QA/QC REVIEW OF SCADDING DRILL CORE ASSAYS

SCADDING GOLD PROPERTY
Sudbury, Ontario, Canada

TRUECLAIM EXPLORATION INC.
96 Hagerman Crescent
St. Thomas, Ontario N5R 6K3

June 25, 2010

Prepared By:

CARACLE CREEK INTERNATIONAL CONSULTING INC.
Julie Selway, Ph.D., P.Geo.
Tania Ilieva, Ph.D., P.Geo.
TABLE OF CONTENTS

1.0 EXECUTIVE SUMMARY 4

2.0 INTRODUCTION AND TERMS OF REFERENCE 5

2.1 INTRODUCTION ... 5

2.2 TERMS OF REFERENCE .. 5

2.3 UNITS .. 8

2.4 CLASSIFICATION OF STANDARDS .. 9

2.5 CAUSES OF BLANK FAILURE .. 10

2.6 ACCREDITATION AND ANALYTICAL PROCEDURES FOR AGAT 10

2.6.1 AGAT’s accreditation .. 10

2.6.2 AGAT’s analytical methods used for Scadding samples .. 10

2.6.3 AGAT’s quality control practices .. 11

2.7 CCIC QUALIFICATIONS .. 11

3.0 QC ASSAYS 12

3.1 AGAT BLANKS AND STANDARDS ... 12

3.1.1 Blanks .. 12

3.1.2 CDN-GS-P8 ... 13

3.1.3 CDN-GS-1E ... 13

3.1.4 CDN-GS-5E ... 13

3.1.5 Re-assay of AGAT’s failed blanks and standards ... 13

3.2 AGAT DUPLICATES ... 15

3.2.1 Core duplicates ... 15

3.2.2 Pulp duplicates ... 15

3.2.3 Screen Metallics .. 15

4.0 CONCLUSIONS AND RECOMMENDATIONS 16

5.0 REFERENCES 18

6.0 STATEMENT OF AUTHORSHIP 19

FIGURES

Figure 2-1. Classification of Standards ... 9

Figure 3-1 Control chart for Trueclaim’s blanks analyzed by AGAT .. 25

Figure 3-2 Control chart for Trueclaim’s standard CDN-GS-P8 analyzed by AGAT 25

Figure 3-3 Control chart for Trueclaim’s standard CDN-GS-1E analyzed by AGAT 26
Figure 3- 4 Control chart for Trueclaim’s standard CDN-GS-5E analyzed by AGAT. ..26
Figure 3- 5 AGAT’s pulp duplicates. A) Primary vs secondary analysis of Au and B) pair mean vs absolute pair difference for Au. ..27
Figure 3- 6 Comparison of coarse (+) and fine (-) fraction by screen metallics analyses..28

TABLES

Table 3-1 Detection limit for blank and certified values and standard deviations of Trueclaim’s standards.12
Table 3-2 Summary of AGAT’s re-assay of failed standards and blanks...14

APPENDICES

Appendix 1 - Certificate of Author
Appendix 2 - Standard Certificates
Appendix 3 - QA/QC figures for this report
1.0 **EXECUTIVE SUMMARY**

Trueclaim Exploration Inc. (“Trueclaim”) contracted Caracle Creek International Consulting (“CCIC”) of Sudbury, Ontario, Canada to organize and review a quality assurance/quality control (QA/QC) program for Trueclaim’s Phase I drilling on their Scadding Gold Property (“the Property”) near Sudbury, Ontario. During Phase 1, Trueclaim drilled 30 NQ holes totalling 3,275 m. Sample batches were analyzed by AGAT Laboratories and SGS Laboratories for Au and trace elements. AGAT is the primary lab for this phase of drilling. This report covers the QA/QC review of AGAT’s assays. A QA/QC review of SGS’s assays will be covered in a subsequent report.

The Scadding Gold Property is located east of Sudbury, Ontario. Gold mineralization is hosted by chloritic breccias and chloritic shear zones within siliceous, clastic metasedimentary strata of the Serpent Formation (arkose, feldspathic quartzite), Quirke Lake Group. The gold is frequently visible and associated with alteration assemblages containing the minerals: chlorite, quartz, coarse carbonates and iron sulfides. Enrichments in Ag, Cu, As, Co, and Ni accompany the Au.

The quality of the blanks is good, indicating that contamination during sample preparation is rarely a problem at AGAT. The standards have no bias, but have slightly high failure rates indicating moderate accuracy. The re-assay of the failed blanks standards was successful in that all of the failed QC samples except for one sample which was contaminated during sample preparation. All of the pulp duplicates passed except for one sample due to analytical error indicating good precision.

Samples were analyzed by screen metallics in addition to fire assay to examine the Au nugget effect problem. The Au concentrates in the coarse fraction rather than the fine fraction, especially for samples with > 12 g/t Au in the total metallic assay (i.e., a weighted average of the fine and coarse fraction).

Recommendations for future QA/QC protocol for Trueclaim would be to continue with the same QA/QC setup of inserting blanks and standards and analyzing Au by both fire assay and metallics. CCIC recommends that Trueclaim use different standards during any subsequent sampling, as AGAT learned the identity of the “blind” standards during the re-assay. It does not appear that AGAT used this information to tamper with their re-assay results, but changing to new standards prevents any tampering in the future.
2.0 INTRODUCTION AND TERMS OF REFERENCE

2.1 Introduction

Trueclaim Exploration Inc. (“Trueclaim”) contracted Caracle Creek International Consulting (“CCIC”) of Sudbury, Ontario, Canada to organize and review a quality assurance/quality control (QA/QC) program for Trueclaim’s Phase I drilling on their Scadding Gold Property (“the Property”) near Sudbury, Ontario. During Phase 1, Trueclaim drilled 30 NQ holes totalling 3,275 m. Sample batches were analyzed by AGAT Laboratories and SGS Laboratories for Au and trace elements. AGAT is the primary lab for this phase of drilling. This report covers the QA/QC review of AGAT’s assays. A QA/QC review of SGS’s assays will be covered in a subsequent report.

