uncertain if these boulders are from the immediate area, however, given their angular nature they were not transported overly far. An area of outcrop containing this material would most likely account for the cause of a coincident magnetic and EM high.

Anomaly “B”: This is a strong northeasterly trending magnetic high that represents the magnetite rich Gunflint formation that underlies Mt. Edna and it was the main target of the Gunflint 1960 and 1962 drilling programs.
Anomaly “C”: This is another northeasterly trending magnetic high that flanks the east side of the main N-S township line road, along the Jean/Strange Township boundary, from which the bulk sample was obtained. The high magnetite content of the Gunflint at this location, readily accounts for this magnetic high.

Anomaly “D”: This is another strong magnetic response that is indicative of magnetite rich Upper Gunflint formation, on Divide Ridge East, just off the claims, and this was confirmed with the observation of magnetite rich outcrops of Gunflint along road cuts in this area.

Anomaly “E”: At this location was found flat lying outcrops of the diabase, which was slightly magnetic. It is possible that a section of magnetite bearing Gunflint would be under this location, but the only means of confirming this would be to drill here.

Anomaly “F”: Located just to the northeast of the claim block, this is a weak EM response with a low grade magnetic response in an area where exposures of the Lower Gunflint are reported. This area was not reached by the author during his site visit; however, Mr. David Kalik did get to this area and did observe some small outcrops of the iron formation in this area.
8.0 DEPOSIT TYPES

The primary deposit here is a Superior Type Banded Iron Formation of Paleoproterozoic age, known as the Gunflint Iron Formation and widely believed to be the eastern extension of the Biwabik Formation of the Vermilion Range in Minnesota, from which iron has been commercially extracted since around 1880. Guilbert and Park (1986, pp 603-629) provide a detailed description of banded iron formation, using illustrations from Ontario and Minnesota. Both the older Algoma Type Oxide Facies and the Superior...
Type are described in detail, along with various theories as to their origin. Gross, G.A., (1962, pp. 91 and 91) these pages are reproduced as follows:

"Superior Type"

This type of iron-formation is characteristically thin-banded cherty rock with iron-rich layers that are typical of the various sedimentary facies. Granules and oolites composed of both chert and iron minerals are a typical textural feature and the rocks are practically free of clastic material, except in the transitional border zones or in distinct, well-defined members within the formation. The alternate or rhythmic banding of iron-rich and iron-poor cherty layers, which normally range in thickness from a fraction of an inch to several feet, is a prominent feature. Individual layers may pinch and swell to give a wavy banded member or the uniformity of the layering may be disrupted by nodular or stubby lenses of chert and jasper, by rare occurrences of crossbedding, or by cherty forms resembling in "shape and structure "Collenia" or "Cryptozoan" growths in limestones formed by algae colonies. Tension, syneresis, and desiccation cracks are present in some chert granules and nodules, and stylolites are common. The textures and sedimentary features of this type of formation are remarkably alike in detail wherever examined although certain sedimentary features are more prominent in some formations.

The close association of this type of formation with quartzite and black carbonaceous shale, and commonly also with conglomerate, dolomite, massive chert, chert breccia, and argillite, are recognized throughout the world. Volcanic rocks, either tuffs or flows, are not always directly associated with Superior-type iron-formation but they are nearly always present somewhere in the succession. The sequence dolomite, quartzite, red and black ferruginous shale, iron-formation, black shale, and argillite, in order from bottom to top, is so common on all continents that some have been led to believe that it is invariable. However, stratigraphic studies have shown that, although there is a persistent association of these sedimentary rocks, the succession may differ in local areas; it does so for example in the Labrador geosyncline. Quartzite and red to black shale generally lies below the iron-formation and black carbonaceous shale above it, but the presence of other sedimentary rocks and their position in the stratigraphic succession may vary from place to place, even in a single range or rock belt.

Continuous layers of the Superior-type iron-formations commonly extend for hundreds of miles along the margin of a geosynclinal basin. The formations may thicken and thin from a few tens of feet to several hundred feet and occasionally to over 1,000 feet but their persistence is truly remarkable. The rock successions in which the iron-formations occur usually lie unconformably above highly metamorphosed gneisses, granites, or amphibolites, and the iron-formations are, as a rule, in the lower part of the succession. In some places they are separated from the basement rocks by only a few feet of quartzite, grit, and shale, or, as in certain parts of the Gunflint Range, they lie directly on the basement rocks; in most areas however they occur at least some hundreds of feet above the base.
The Superior-type iron-formations are present in late Precambrian rocks in nearly all parts of the world and also in some early Palaeozoic rocks (O'Rourke, 1961). They apparently formed in fairly shallow water on continental shelves or along the margins of continental shelves and miogeosynclinal basins, and consist of sediments derived from the adjacent landmass and also some material from the volcanic belts within the basin. It is still uncertain whether the iron and silica in this type of iron-formation were derived from a land or a volcanic source.

This type of siliceous formation is the protore or host rock for the rich hematite-goethite orebodies of the Lake Superior region, of Quebec-Labrador, and for many other major iron deposits of the world.”

For this area, this iron formation is definitely fits the above description of Gross’ chemically derived Superior Type of Iron Formation, that exhibits little or no alteration. The Gunflint iron formation is considered a continuation of the Biwabik Formation of Minnesota, by virtue of its age and near identical stratigraphy. The Gunflint is very extensive throughout this area, beginning in NE Minnesota as it emerges from underneath the younger Duluth Gabbro complex, at Gunflint Lake, to continue all the way northeast to pass underneath the diabase cap of the Sibley Peninsula, east of the City of Thunder Bay. The Gunflint is mineralogically complex, and exhibits numerous lateral changes in the thickness of the various beds and facies horizons. Much of these changes can be best observed in the exposures of the Gunflint along the Kaministikwia River.