The Scadding Gold Property is located east of Sudbury, Ontario. Gold mineralization is hosted by chloritic breccias and chloritic shear zones within siliceous, clastic metasedimentary strata of the Serpent Formation (arkose, feldspathic quartzite), Quirke Lake Group. The gold is frequently visible and associated with alteration assemblages containing the minerals: chlorite, quartz, coarse carbonates and iron sulfides. Enrichments in Ag, Cu, As, Co, and Ni accompany the Au.

This QA/QC Report is based on information supplied by Trueclaim, AGAT, as well as review of public domain data and literature, and exploration data for the Property.

2.2 Terms of reference

Definitions are from Long (2008) and Smee (2008), except where indicated.

Accuracy: the closeness of measurements to a “true” value.

Aqua Regia: Mixture of Hydrochloric Acid (HCl), Nitric Acid (HNO₃) and de-mineralized water (2:2:2). It is a strong acid digestion capable of decomposing metal salts, carbonates, sulphides, most sulphates and some oxides and silicates. Aqua Regia will digest precious metals including Au, Ag, Pt and Pd (Acme website: www.acmelab.com). This is also known as a partial digestion, as not all of the rock is dissolved.

Bias: grouping of data above or below an accepted mean. Bias may be caused by systematic sampling or analytical error.
Blank: a sample of uncrushed rock or drill core that is known to contain very low or non-detectable concentration of the element being sought. A blank is used to monitor contamination of samples during preparation and analysis.

Certified Reference Materials (“CRM”): standard pulp (powdered) samples that have been subjected to rigorous international testing and have a certificate of analysis with a certified “accepted mean” and standard deviation. Ideally, a cut-off grade, mean grade and high grade CRM is analyzed with samples. CRMs are used to monitor accuracy and precision of analyses.

Confidence Band: refers to the region of uncertainties in the predicted values over a range of values for the independent variable. It is related to the term prediction band which refers to the region of uncertainties in predicting the response for a single additional observation at each point within a range of independent variable values. Prediction bands are always wider than confidence bands. Each band appears on the graph as a multiple line plot with two curves. One represents the upper limits of the confidence intervals and the other represents the lower limits of the confidence intervals. The independent variable values used to compute the confidence bands are the same values used to create the fit curve (from SigmaPlot v.10).

Contamination: introduction of any substance to a geological sample that is not in the original in situ location of the sample.

Duplicates: A split of the original sample analyzed by the same laboratory under the same analytical conditions as the original sample. There are three types of duplicates: field duplicates (split of the drill core), reject or preparation duplicate (split of coarse material) and pulp duplicate (split of powdered material). Field duplicates monitor errors in sampling, preparation and analysis of samples. Reject duplicates monitor errors in preparation and analysis of samples. Pulp duplicates monitor errors in analysis of samples.

ICP-AES: Inductively Coupled Plasma - Atomic Emission Spectrometer: An instrument capable of determining the concentrations of 40 to 70+ elements simultaneously by measuring the intensity of light given off by samples aspirated into argon gas plasma heated to > 10,000°K. Capable of very low detection limits (ppm to ppb) with wide linear ranges (5 orders of magnitude) (Acme website: www.acmelab.com).

ICP-MS: Inductively Coupled Plasma - Mass Spectrometer: An instrument capable of determining the concentrations of 70+ elements simultaneously by measuring the mass of ions generated by an argon gas
plasma heated to 10,000°K and passing through a magnetic quadrupole to the detector. Capable of ultra low detection limits (ppb to ppt) with very wide linear ranges (up to 7 orders of magnitude) (Acme website: www.acmelab.com).

ICP-OES: Inductively Coupled Plasma - Optical Emission Spectrometer: An instrument capable of determining the concentrations of up to 44 elements by measuring the intensity of wavelengths from optical emission. Capable of very low detection limits (ppm to ppb) with wide linear ranges (5 orders of magnitude) (AGAT Mining Laboratory Services Fee Schedule).

ISO: International Standards Organization.

ISO 9001:2008 Quality Management Systems - Requirements: is intended for use in any organization regardless of size, type or product (including service). It provides a number of requirements which an organization needs to fulfill if it is to achieve customer satisfaction through consistent products and services which meet customer expectations. It includes a requirement for the continual (i.e. planned) improvement of the Quality Management System. Certification to an ISO 9001 standard does not guarantee any quality of end products and services; rather, it certifies that formalized business processes are being applied (wikipedia.org and http://isotc.iso.org).

ISO/IEC 17025: is the main standard used by testing and calibration laboratories. There are many commonalities with the ISO 9000 standard, but ISO/IEC 17025 adds in the concept of competence to the equation and it applies directly to those organizations that produce testing and calibration results. There are two main sections in ISO/IEC 17025 - Management Requirements and Technical Requirements. Management requirements are primarily related to the operation and effectiveness of the quality management system within the laboratory. Technical requirements address the competence of staff, methodology and test/calibration equipment (wikipedia.org and http://isotc.iso.org).

A Laboratory Information Management System (LIMS): is software that is used in an analytical laboratory for the management of samples, laboratory users, instruments, standards and other laboratory functions such as invoicing, plate management, and workflow automation. Typically, LIMS connect the analytical instruments in the laboratory to one or more workstations or personal computers (PC). These instruments are used to collect data. An instrument interface is used to forward the data from the instrument to the PC, where the data is organized into meaningful information. This information is further sorted and organized into various report formats based upon the type of report required. A full-featured
LIMS will manage the various laboratory data from sample log-in to reporting the results (limsource.com/intro.html).

QA/QC: Quality Assurance/Quality Control.

Quality Assurance (QA): information collected to demonstrate and quantify the reliability of assay data. Quality Assurance provides a measurement of the uncertainty in the underlying data.

Quality Control (QC): procedures used to maintain a desired level of quality in the assay database. Quality Control leads to corrections of errors or changes in procedures that improve overall data quality.

Pulps: the portion of a sample reduced to a finer size fraction after crushing, pulverizing or sieving and will be used in an analytical test (Acme website: www.acmelab.com).

Precision: the ability to consistently reproduce a measurement. Precise data tightly groups around an average value.

Rejects: the portion of a sample after preparation that is not part of the pulps fraction (Acme website: www.acmelab.com).

2.3 Units

The Metric System is the system of measure and length used in this Report and is generally expressed in kilometres (km), metres (m) and centimetres (cm); volume is expressed as cubic metres (m³), mass expressed as metric tonnes (t), area as hectares (ha), major elements are reported in percent (%) and trace elements in parts per million (ppm). The precious metal grades are generally expressed as grams/tonne but may also be in parts per billion (ppb) or parts per million (ppm). Many of the geologic publications and more recent work assessment files now use the SI system but older work assessment files almost exclusively refer to the Imperial System. Conversions from the SI or Metric System to the Imperial System are provided below and quoted where practical. Metals and minerals acronyms in this report conform to mineral industry accepted usage and the reader is directed to an online source at www.maden.hacettepe.edu.tr/dmmrt/index.html.

Conversion factors utilized in this report include:

- 1 troy ounce/ton = 34.2857 grams/tonne
- 1 gram/tonne = 0.0292 troy ounces/ton
- 1 troy ounce = 31.1035 grams
• 1 gram = 0.0322 troy ounces
• 1 pound = 0.4536 kilograms
• 1 foot = 0.3048 metres
• 1 mile = 1.609 kilometres
• 1 acre = 0.4047 hectares
• 1 square mile = 2.590 square kilometres

The term gram/tonne or g/t is expressed as “gram per tonne” where 1 gram/tonne = 1 ppm (part per million) = 1000 ppb (part per billion). Other abbreviations include ppb = parts per billion; ppm = parts per million; oz/t = ounce per short ton; Moz = million ounces; Mt = million tonne; t = tonne (1000 kilograms); SG = specific gravity; lb/t = pound/ton; and, st = short ton (2000 pounds).

2.4 Classification of standards

Classification of Standards: An analysis of the standard is classified as “Passed” if it plots between +2 standard deviation (SD) and -2SD of the certified mean (Figure 2-1). An analysis is classified as a “warning” if it plots between +2SD and +3SD or between -2SD and -3SD. An analysis is classified as “failure” if it plots above +3SD or below -3SD. Standards may fail due to sample number mix-up or analytical error as a result of poor equipment calibration (analytical equipment or weighing balance), incorrect dilution factor or instrumental drift.

Figure 2-1. Classification of Standards
2.5 Causes of blank failure

Blanks may fail due to contamination of the original sample during the sample collection, sample preparation (crushing or pulverizing), or analysis. In the case of the Scadding samples, the blind blank is a quartz sample.

Blanks may also fail due to carryover. Carryover is contamination of a blank by a previously analyzed high grade sample. This can occur due to inadequate cleaning of equipment between samples at both the sample preparation stage and sample analysis stage. Laboratories will often insert silica sand in the sample sequence after high grade samples to properly clean the equipment. Carryover often applies to ductile materials such as native gold, or high content sulphides or very soft materials like graphite.

Blanks may also fail due to sample number mix-up.

Blanks may also fail due to analytical error as a result of poor equipment calibration, incorrect dilution factor, incorrect calibration on a balance, and/or instrumental drift.

2.6 Accreditation and analytical procedures for AGAT

2.6.1 AGAT’s accreditation

AGAT Laboratories is the primary lab for Trueclaims’s Scadding project in 2009. AGAT is accredited under ISO 9001:2000. AGAT follows a strict quality assurance program including blind duplicate samples, certified reference materials and uses a Laboratory Information Management System (LIMS) to track sample and monitor every step of the laboratory process (AGAT Mining Laboratories Services Fee Schedule).

2.6.2 AGAT’s analytical methods used for Scadding samples

The following is a description of the analytical methods used by AGAT for the Scadding assays (AGAT Mining Laboratories Services Fee Schedule):

4 Acid Digest – ICP-OES Finish (AGAT code # 201070)

Multi-element analysis was completed with an inductively coupled plasma optical emission spectrometer (ICP-OES) after a four acid digestion involving hydrochloric, nitric, perchloric and hydrofluoric acids.
Although not a complete dissolution, this aggressive acid digestion is a “near total digestion” and effective in dissolving a large number of minerals including silicates. The ICP-OES uses the intensity of wavelengths from optical emission to quantify element concentrations.