9.0 MINERALIZATION
This iron formation is chemically derived, and is a typical taconite situation with an average grade in the 25 to 30% range Fe. It is comparable to grades of the current producing mines in Minnesota and with past producing mines in Ontario such as the Sherman Mine at Temagami, the Moose Mountain Mine at Capreol, and the Griffith Mine near Red Lake. Field observations and reports by government and industry geologists clearly show that the contacts between magnetite and silica in the Gunflint are sharp and well defined. The historic grades obtained in the drilling done by Flintrock Mines in 1960 and 1962, show intervals of grades within the 25 to 30% range Fe over intervals exceeding 100 m, and these appear to be the magnetite rich layers of the Upper Gunflint. Historical assays of the jasper, greenalite, and chert layers in the Gunflint show grades in the >20% range as well. The amount and thickness of the material
most amenable to grinding and concentration would be determined by the thickness and availability of the magnetite rich layers, as opposed to the more hematite and silica rich layers. Prior drilling indicates a wide area of this material is in place and it will take new drilling and sampling to define a 43-101 compliant resource.

10.0 EXPLORATION
The author is not aware of any recent exploration activity completed on the property by the current claim holder, however there are newly acquired adjacent claims to the west that may indicate current on-going work or commencement of exploration work in the near future.

11.0 DRILLING
There is no record of any drilling having been done on this property since the last drilling done by Flintrock Mines in 1962.

12.0 SAMPLING METHOD AND APPROACH
This section does not apply to this report.

13.0 SAMPLE PREPARATION, ANALYSES AND SECURITY
This section does not apply to this report.

14.0 DATA VERIFICATION
During the period of the field site visit by this author and his field assistant, Mr. David Kalik, all readily accessible portions of the property were visited. Priority was given to known exposures of the Gunflint Taconite outcrops, in particular the one at the Divide Ridge location, where the bulk sample was obtained. Secondary priority was then given to six identified targets labeled “A” to “F”, from the geophysical map supplied by Mr. Bob Lo, P.Eng., a consulting geophysicist and an advisor to Iron, Inc. Each of these sites was visited and all outcrops in the area were examined. The last target “E”, up in the far northeast of the property, north of the Whitefish River, was not reached during the time of the author’s visit to the property, but after the author’s departure, David Kalik was able to reach this last target and was able to
observe the outcrops in this area. These anomalies are described in detail in the geophysics section of this report. Other field activities included visits to adjacent areas to check for additional routes of access to the property as well as locating other outcrops of the Gunflint Taconites on areas adjacent to the property described in this report.

During the period of the field site visit by this author and his field assistant, Mr. David Kalik, all readily accessible portions of the property were visited. Priority was given to known exposures of the Gunflint Taconite outcrops, in particular the one at the Divide Ridge location, where the bulk sample was obtained. Secondary priority was then given to six identified targets labeled “A” to “F”, from the geophysical map supplied by Mr. Bob Lo, P.Eng., a consulting geophysicist and an advisor to Canada Iron, Inc. Each of these sites was visited and all outcrops in the area were examined. The last target “E”, up in the far northeast of the property, north of the Whitefish River, was not reached during the time of the author’s visit to the property, but after the author’s departure, David Kalik was able to reach this last target and was able to observe the outcrops in this area. These anomalies are described in detail in the geophysics section of this report. Other field activities included visits to adjacent areas to check for additional routes of access to the property as well as locating other outcrops of the Gunflint Taconites on areas adjacent to the property described in this report. A total of 13 samples were obtained, the first of which was the bulk sample that was collected into 18 rice bags, and this bulk sample is detailed in Appendix 2. Appendix 3 is the description of the grab samples collected throughout the property, and the assays obtained. Appendix 4 is the specific gravity results from the bulk sample.

15.0 ADJACENT PROPERTIES

As mentioned previously, there is new staking and possible current exploration in progress to the west of the CII Claims that are held by Magma Metals, Inc., of Perth, Australia. To the east two of the claims are mineral rights patents that have been maintained since the time of the silver mining activity in the district. Between July 17 and 20, Mr. Dave Kalik has staked a new 16 unit claim #4257213 to cover open ground that covered part of Mt. Marny, and a four unit claim #4257214, to cover an area of exposed Gunflint taconite in the Divide Ridge area, occupying a previous area of open ground on Divide Ridge East. To the southeast in Fraleigh Township, there is another group of claims held by Mr. Ken Kukkee, under the name “Suomi Fe Prospect”, for which Canada Iron has an option on. Other activity in the general area
has included the former producing Vale Inco Shebandowan Ni-Cu-PGE mine, work done on Algoma Type Oxide Facies Iron Formation in Hagey and Conacher Townships, and current ongoing drilling and ground geophysics currently underway by Vale Inco, on their Ni-Cu property in Devon and Pardee Townships to the southeast.

16.0 MINERAL RESOURCE ESTIMATE

No defined mineral resource that is compliant with 43-101, currently exists on this property.

17.0 OTHER RELEVANT DATA AND INFORMATION

All other relevant information and data have been described and reported in this Report. This author is not aware of any other relevant data and information that would be pertinent to the evaluation of the Property that is not already contained in this Report, as available in the public domain and/or provided to the author by CII and/or any of its agents.