Fire Assay – ICP-OES Finish (AGAT code # 201052)

Gold was analyzed by lead collection fire assay with an ICP-OES finish (see above)

Metallic Au – ICP Finish (AGAT code # 201120)

For screen metallic analysis, AGAT screens the re-pulverized sample to 100 µm and analyzes the coarse fraction with a single fire assay analysis and the finer fraction with duplicated fire assay analyses. The total gold content is then calculated but individual assays of each fraction are also reported.

2.6.3 AGAT’s quality control practices

Samples submitted to AGAT are subjected to an internal quality control program. Blanks, duplicates and standard reference materials inserted in the sequences of client samples provide a measure of background noise, accuracy and precision. Standard QA/QC protocol incorporates quartz sample-preparation blank carried through all stages of preparation and analysis as the first sample in the job. Typically an analytical batch will be comprised of 34-36 client samples, a pulp duplicate to monitor analytical precision and an aliquot of Certified Reference Material (CRM) or Inhouse Reference Material to monitor accuracy. Using these inserted quality control samples each analytical batch and complete job is rigorously reviewed and validated prior to release.

2.7 CCIC qualifications

The Qualified Person for this Report is Julie Selway, Ph.D., P.Geo. Dr. Selway is a Senior Project Geologist for CCIC and a geologist in good standing of the Association of Professional Geoscientists of Ontario (APGO #0738). Dr. Selway has worked as a geologist for 17 years with academia and industry on a variety of exploration properties such as rare-element pegmatites, gold, and Ni-Cu-PGE. Dr. Selway has authored/co-authored 22 scientific journal articles, 13 Ontario Geological Survey publications on rare-element pegmatites and 8 NI 43-101 Independent Technical Reports on various types of mineral deposits. The certificate of author is given in Appendix 1.
3.0 QC ASSAYS

The blanks and standards inserted into the sample stream by Trueclaim are listed in Table 3-1. QC samples were inserted every 10th sample alternating blank – quartz, CDN-GS-P8, CDN-GS-1E, blank – CDN-BL-4, CDN-GS-5E, blank – quartz, etc. All QA/QC figures for this report are given in Appendix 3.

<table>
<thead>
<tr>
<th>Standard Name</th>
<th>Supplier</th>
<th>Au (ppm)</th>
<th>Standard Deviation (ppm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CDN-BL-4 (Blank)</td>
<td>CDN Resource Laboratories</td>
<td><0.01</td>
<td></td>
</tr>
<tr>
<td>CDN-GS-P8</td>
<td>CDN Resource Laboratories</td>
<td>0.78</td>
<td>0.03</td>
</tr>
<tr>
<td>CDN-GS-1E</td>
<td>CDN Resource Laboratories</td>
<td>1.16</td>
<td>0.03</td>
</tr>
<tr>
<td>CDN-GS-5E</td>
<td>CDN Resource Laboratories</td>
<td>4.83</td>
<td>0.18</td>
</tr>
</tbody>
</table>

3.1 AGAT blanks and standards

3.1.1 Blanks

Trueclaim used two types of blanks: quartz chips and a certified blank (CDN-BL-4). The quartz chips were to test for contamination during the sample preparation and the certified blank guarantees that there is no Au in the blank.

The criterion for blank failure is three time the detection limit. In the case of AGAT, the detection limit for Au is 5 ppb, hence any blank assay >15 ppb (0.015 ppm) is considered a failure. Four blanks are minor failures (Samples H822800 - quartz, E506780 – CDN-BL-4, E506830 – CDN-BL-4 and E504050 - quartz) and one blank (Sample 504030) was incorrectly named (Figure 3-1). The incorrectly named blank failure is a sample mix up with standard CDN-GS-P8; this blank’s value is 0.712 ppm Au and the standard’s certified value is 0.78 ± 0.06 ppm. Sample 504030 was given the correct name of CDN-GS-P8 and is plotted in the control chart for that standard rather than in with the blanks. Sample 506850 had 0.017 ppm Au and is considered to be a minor failure.

The failure rate was calculated as 4 failures/43 total assays of blanks *100 = 9.3% failure rate. Samples E506780 – CDN-BL-4 and E504050 - quartz failed due to contamination, as they were analyzed after high grade samples. Sample H822800 - quartz did not fail due to contamination, as it was analyzed after low grade samples and it did not fail due to sample mix up with drill core as the assays for the major elements match that of quartz rather than the drill core. Thus, sample H822800 failed due to analytical
error. Sample E506830 – CDN-BL-4 failed due to sample mix up with the drill core, as the assays for major elements are similar to that for the drill core rather than for quartz (e.g., 3.9 % Al, 1.77 % Ca, 2.69 %Fe). The sample login weight for E506830 is 0.09 kg which is identical to that for the other powdered blanks, thus the sample mix up occurred after the sample was initially received and weighed and before the sample was analyzed by fire assay.

Overall, the quality of the blank assays is good.

3.1.2 CDN-GS-P8

Standard CDN-GS-P8 has a certified value of 0.78 ppm Au. Three of the 21 CDN-GS-P8 standards failed (samples E504260, 504210 and 506860) likely due to analytical error (Figure 3-2). The failure rate is 3 failures/21 total assays*100 = 14.3% failure rate which is slightly too high. The assays for this standard do not show any bias.