18.0 INTERPRETATION AND CONCLUSIONS

Within the area of the Gunflint Property there has been confirmed the presence of Gunflint “Taconite” grade iron formation over an area of several square kilometres, and this formation covers a total area encompassing several townships in area from within Quetico Provincial Park up to and beyond the City of Thunder Bay. The vast majority of the current available iron resources remaining to be exploited world-wide are of the taconite grade, that being in the order of 25-30% Fe. Much of the current, richer reserves of the “direct shipping” ore of >50% Fe grade have either been mined out, or are in remote locations far from the nearest seaport. For this property, it is one of the closest if not the closest potential taconite grade to a shipping port (Thunder Bay). The CN Rail Company has maintained its title to the former track bed that passes through this area and reserves the right to re-lay the tracks. All the claims covered by this report are recorded 100% in the name of Mr. Ken Kukkee, with the exception of the new staking done by Mr. David Kalik, and these claims will be transferred to Canada Iron, Inc. This property can be easily covered with grid lines and surface magnetometer surveys with the addition of Time Domain EM conducted in the Mt. Marny area. Although the steep topography may present some
challenges, it does appear that the main conductive zones are on or below the top of Mt.Marny. From the results of this survey, drill holes can be better targeted. These descriptions, which follow, here, by R.Shklanka (1968) very aptly describe the nature, extent and grade of the Guflint in this area. The Jean Township description is of the main body of the Gunflint Iron Formation that is on the claims described in this report.

JEAN TOWNSHIP (R.Shklanka (1968, p.386)

Gunflint Range Occurrences
(See McIntyre Township)
Mink Mountain Prospect
(See Hardwick Township)
Mount Edna Prospect

Class: Iron formation, Superior type, oxide facies.
Location; 1.5 miles N of Whitefish Lake including Mount Edna and W part of Divide Ridge, Jean and Strange townships. Reference: ODM map 1960i.

Description: Gunflint iron formation bearing magnetite and hematite dips gently to the S and is overlain by up to 75 feet of Keweenawan diabase.

Economic Features: Estimated that 270 million tons averaging 26.29% Fe are contained in an area 6000 by 1500 feet to a depth of 300 feet.
Samples from the NW face of Divide Ridge assayed 34.1% and 33.9% Fe and gave concentrates of 54.0 and 50.9% Fe at -200M with 30.2 and 35.2% weight recovery.

History: 1952 1 d.d. hole for 329 feet by L.K. Johnson Explorations.
1960 7 d.d. holes for 2,010 feet by Flint Rock Mines Ltd.

References: ODM maps 2065, 1960i.
Assessment files, Port Arthur.

HARDWICK TOWNSHIP (R.Shklanka (1968, p.391)

Mink Mountain Prospect
Class: Iron formation, Superior type, oxide facies.

Location: Between Sandstone Lake and Sun Mountain, NW part of Hardwick and SW part Jean townships as well as adjacent area to the west. Reference: OEM, 1960, Volume LXIX, pt.7, p. 47.

Description: Gently dipping (3 to 5 degrees) Gunflint iron formation.

Economic Features: In the Upper Gunflint a magnetite taconite zone 50 to 60 feet thick 300 to 400 feet wide and 3000 feet long was outlined with an average of 28 to 35% Fe.

Beds up to 1.5 feet thick were intersected in the Lower Gunflint containing 50 to 60% Fe as hematite.

A sample from the magnetite taconite assaying 33.9% Fe gave a concentrate of 56.8% Fe at -200M with a 40.9% weight recovery.

Samples of magnetite taconite from the Lower Gunflint assayed between 22.2 and 26.9% Fe and gave concentrates at -200M between 54.5 and 62.3% Fe with 11.5 to 15.1% weight recovery.

References: ODM maps 2065, 19601.

ODM, 1960, Volume LXIX, pt. 7,
Assessment files, Port Arthur.
CII has the opportunity to qualify these historic resources in an NI43-101 compliant Mineral Resource estimate and it is this author’s professional opinion that there exists excellent potential to add additional resources through further exploration work (diamond drilling, geophysical survey) on the Property. The current Property owner and this author, through research of published and unpublished data has identified further strike of iron formation which is understood to not have been included in the historical resource estimations as are shown for the Mt. Edna.

It is the author’s professional opinion that the Property is of merit as an intermediate-stage exploration project for an Animikie, Gunflint-type of Iron ore deposit and that further work is warranted on this Property.

Figure 18-1: Extent of the Gunflint Range in Ontario (Yellow) From GSC Map 276A
19.0 RECOMMENDATIONS

To advance the Property, an estimated budget of CAD $626,450 is recommended under the program presented in Table 19-1. Dollar values as presented are general estimates and may change going forward as increased level of details in program planning develop and initial results are interpreted.

It is felt that the ground geophysical surveys should be undertaken first, before any drill holes are spotted, as it is the more magnetite rich portions of the Gunflint that should be targeted first and foremost.
This budget table represents the minimum requirements to bring in a resource estimate that will be NI 43-101 compliant for this property. It is anticipated that as drilling progresses that additional funds would be made available to increase the 3,000 metres allocated for the drill program. Depending upon location, the depth of the drill holes will vary between 200 to 300 metres each, allowing for around 12 holes. Based upon historical drill records, the granite basement should not be deeper than 200 m, and some of the holes may be completed at depths of <200 metres.

19.1 Cost Estimate

<table>
<thead>
<tr>
<th>ITEM</th>
<th>UNITS</th>
<th>COST/UNIT</th>
<th>TOTAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data Compilation/integration & Modelling</td>
<td>1</td>
<td>$25,000.00</td>
<td>$25,000.00</td>
</tr>
<tr>
<td>Reconnaissance prospecting</td>
<td>10 days</td>
<td>$12,000.00</td>
<td>$12,000.00</td>
</tr>
<tr>
<td>Surface samples (assays/geochemistry)</td>
<td>100</td>
<td>$75.00</td>
<td>$7,500.00</td>
</tr>
<tr>
<td>Magnetometer Survey (selected areas)</td>
<td>100 line Km</td>
<td>$200.00</td>
<td>$20,000.00</td>
</tr>
<tr>
<td>Diamond Drilling (all in)</td>
<td>3,000 m</td>
<td>$150.00</td>
<td>$450,000.00</td>
</tr>
<tr>
<td>Reports</td>
<td>1</td>
<td>$30,000.00</td>
<td>$30,000.00</td>
</tr>
<tr>
<td>Operating Costs</td>
<td>1</td>
<td>$25,000.00</td>
<td>$25,000.00</td>
</tr>
<tr>
<td>Subtotal:</td>
<td></td>
<td>Subtotal</td>
<td>$569,500.00</td>
</tr>
<tr>
<td>10% Contingency:</td>
<td></td>
<td></td>
<td>$56,950.00</td>
</tr>
<tr>
<td>TOTAL</td>
<td></td>
<td></td>
<td>$626,450.00</td>
</tr>
</tbody>
</table>
20.0 SELECTED REFERENCES