3.1.3 CDN-GS-1E

Standard CDN-GS-1E has a certified value of 1.16 ppm Au. Three of 19 CDN-GS-1E standards (samples E504120, H822770 and E506870) failed (Figure 3-3). The three standard failures likely failed due to analytical error. The failure rate was calculated as 3 failures/20 total assays*100 = 15.0% failure rate which is slightly too high. The assays for this standard do not show any bias.

3.1.4 CDN-GS-5E

Standard CDN-GS-5E has a certified value of 4.83 ppm Au. Three of 18 CDN-GS-5E standards failed (samples E506540, E506740 and E506790) likely due to analytical error (Figure 3-4). The failure rate is 3 failures/18 total assays*100 = 16.7% failure rate which is slightly too high especially since this is the high grade standard. Luckily, the high grade Au samples were analyzed by both fire assay and screened metallics and this duplication would have identified any analytical errors in the high grade fire assay results. When the high grade fire assay and metallics assays differ, it is recommended to use the metallics results as they account for Au nugget effect problems in drill core. The assays for this standard do not show any bias.

3.1.5 Re-assay of AGAT’s failed blanks and standards

Trueclaim requested that AGAT re-assay all of the failed blanks and standards and 5 drill core samples above and 5 drill core samples below the failures (Table 3-2).
Three failed blanks (Samples H822800, E506830 and E504050) were re-assayed and the blanks passed the second assay. Trueclaim requested that failed blank sample E506780 also be re-assayed, but AGAT did not send Trueclaim a re-assay result for this sample.

The three failed CDN-GS-P8 standards (samples E504260, 504210 and 506860) were re-assayed and the standards passed the second assay.

Two failed CDN-GS-1E standards (sample E504120 and E506870) were re-assayed and the standards passed the second assay. Trueclaim did not request a re-assay of the other failed CDN-GS-1E standard (sample H822770).

Three failed CDN-GS-5E standards (samples E506540, E506740 and E506790) were re-assayed and two of the standards (samples E506540, E506740) passed the second assay. One standard (sample E506790) failed the first and second assay and AGAT suggested that the standard is inhomogeneous. CCIC suggests that sample E506790 was contaminated during samples preparation as the three samples following it are high grade: sample E506791 has 20.56 ppm Au, sample E506792 has 4.64 ppm Au and sample E506793 has 13.08 ppm Au. CCIC does not believe that the standard CDN-GS-5E is inhomogeneous, as this is the only sample that failed after the re-assay and if it was homogeneous, then multiple samples of it should fail.

AGAT noted that for original job number 10T382265, the re-assay of drill core samples E506825 and E506834 came back significantly lower than the original assay (0.021 vs 0.206 ppm Au and 0.003 vs 0.113 ppm Au, respectively). This was due to an initial weighing error and AGAT has changed its procedures to ensure that this does not happen again.

Overall, the re-assay of the failed blanks and standards was successful, as all of the failed standards passed the second assay except for one sample of CDN-GS-5E (sample E506790) which was likely contaminated during sample preparation.

<table>
<thead>
<tr>
<th>standard name</th>
<th>sample number</th>
<th>re-assay, Au (ppm)</th>
<th>failed original, Au (ppm)</th>
<th>certified value, Au (ppm)</th>
<th>QC comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>blank</td>
<td>H822800</td>
<td><0.001</td>
<td>0.023</td>
<td></td>
<td></td>
</tr>
<tr>
<td>blank</td>
<td>E504050</td>
<td>0.007</td>
<td>0.052</td>
<td></td>
<td></td>
</tr>
<tr>
<td>blank</td>
<td>E506830</td>
<td>0.002</td>
<td>0.036</td>
<td></td>
<td></td>
</tr>
<tr>
<td>blank</td>
<td>E506780</td>
<td>0.033</td>
<td></td>
<td></td>
<td>not re-assayed by lab</td>
</tr>
<tr>
<td>CDN-GS-P8</td>
<td>E504210</td>
<td>0.859</td>
<td>0.542</td>
<td>0.78</td>
<td></td>
</tr>
<tr>
<td>CDN-GS-P8</td>
<td>E504260</td>
<td>0.847</td>
<td>0.673</td>
<td>0.78</td>
<td></td>
</tr>
<tr>
<td>CDN-GS-P8</td>
<td>E506860</td>
<td>0.775</td>
<td>0.41</td>
<td>0.78</td>
<td></td>
</tr>
<tr>
<td>standard name</td>
<td>sample number</td>
<td>re-assay, Au (ppm)</td>
<td>failed original, Au (ppm)</td>
<td>certified value, Au (ppm)</td>
<td>QC comment</td>
</tr>
<tr>
<td>---------------</td>
<td>---------------</td>
<td>--------------------</td>
<td>--------------------------</td>
<td>--------------------------</td>
<td>------------------</td>
</tr>
<tr>
<td>CDN-GS-1E</td>
<td>E504120</td>
<td>1.178</td>
<td>1.29</td>
<td>1.16</td>
<td></td>
</tr>
<tr>
<td>CDN-GS-1E</td>
<td>H822770</td>
<td></td>
<td>1.017</td>
<td></td>
<td>did not request re-assay</td>
</tr>
<tr>
<td>CDN-GS-1E</td>
<td>E506870</td>
<td>1.099</td>
<td>0.728</td>
<td>1.16</td>
<td></td>
</tr>
<tr>
<td>CDN-GS-5E</td>
<td>E506790</td>
<td>5.457</td>
<td>5.644</td>
<td>4.83</td>
<td>failed both assays</td>
</tr>
<tr>
<td>CDN-GS-5E</td>
<td>E506540</td>
<td>5.219</td>
<td>6.032</td>
<td>4.83</td>
<td></td>
</tr>
<tr>
<td>CDN-GS-5E</td>
<td>E506740</td>
<td>4.894</td>
<td>5.632</td>
<td>4.83</td>
<td></td>
</tr>
</tbody>
</table>

3.2 AGAT duplicates

3.2.1 Core duplicates

Core duplicates were not collected because the Scadding Gold Property is known to have a Au nugget effect problem and due to brecciation two pieces of the core does not always the same lithology. Any core duplicates from this deposit would have a high failure rate. High grade drill core samples were analyzed by screen metallics to address the Au nugget effect problem and this is a better method for duplication than core duplicates.

3.2.2 Pulp duplicates

Pulp duplicates include drill core samples and Trueclaim’s internal standards. Pulp duplicates were selected by and known to AGAT. The lab typically inserted a pulp duplicate every 20th sample. All of AGAT’s pulp duplicates passed, except for one sample (E504209) which has an original assay of 0.514 ppm Au and a duplicate assay of 0.203 ppm Au (Figure 3-5). Since this was a pulp duplicate, the failure is likely caused by analytical error rather than Au nugget effect. The regression line for the duplicates had an R^2 of 0.9975 which indicates good precision.

3.2.3 Screen Metallics

Samples were analyzed by screen metallics in addition to fire assay to examine the Au nugget effect problem. Figure 3-6 is a plot of the coarse (+) fraction vs the fine fraction (-) for 105 drill core samples. The plot clearly shows that the Au concentrates in the coarse fraction rather than the fine fraction, especially for samples with > 12 g/t Au in the total metallic assay (i.e., a weighted average of the fine and coarse fraction).
4.0 CONCLUSIONS AND RECOMMENDATIONS

AGAT is the primary lab for Trueclaim’s Phase I drilling on their Scadding Gold Property. AGAT is accredited under ISO 9001:2000. AGAT analyzed the Au using lead collection fire assay with an ICP-OES finish and screen metallics with an ICP finish. QC samples were inserted by Trueclaim every 10th sample.

Trueclaim used two types of blanks: quartz chips and a certified blank (CDN-BL-4). Four blanks are minor failures: two due to contamination, one due to analytical error and one due to sample mix up. The failure rate was calculated as 4 failures/43 total assays of blanks *100 = 9.3% failure rate. Overall, the quality of the blank assays is good.

Standards CDN-GS-P8 (0.78 ppm Au), CDN-GS-1E (1.16 ppm Au) and CDN-GS-5E (4.83 ppm Au) had failure rates of 14%, 15% and 17%, respectively due to analytical error. This failure rate is slightly too high which indicates moderate accuracy for the standards. The assays for these standards do not show any bias. The high grade Au samples were analyzed by both fire assay and screened metallics and this duplication would have identified any analytical errors in the high grade fire assay results.

Trueclaim requested that AGAT re-assay all of the failed blanks and standards and 5 drill core samples above and 5 drill core samples below the failures. Overall, the re-assay of the failed blanks and standards was successful, as all of the failed standards passed the second assay except for one sample of CDN-GS-5E (sample E506790) which was likely contaminated during sample preparation.

All of AGAT’s pulp duplicates passed, except for one sample. Since this was a pulp duplicate, the failure is likely caused by analytical error rather than Au nugget effect. The regression line for the duplicates had an R² of 0.9975 which indicates good precision.

Samples were analyzed by screen metallics in addition to fire assay to examine the Au nugget effect problem. The Au concentrates in the coarse fraction rather than the fine fraction, especially for samples with > 12 g/t Au in the total metallic assay (i.e., a weighted average of the fine and coarse fraction).

In conclusion, the quality of the blanks is good, indicating that contamination during sample preparation is rarely a problem at AGAT. The standards have no bias, but have slightly high failure rates indicating moderate accuracy. The re-assay of the failed blanks standards was successful in that all of the failed QC samples except for one sample which was contaminated during sample preparation. All of the pulp duplicates passed except for one sample due to analytical error indicating good precision.
Recommendations for future QA/QC protocol for Trueclaim would be to continue with the same QA/QC setup of inserting blanks and standards and analyzing Au by both fire assay and metallics. CCIC recommends that Trueclaim use different standards during any subsequent sampling, as AGAT learned the identity of the “blind” standards during the re-assay. It does not appear that AGAT used this information to tamper with their re-assay results, but changing to new standards prevents any tampering in the future.
5.0 REFERENCES

6.0 STATEMENT OF AUTHORSHIP

This Report, titled “QA/QC review of Scadding drill core assays”, and dated June 25, 2010 was prepared and signed by the following authors:

“Julie Selway”

Julie Selway, Ph.D., P.Geo.
June 25, 2010
Sudbury, Ontario

“Tania Ilieva”

Tania Ilieva, Ph.D., P.Geo.
June 25, 2010
Toronto, Ontario
I, Julie Selway, do hereby certify that:

1. I am a Senior Geologist for the geological consulting firm of Caracle Creek International Consulting Inc. Canada (CCIC).
3. I am a member of the Association of Professional Geoscientists of Ontario (Member #0738). I am a member in good standing of the Mineralogical Association of Canada, Geological Association of Canada and Mineralogical Society of America.
4. I have worked as a geologist for 17 years with academia and industry on a variety of exploration properties such as rare-element pegmatites, gold and Ni-Cu-PGE.
5. I have had no prior involvement with the Property that forms the subject of this Report.
6. I am not aware of any material fact or material change with respect to the subject matter of the Report that is not reflected in the Report, the omission to disclose which makes the Report misleading.
7. I am independent of the parties involved in the transaction for which this report is required, other than providing consulting services, applying all the tests in section 1.4 of National Instrument 43-101.
9. I consent to the filing of the Report with any stock exchange and other regulatory authority and any publication by them, including electronic publication in the public company files on their websites accessible by the public.
10. I fulfill the requirements to be a “qualified person” as defined in the National Instrument 43-101.
11. I have not visited the property.