Flintrock Mines, Ltd. 1960 Prospectus, Ministry of Northern Development and Mines and Forestry of Ontario, Mining Assessment File #52B08SW0001

Handley, Gary, President, Canada Iron, Inc., personal communication

Kukkee, Kenneth, P.Geo, Consultant 2011, personal communication

Morin, James A. 1973: Geology of the Lower Shebandowan Lake Area, District of Thunder Bay Ontario Department of Mines, 45 p with Map 2167

Technical Report, Gunflint Property, Ontario, Canada Iron Inc.

Shklanka, Roman 1970: Geology of the Bruce Lake Area, Geological Report 82 Ontario Department of Mines, 27 p with Map 2195

Sutcliffe, R.H.: 1991: Proterozoic geology of the Lake Superior area; in Geology of Ontario, Special Volume 4, part 1p 627-681

APPENDIX 1

CERTIFICATE OF QUALIFICATIONS, SIGNATURE PAGE,
CONSENT OF QUALIFIED PERSON
21.0 CERTIFICATE OF QUALIFIED PERSON

I, George C. Sharpe, P.Geo, (Limited), residing at 318-2125 Osler Street, Regina, Saskatchewan, do hereby certify that:

1. I am a geological consultant working for Global Geological Services Ltd., which is engaged as the principal geological consultant for Canada Iron Incorporated.

3. I am a graduate of the Sault College of Applied Arts and Technology, Sault Ste Marie, Ontario, (1974) in the Geological Technician Program. I am a geological consultant currently licenced with the Association of Professional Engineers and Geoscientists of Saskatchewan, (APEGS), as a Limited Member, License #09697, with Permission to Consult, and as well I am a Professional Geoscientist (Limited) with the Association of Professional Geoscientists of Ontario, (APGO), License #1639.

I have read the definition of “Qualified Person” as set out in National Instrument 43-101 (NI 43-101) and certify by reason of my education, affiliation with a professional association (as defined in NI 43-101) and past relevant work experience, I fulfill the requirements to be a “Qualified Person” (within the defined limited scope of my professional practice) for the purposes of NI 43-101.

My relevant experience for the purposes of the Technical Report is:

- Senior Geologist Titan Uranium Inc.........................2006-2007
- Senior Geologist, Bear Lake Gold............................2007-2008
- Senior Project Geologist, CCIC............................2008-2010
- Chief Geologist, Global Geological Consultants..........2010-present

4. I have visited the Gunflint Iron Property, from July 4 to July 14, 2011.

5. I am responsible for authoring all the sections of this report.

6. I am independent of the Issuer applying the test in Section 1.4 of NI 43-101.
7. My only prior involvement with the Gunflint Iron Property is the field site visit described in (4) above.

8. I have read NI 43-101 and Form 43-101F1 and this report has been prepared in compliance therewith.

9. As of the date of this certificate, to the best of my knowledge, information and belief, the Technical Report contains all scientific and technical information that is required to be disclosed to make the Technical Report not misleading.

Effective Date: August 10, 2011
Signed Date: August 10, 2011
Dated August 10, 2011:

Originally signed by

George C. Sharpe, P. Geo. (Limited)
CONSENT OF QUALIFIED PERSON

Canada Iron, Inc.
1500 – 330 Bay Street
Toronto, Ontario M5H 3S8

Alberta Securities Commission
4th Floor, 300 5th Avenue SW
Calgary, AB T2P 3C4

British Colombia Securities Commission
5th Floor, 701 West Georgia Street
Vancouver, BC V7Y 1K8

TSX Venture Exchange
650 West Georgia Street, Suite 2700
Vancouver, BC V6B 4N9

1. I certify that I am the author of the report titled “NI-43-101 Technical Report on the Gunflint Iron Property, Thunder Bay Mining District, Ontario” dated August 10, 2011 (the “Technical Report”) which is referred to in, and portions of which are reproduced in, the news release of Canada Iron Inc. (the “Company”) dated August 10, 2011.

2. I confirm I have read the Press Release and that the Press Release fairly and accurately represents information in the technical Report.

4. I consent to the use of my name “George C. Sharpe” in the Disclosure.

DATED: August 10, 2011

George C. Sharpe, Global Geological Services Ltd. 412-619 Saskatchewan Cr. W. Saskatoon, SK S7M 0A5
APPENDIX 2

SAMPLE DESCRIPTIONS AND ANALYTICAL RESULTS FROM SITE VISIT
(Includes Specific Gravity Results for the bulk sample)
DESCRIPTION

Upper Gunflint Taconite bulk sample along main access trail, as selected by Ken K.

Gossan zone with stringer veins, N side of Mt. Edna

Gossanized outcrop along E-W trail N of Mt. Edna

Upper Gunflint Taconite outcrop above valley, Divide Ridge area

Gossanized diabase, north side of Mt. Edna

Grab of Upper Gunflint Taconite Mt. Marry area

Large outcrop of rusty weathering diabase at its lower contact, Mt. Marry

Gossan zone just north of Target "A"

Quartz-carbonate veins in Rove Argillite

Upper Gunflint shaly Taconite

Upper Gunflint, shaly Taconite with Goethite coating

Sample # 23622 was taken west of the property between Mt. Marry & Mink

Lower? Gunflint Taconite, N of the S branch, Whitefish River

Lower? Gunflint Taconite, along a N-S trail, S of the S branch, Whitefish River

Quartz-carbonate veins in Rove Argillite

He rich Bwwabk Fm Taconite from pile at Hibbing MN.

<table>
<thead>
<tr>
<th>SAMPLE #</th>
<th>UTM N</th>
<th>UTM E</th>
<th>ELEV</th>
<th>TYPE</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>23612</td>
<td>5348698</td>
<td>720452</td>
<td>469</td>
<td>BULK</td>
<td>Upper Gunflint Taconite bulk sample along main access trail, as selected by Ken K.</td>
</tr>
<tr>
<td>23613</td>
<td>5348791</td>
<td>720491</td>
<td>481</td>
<td>GRAB</td>
<td>Gossan zone with stringer veins, N side of Mt. Edna</td>
</tr>
<tr>
<td>23614</td>
<td>5349059</td>
<td>717540</td>
<td>489</td>
<td>GRAB</td>
<td>Gossanized outcrop along E-W trail N of Mt. Edna</td>
</tr>
<tr>
<td>23615</td>
<td>5348333</td>
<td>717597</td>
<td>508</td>
<td>GRAB</td>
<td>Upper Gunflint Taconite outcrop above valley, Divide Ridge area</td>
</tr>
<tr>
<td>23616</td>
<td>5348827</td>
<td>719039</td>
<td>488</td>
<td>GRAB</td>
<td>Gossanized diabase, north side of Mt. Edna</td>
</tr>
<tr>
<td>23617</td>
<td>5349003</td>
<td>718861</td>
<td>473</td>
<td>GRAB</td>
<td>Grab of Upper Gunflint Taconite Mt. Marry area</td>
</tr>
<tr>
<td>23618</td>
<td>5349184</td>
<td>718754</td>
<td>483</td>
<td>GRAB</td>
<td>Large outcrop of rusty weathering diabase at its lower contact, Mt. Marry</td>
</tr>
<tr>
<td>23619</td>
<td>5349269</td>
<td>718163</td>
<td>500</td>
<td>GRAB</td>
<td>Gossan zone just north of Target "A"</td>
</tr>
<tr>
<td>23620</td>
<td>5349648</td>
<td>718835</td>
<td>496</td>
<td>GRAB</td>
<td>Quartz-carbonate veins in Rove Argillite</td>
</tr>
<tr>
<td>23621</td>
<td>5350041</td>
<td>718231</td>
<td>497</td>
<td>GRAB</td>
<td>Upper Gunflint shaly Taconite</td>
</tr>
<tr>
<td>23622</td>
<td>5347796</td>
<td>715158</td>
<td>488</td>
<td>GRAB</td>
<td>Upper Gunflint, shaly Taconite with Goethite coating</td>
</tr>
<tr>
<td>23623</td>
<td>5350264</td>
<td>720361</td>
<td>461</td>
<td>GRAB</td>
<td>Sample # 23622 was taken west of the property between Mt. Marry & Mink</td>
</tr>
<tr>
<td>23624</td>
<td>5348825</td>
<td>721043</td>
<td>470</td>
<td>GRAB</td>
<td>Lower? Gunflint Taconite, N of the S branch, Whitefish River</td>
</tr>
<tr>
<td>23625</td>
<td>5349276</td>
<td>720321</td>
<td>469</td>
<td>GRAB</td>
<td>Lower? Gunflint Taconite, along a N-S trail, S of the S branch, Whitefish River</td>
</tr>
<tr>
<td>23626</td>
<td>5349276</td>
<td>720321</td>
<td>469</td>
<td>GRAB</td>
<td>Quartz-carbonate veins in Rove Argillite</td>
</tr>
</tbody>
</table>

Legend:

- **Ore grade Gunflint Taconite**
- **Sub grade Gunflint Taconite**
- **No Taconite (Other locations of interest)**
- **Bwwabk example from Hibbing, Minnesota**
Gunflint Bulk Sample Results. Each Acc# represents an individual rice bag. 18 rice bags made up the entire bulk sample.

Canada Iron Inc.

Assays,
p.1
Technical Report, Gunflint Property, Ontario, Canada Iron Inc.

Date Created: 11-07-28 03:29:12 PM
Job Number: 201142666
Date Received: 07/14/2011
Number of Samples: 14
Type of Sample: Rock
Date Completed: 07/28/2011
Project ID:

<table>
<thead>
<tr>
<th>Acc #(Lab #)</th>
<th>Client ID</th>
<th>Ag ppm</th>
<th>Al %</th>
<th>As ppm</th>
<th>Ba ppm</th>
<th>Be ppm</th>
<th>Bi ppm</th>
</tr>
</thead>
<tbody>
<tr>
<td>175146</td>
<td>23613</td>
<td><1</td>
<td>3.02</td>
<td><2</td>
<td>80</td>
<td><2</td>
<td>8</td>
</tr>
<tr>
<td>175147</td>
<td>23614</td>
<td>2</td>
<td>2.16</td>
<td><2</td>
<td>62</td>
<td>2</td>
<td>8</td>
</tr>
<tr>
<td>175148</td>
<td>23615</td>
<td>4</td>
<td>2.18</td>
<td>54</td>
<td>45</td>
<td>3</td>
<td>22</td>
</tr>
<tr>
<td>175149</td>
<td>23616</td>
<td><1</td>
<td>2.15</td>
<td><2</td>
<td>66</td>
<td><2</td>
<td>8</td>
</tr>
<tr>
<td>175150</td>
<td>23617</td>
<td>8</td>
<td>2.71</td>
<td>38</td>
<td>86</td>
<td>2</td>
<td>22</td>
</tr>
<tr>
<td>175151</td>
<td>23618</td>
<td><1</td>
<td>2.56</td>
<td>9</td>
<td>54</td>
<td><2</td>
<td>6</td>
</tr>
<tr>
<td>175152</td>
<td>23619</td>
<td>1</td>
<td>1.86</td>
<td><2</td>
<td>34</td>
<td><2</td>
<td>7</td>
</tr>
<tr>
<td>175153</td>
<td>23620</td>
<td>4</td>
<td>1.66</td>
<td>2</td>
<td>29</td>
<td><2</td>
<td>6</td>
</tr>
<tr>
<td>175154</td>
<td>23621</td>
<td>3</td>
<td>1.98</td>
<td><2</td>
<td>39</td>
<td><2</td>
<td>11</td>
</tr>
<tr>
<td>175155</td>
<td>23622</td>
<td>5</td>
<td>1.99</td>
<td>3</td>
<td>118</td>
<td><2</td>
<td>12</td>
</tr>
<tr>
<td>175156</td>
<td>23622</td>
<td>2</td>
<td>2.26</td>
<td><2</td>
<td>119</td>
<td><2</td>
<td>12</td>
</tr>
<tr>
<td>175157</td>
<td>23623</td>
<td>1</td>
<td>1.54</td>
<td>2</td>
<td>125</td>
<td><2</td>
<td>21</td>
</tr>
<tr>
<td>175158</td>
<td>23624</td>
<td>5</td>
<td>2.29</td>
<td><2</td>
<td>82</td>
<td>2</td>
<td>32</td>
</tr>
<tr>
<td>175159</td>
<td>23625</td>
<td><1</td>
<td>2.29</td>
<td>27</td>
<td>63</td>
<td><2</td>
<td>5</td>
</tr>
<tr>
<td>175160</td>
<td>23626</td>
<td>4</td>
<td>0.82</td>
<td>4</td>
<td>84</td>
<td>2</td>
<td>33</td>
</tr>
<tr>
<td>Ca</td>
<td>Cd</td>
<td>Co</td>
<td>Cr</td>
<td>Cu</td>
<td>Fe</td>
<td>K</td>
<td>Li</td>
</tr>
<tr>
<td>----</td>
<td>----</td>
<td>----</td>
<td>----</td>
<td>----</td>
<td>----</td>
<td>----</td>
<td>----</td>
</tr>
<tr>
<td>%</td>
<td>ppm</td>
<td>ppm</td>
<td>ppm</td>
<td>ppm</td>
<td>%</td>
<td>%</td>
<td>ppm</td>
</tr>
<tr>
<td>0.61</td>
<td>10</td>
<td>6</td>
<td>39</td>
<td>5</td>
<td>15.38</td>
<td>0.38</td>
<td><1</td>
</tr>
<tr>
<td>0.82</td>
<td>7</td>
<td>2</td>
<td>15</td>
<td>3</td>
<td>10.48</td>
<td>0.45</td>
<td><1</td>
</tr>
<tr>
<td>2.94</td>
<td>23</td>
<td>5</td>
<td>13</td>
<td>23</td>
<td>35.86</td>
<td>0.39</td>
<td><1</td>
</tr>
<tr>
<td>0.26</td>
<td>7</td>
<td>5</td>
<td>21</td>
<td>2</td>
<td>10.62</td>
<td>0.45</td>
<td><1</td>
</tr>
<tr>
<td>1.86</td>
<td>21</td>
<td>15</td>
<td>27</td>
<td>16</td>
<td>33.04</td>
<td>0.47</td>
<td><1</td>
</tr>
<tr>
<td>0.41</td>
<td>4</td>
<td>7</td>
<td>40</td>
<td>1</td>
<td>6.05</td>
<td>0.55</td>
<td><1</td>
</tr>
<tr>
<td>2.94</td>
<td>8</td>
<td>3</td>
<td>15</td>
<td>2</td>
<td>13.21</td>
<td>0.69</td>
<td><1</td>
</tr>
<tr>
<td>>10</td>
<td>6</td>
<td>2</td>
<td>11</td>
<td>4</td>
<td>9.6</td>
<td>0.53</td>
<td><1</td>
</tr>
<tr>
<td>0.41</td>
<td>10</td>
<td>3</td>
<td>11</td>
<td>6</td>
<td>15.01</td>
<td>0.61</td>
<td><1</td>
</tr>
<tr>
<td>4.54</td>
<td>12</td>
<td>9</td>
<td>22</td>
<td><1</td>
<td>18.63</td>
<td>0.48</td>
<td><1</td>
</tr>
<tr>
<td>4.61</td>
<td>13</td>
<td>9</td>
<td>22</td>
<td><1</td>
<td>19.39</td>
<td>0.46</td>
<td><1</td>
</tr>
<tr>
<td>0.34</td>
<td>17</td>
<td>7</td>
<td>13</td>
<td><1</td>
<td>26.26</td>
<td>0.47</td>
<td><1</td>
</tr>
<tr>
<td>1.87</td>
<td>24</td>
<td>10</td>
<td>20</td>
<td><1</td>
<td>37.1</td>
<td>0.29</td>
<td><1</td>
</tr>
<tr>
<td>0.32</td>
<td>4</td>
<td>3</td>
<td>52</td>
<td>3</td>
<td>5.77</td>
<td>0.35</td>
<td><1</td>
</tr>
<tr>
<td>0.12</td>
<td>26</td>
<td>33</td>
<td>22</td>
<td>10</td>
<td>40.16</td>
<td>0.35</td>
<td><1</td>
</tr>
<tr>
<td>Mg %</td>
<td>Mn ppm</td>
<td>Mo ppm</td>
<td>Ni ppm</td>
<td>P ppm</td>
<td>Pb ppm</td>
<td>Sb ppm</td>
<td>Se ppm</td>
</tr>
<tr>
<td>------</td>
<td>--------</td>
<td>--------</td>
<td>--------</td>
<td>-------</td>
<td>--------</td>
<td>--------</td>
<td>--------</td>
</tr>
<tr>
<td>1.14</td>
<td>981</td>
<td>52</td>
<td>37</td>
<td>407</td>
<td>27</td>
<td>13</td>
<td><5</td>
</tr>
<tr>
<td>0.38</td>
<td>770</td>
<td>42</td>
<td>22</td>
<td>113</td>
<td>19</td>
<td>9</td>
<td><5</td>
</tr>
<tr>
<td>1.83</td>
<td>1169</td>
<td>115</td>
<td>7</td>
<td>500</td>
<td>56</td>
<td>27</td>
<td><5</td>
</tr>
<tr>
<td>0.37</td>
<td>1555</td>
<td>52</td>
<td>34</td>
<td>111</td>
<td>20</td>
<td>12</td>
<td>5</td>
</tr>
<tr>
<td>2.66</td>
<td>3251</td>
<td>93</td>
<td>22</td>
<td>682</td>
<td>49</td>
<td>24</td>
<td><5</td>
</tr>
<tr>
<td>0.34</td>
<td>453</td>
<td>29</td>
<td>48</td>
<td>123</td>
<td>11</td>
<td>7</td>
<td><5</td>
</tr>
<tr>
<td>0.45</td>
<td>1706</td>
<td>50</td>
<td>20</td>
<td><100</td>
<td>18</td>
<td>14</td>
<td><5</td>
</tr>
<tr>
<td>0.41</td>
<td>1041</td>
<td>34</td>
<td>11</td>
<td><100</td>
<td>19</td>
<td>16</td>
<td>6</td>
</tr>
<tr>
<td>0.52</td>
<td>1043</td>
<td>55</td>
<td>15</td>
<td><100</td>
<td>25</td>
<td>16</td>
<td><5</td>
</tr>
<tr>
<td>0.54</td>
<td>1165</td>
<td>72</td>
<td>21</td>
<td>251</td>
<td>32</td>
<td>17</td>
<td><5</td>
</tr>
<tr>
<td>0.56</td>
<td>1178</td>
<td>74</td>
<td>22</td>
<td>256</td>
<td>32</td>
<td>14</td>
<td>5</td>
</tr>
<tr>
<td>0.66</td>
<td>4499</td>
<td>94</td>
<td>16</td>
<td>471</td>
<td>40</td>
<td>18</td>
<td><5</td>
</tr>
<tr>
<td>2.55</td>
<td>2138</td>
<td>114</td>
<td>16</td>
<td>2042</td>
<td>56</td>
<td>27</td>
<td>7</td>
</tr>
<tr>
<td>0.32</td>
<td>370</td>
<td>33</td>
<td>82</td>
<td>102</td>
<td>14</td>
<td>11</td>
<td>5</td>
</tr>
<tr>
<td>0.23</td>
<td>4436</td>
<td>156</td>
<td>18</td>
<td>699</td>
<td>64</td>
<td>34</td>
<td><5</td>
</tr>
</tbody>
</table>
Technical Report, Gunflint Property, Ontario, Canada Iron Inc.

<table>
<thead>
<tr>
<th>Sn(ppm)</th>
<th>Sr(ppm)</th>
<th>Ti(ppm)</th>
<th>Ti(ppm)</th>
<th>V(ppm)</th>
<th>W(ppm)</th>
<th>Y(ppm)</th>
<th>Zn(ppm)</th>
</tr>
</thead>
<tbody>
<tr>
<td><10</td>
<td>77</td>
<td>330</td>
<td>2</td>
<td>21</td>
<td><10</td>
<td>10</td>
<td>26</td>
</tr>
<tr>
<td><10</td>
<td>67</td>
<td>182</td>
<td>5</td>
<td>9</td>
<td><10</td>
<td>7</td>
<td>13</td>
</tr>
<tr>
<td><10</td>
<td>73</td>
<td>259</td>
<td>12</td>
<td>15</td>
<td><10</td>
<td>10</td>
<td>55</td>
</tr>
<tr>
<td><10</td>
<td>52</td>
<td>176</td>
<td><2</td>
<td>13</td>
<td><10</td>
<td>6</td>
<td>17</td>
</tr>
<tr>
<td><10</td>
<td>121</td>
<td>859</td>
<td>2</td>
<td>39</td>
<td><10</td>
<td>15</td>
<td>52</td>
</tr>
<tr>
<td><10</td>
<td>57</td>
<td>196</td>
<td>5</td>
<td>20</td>
<td><10</td>
<td>7</td>
<td>12</td>
</tr>
<tr>
<td><10</td>
<td>62</td>
<td>149</td>
<td><2</td>
<td>7</td>
<td><10</td>
<td>6</td>
<td>17</td>
</tr>
<tr>
<td><10</td>
<td>109</td>
<td>156</td>
<td>7</td>
<td>5</td>
<td><10</td>
<td>8</td>
<td>17</td>
</tr>
<tr>
<td><10</td>
<td>53</td>
<td>155</td>
<td>8</td>
<td>7</td>
<td><10</td>
<td>6</td>
<td>22</td>
</tr>
<tr>
<td><10</td>
<td>256</td>
<td>349</td>
<td>6</td>
<td>13</td>
<td><10</td>
<td>9</td>
<td>27</td>
</tr>
<tr>
<td><10</td>
<td>260</td>
<td>352</td>
<td>21</td>
<td>13</td>
<td><10</td>
<td>9</td>
<td>27</td>
</tr>
<tr>
<td><10</td>
<td>61</td>
<td>229</td>
<td>5</td>
<td>17</td>
<td><10</td>
<td>8</td>
<td>34</td>
</tr>
<tr>
<td><10</td>
<td>107</td>
<td>599</td>
<td>6</td>
<td>28</td>
<td><10</td>
<td>20</td>
<td>60</td>
</tr>
<tr>
<td><10</td>
<td>53</td>
<td>177</td>
<td>9</td>
<td>26</td>
<td><10</td>
<td>6</td>
<td>12</td>
</tr>
<tr>
<td><10</td>
<td>52</td>
<td>328</td>
<td>10</td>
<td>72</td>
<td><10</td>
<td>11</td>
<td>78</td>
</tr>
</tbody>
</table>
Specific Gravity Results for the bulk sample

<table>
<thead>
<tr>
<th>Accurassay #</th>
<th>Client Tag</th>
<th>Specific Gravity</th>
</tr>
</thead>
<tbody>
<tr>
<td>174107</td>
<td>23612</td>
<td>2.99</td>
</tr>
<tr>
<td>174108</td>
<td>23612</td>
<td>3.45</td>
</tr>
<tr>
<td>174109</td>
<td>23612</td>
<td>3.4</td>
</tr>
<tr>
<td>174110</td>
<td>23612</td>
<td>2.73</td>
</tr>
<tr>
<td>174111</td>
<td>23612</td>
<td>3.02</td>
</tr>
</tbody>
</table>
APPENDIX 3

PHOTOS FROM THE SITE VISIT AND IRON ORE SAMPLE PHOTOS
Location of the bulk sample in Upper Gunflint
Jasper section, Upper Gunflint, Divide Ridge West area

Magnetite rich section of the Upper Gunflint, Divide Ridge West
Exposures of the Middle and Upper Gunflint, Kakabeka Falls

Extensive drift cover, north of Divide Ridge
Very dense undergrowth that covers most of the area

View from the top of Silver Mountain in Fraleigh Township
Technical Report, Gunflint Property, Ontario, Canada Iron Inc.

View of Mt. Marny from the northwest

Samples from the Griffith Mine, which was in operation from 1968-1986. This mine had a raw ore grade very much the same as noted on the Gunflint
Gunflint taconite piece, left, Biwabik taconite piece, right. Note the similar texture.

The ultimate goal for the Gunflint is.....

The iron ore pellets are from the Griffith Mine
Acc #	Client ID	Ag ppm	Al %	As ppm	Ba ppm	Be ppm	Bi ppm	Ca %	Cd ppm	Co ppm	Cr ppm	Cu ppm	Fe %	K ppm	Li ppm	Mg ppm	Mn ppm	Mo ppm	N ppm	P ppm	Pb ppm	Sb ppm	Se ppm	Sn ppm	Sr ppm	Ti ppm	V ppm	W ppm	Y ppm	Zn ppm					
175146	23613	<1	3.02	<2	80	<2	8	0.61	10	6	39	5	15.38	0.38	<1	1.14	981	52	37	407	27	13	<5	<10	77	330	2	21	<10	20	11	21	10	26	
175147	23614	2	2.16	<2	62	2	8	0.82	7	2	15	3	10.48	0.45	<1	0.38	770	42	22	113	19	9	<5	>10	67	182	5	9	<10	7	13				
175148	23615	4	2.18	54	45	3	22	2.94	23	5	13	23	35.86	0.39	<1	1.83	1169	115	7	500	56	27	<5	<10	73	259	12	15	<10	55					
175149	23616	<1	2.15	<2	66	<2	8	0.26	7	5	21	2	10.62	0.45	<1	0.37	1555	52	34	111	20	12	5	<10	52	176	<2	13	<10	6	17				
175150	23617	8	2.71	38	86	2	22	1.86	21	15	27	16	33.04	0.47	<1	2.66	3251	93	22	682	49	24	<5	<10	121	859	2	39	<10	15	52				
175151	23618	<1	2.56	9	54	<2	6	0.41	4	7	40	1	6.05	0.55	<1	0.34	453	29	48	123	11	7	<5	<10	57	196	5	20	<10	7	12				
175152	23619	1	1.86	<2	34	<2	7	2.94	8	3	15	2	13.21	0.69	<1	0.45	1706	50	20	<100	18	14	<5	<10	62	149	<2	7	<10	6	17				
175153	23620	4	1.66	2	29	<2	6	>10.00	6	2	11	4	9.60	0.53	<1	0.41	1041	34	11	<100	19	16	6	<10	109	156	7	5	<10	8	17				
175154	23621	3	1.98	<2	39	<2	11	0.41	10	3	11	6	15.01	0.61	<1	0.52	1043	55	15	<100	25	16	<5	<10	53	155	8	7	<10	6	17				
175155	23622	5	1.99	3	118	<2	12	4.54	12	9	22	<1	18.63	0.48	<1	0.54	1165	72	21	251	32	17	<5	<10	256	349	6	13	<10	9	27				
175156D	23623	2	2.26	<2	119	<2	12	4.61	13	9	22	<1	19.39	0.46	<1	0.56	1178	74	22	256	32	14	5	<10	260	352	21	13	<10	9	27				
175157	23624	1	1.54	2	125	<2	21	0.34	17	7	13	<1	26.26	0.47	<1	0.66	4469	94	16	471	40	18	<5	<10	61	220	5	17	<10	8	34				
175158	23625	5	2.29	<2	82	2	32	1.87	24	10	20	<1	37.10	0.29	<1	2.55	2138	114	16	2042	56	27	7	<10	107	590	6	28	<10	20	60				
175159	23626	<1	2.29	27	63	<2	5	0.32	4	3	52	3	5.77	0.35	<1	0.32	370	33	82	102	14	11	5	<10	53	177	9	26	<10	6	12				
175160	23627	4	0.82	4	84	2	33	0.12	26	33	22	10	40.16	0.35	<1	0.23	4436	156	18	699	64	34	<5	<10	52	328	10	72	<10	11	78				

PROCEDURE CODES: ALP1, ALMA1

The results included on this report relate only to the items tested.
The Certificate of Analysis should not be reproduced except in full,
without the written approval of the laboratory.

Certified By: [Signature]

Canadian Iron Inc.
1500-330 Bay Street
Toronto, ON, CAN
Ph#: (416) 346-1008
Fax#: (306) 555-3688
Email: gcsharpe@sasktel.net