Dated this 25th day of June, 2010.

Respectfully Submitted

“Julie Selway”

Julie Selway, Ph.D., P.Geo.
Senior Project Geologist, CCIC Canada
CERTIFICATE OF AUTHOR

To accompany the Report entitled

QA/QC REVIEW OF SCADDING DRILL CORE ASSAYS

I, Tania Ilieva, of 1607-200 Burnhamthorpe Rd E, Mississauga, Ontario, do hereby certify that:

1. I am a Senior Geologist with Caracle Creek International Consulting Inc., 34 King Street East, 9th Floor, Toronto, Ontario.

2. I hold a B. Sc. (1986) from The Institute of Mining and Geology (Sofia, Bulgaria), and a Ph.D. (2000) from the University of Mining and Geology (Sofia, Bulgaria).

3. I am a Professional Geoscientist and a member in good standing of the Association of Professional Geoscientists of Ontario since 2007 (registered #1259) and am a temporary member of the ‘Ordre des géologues’, Quebec (registered number #1367) and have special authorization to practice in the Province of Quebec. I have practiced my profession continuously since 1986 and have worked on exploration stage projects for precious and base metals, and industrial minerals.

4. I am not aware of any material fact or material change with respect to the subject matter of the Report that is not reflected in the Report, the omission to disclose which makes the Report misleading.

5. As of the date of this certificate, to the best of my knowledge, information and belief, the Report contains all scientific and technical information that is required to be disclosed to make the Report, not misleading. I have read National Instrument 43-101 and Form 43-101F1, and the Report has been prepared in compliance with that instrument and form.

6. I consent to the filing of the Report by Trueclaim with any stock exchange or regulatory authority, and any publication of the Report by them for regulatory purposes, including electronic publication in the public company files on their websites accessible to the public.

Signed and stamped this 25th day of June, 2010, at Toronto, Ontario.

Signed and stamped, Tania Ilieva, P.Geo., Ph.D.
APPENDIX 2

STANDARD CERTIFICATES
GOLD ORE REFERENCE STANDARD: CDN-GS-5E

Recommended value and the "Between Laboratory" two standard deviations

Gold concentration: 4.83 ± 0.37 g/t

ORIGIN OF REFERENCE MATERIAL:

Standard CDN-GS-5E was prepared using ore supplied by Williams Operating Corporation from their Williams Mine in Ontario, Canada.

METHOD OF PREPARATION:

Reject ore material was dried, crushed, pulverized and then passed through a 250 mesh screen. The +250 material was discarded. The -250 material was mixed for 6 days in a double-cone blender. Splits were taken and sent to 12 commercial laboratories for round robin assaying. Round robin results are displayed below:

<table>
<thead>
<tr>
<th>Lab 1</th>
<th>Lab 2</th>
<th>Lab 3</th>
<th>Lab 4</th>
<th>Lab 5</th>
<th>Lab 6</th>
<th>Lab 7</th>
<th>Lab 8</th>
<th>Lab 9</th>
<th>Lab 10</th>
<th>Lab 11</th>
<th>Lab 12</th>
</tr>
</thead>
<tbody>
<tr>
<td>Au g/t</td>
</tr>
<tr>
<td>GS5E-1</td>
<td>4.90</td>
<td>4.84</td>
<td>4.80</td>
<td>5.20</td>
<td>4.37</td>
<td>5.14</td>
<td>4.57</td>
<td>4.81</td>
<td>4.88</td>
<td>4.88</td>
<td>4.98</td>
</tr>
<tr>
<td>GS5E-2</td>
<td>5.01</td>
<td>4.70</td>
<td>4.56</td>
<td>5.07</td>
<td>4.30</td>
<td>4.89</td>
<td>4.70</td>
<td>4.47</td>
<td>4.84</td>
<td>4.75</td>
<td>5.09</td>
</tr>
<tr>
<td>GS5E-3</td>
<td>5.03</td>
<td>4.79</td>
<td>4.76</td>
<td>4.88</td>
<td>4.35</td>
<td>4.40</td>
<td>4.82</td>
<td>5.04</td>
<td>4.59</td>
<td>4.79</td>
<td>5.01</td>
</tr>
<tr>
<td>GS5E-4</td>
<td>4.82</td>
<td>4.83</td>
<td>4.90</td>
<td>4.88</td>
<td>4.83</td>
<td>4.68</td>
<td>4.47</td>
<td>5.03</td>
<td>4.67</td>
<td>5.01</td>
<td>4.97</td>
</tr>
<tr>
<td>GS5E-5</td>
<td>4.78</td>
<td>5.07</td>
<td>4.89</td>
<td>4.69</td>
<td>5.07</td>
<td>5.05</td>
<td>4.84</td>
<td>4.94</td>
<td>5.48</td>
<td>4.59</td>
<td>5.13</td>
</tr>
<tr>
<td>GS5E-6</td>
<td>5.03</td>
<td>4.69</td>
<td>5.13</td>
<td>5.08</td>
<td>4.69</td>
<td>4.68</td>
<td>4.92</td>
<td>5.17</td>
<td>4.77</td>
<td>4.85</td>
<td>5.27</td>
</tr>
<tr>
<td>GS5E-7</td>
<td>4.83</td>
<td>4.93</td>
<td>4.49</td>
<td>4.93</td>
<td>4.55</td>
<td>4.84</td>
<td>5.48</td>
<td>5.03</td>
<td>4.94</td>
<td>4.57</td>
<td>5.30</td>
</tr>
<tr>
<td>GS5E-8</td>
<td>4.80</td>
<td>4.90</td>
<td>4.84</td>
<td>5.39</td>
<td>4.58</td>
<td>4.91</td>
<td>4.79</td>
<td>5.26</td>
<td>4.84</td>
<td>4.66</td>
<td>5.12</td>
</tr>
<tr>
<td>GS5E-9</td>
<td>4.94</td>
<td>4.69</td>
<td>4.99</td>
<td>4.99</td>
<td>4.35</td>
<td>5.02</td>
<td>4.64</td>
<td>4.79</td>
<td>4.68</td>
<td>4.92</td>
<td>5.07</td>
</tr>
<tr>
<td>GS5E-10</td>
<td>4.80</td>
<td>4.77</td>
<td>4.89</td>
<td>4.76</td>
<td>5.10</td>
<td>4.52</td>
<td>4.71</td>
<td>4.86</td>
<td>5.20</td>
<td>4.84</td>
<td>5.17</td>
</tr>
<tr>
<td>Mean</td>
<td>4.89</td>
<td>4.82</td>
<td>4.83</td>
<td>4.99</td>
<td>4.62</td>
<td>4.81</td>
<td>4.79</td>
<td>4.94</td>
<td>4.95</td>
<td>4.75</td>
<td>5.12</td>
</tr>
<tr>
<td>Std. Dev.</td>
<td>0.102</td>
<td>0.122</td>
<td>0.189</td>
<td>0.208</td>
<td>0.298</td>
<td>0.238</td>
<td>0.276</td>
<td>0.223</td>
<td>0.280</td>
<td>0.124</td>
<td>0.108</td>
</tr>
<tr>
<td>%RSD</td>
<td>2.08</td>
<td>2.52</td>
<td>3.92</td>
<td>4.17</td>
<td>6.45</td>
<td>4.95</td>
<td>5.75</td>
<td>4.52</td>
<td>5.65</td>
<td>2.61</td>
<td>2.11</td>
</tr>
</tbody>
</table>

Note: Results from Laboratory 11 were eliminated due to failing the “t test”.

Assay Procedure: all assays were fire assay, gravimetric finish on 30g samples

APPROXIMATE CHEMICAL COMPOSITION:

<table>
<thead>
<tr>
<th>Element</th>
<th>Percent</th>
<th>Percent</th>
</tr>
</thead>
<tbody>
<tr>
<td>SiO2</td>
<td>65.0</td>
<td>Na2O</td>
</tr>
<tr>
<td>Al2O3</td>
<td>11.3</td>
<td>MgO</td>
</tr>
<tr>
<td>Fe2O3</td>
<td>4.4</td>
<td>K2O</td>
</tr>
<tr>
<td>CaO</td>
<td>1.5</td>
<td>TiO2</td>
</tr>
<tr>
<td>MnO</td>
<td>< 0.1</td>
<td>LOI</td>
</tr>
<tr>
<td>S</td>
<td>3.1</td>
<td>C</td>
</tr>
</tbody>
</table>
GOLD ORE REFERENCE STANDARD: CDN-GS-5E

Statistical Procedures:

The final limits were calculated after first determining if all data was compatible within a spread normally expected for similar analytical methods done by reputable laboratories. Data from any one laboratory was removed from further calculations when the mean of all analyses from that laboratory failed a t test of the global means of the other laboratories. The mean and standard deviation were calculated using all remaining data. Any analysis that fell outside of the mean ±2 standard deviations was removed from the ensuing data base. The mean and standard deviations were again calculated using the remaining data. This method is different from that used by Government agencies in that the actual “between-laboratory” standard deviation is used in the calculations. This produces upper and lower limits that reflect actual individual analyses rather than a grouped set of analyses. The limits can therefore be used to monitor accuracy from individual analyses, unlike the Confidence Limits published on other standards.

Participating Laboratories:
(not in same order as table of assays)

Acme Analytical Laboratories Ltd., Vancouver, Canada
Activation Laboratories, Ancaster, Ontario, Canada
Activation Laboratories, Thunder Bay, Ontario, Canada
ALS Chemex, North Vancouver, Canada
Assayers Canada Ltd., Vancouver, Canada
Alex Stewart (Assayers) Argentina Ltd.
Eco-Tech, Kamloops, Canada
Genalysis Lab. Services, Australia
Labtium Inc., Finland
Omac Laboratory, Ireland
TSL Laboratories Ltd., Saskatoon, Canada
Ultra Trace Pty. Ltd., Australia

Legal Notice:

This certificate and the reference material described in it have been prepared with due care and attention. However CDN Resource Laboratories Ltd. nor Barry Smee accept any liability for any decisions or actions taken following the use of the reference material. Our liability is limited solely to the cost of the reference material.

Certified by

Duncan Sanderson, Certified Assayer of B.C.

Geochemist

Dr. Barry Smee, Ph.D., P. Geo.
GOLD ORE REFERENCE STANDARD: CDN-GS-1E

Recommended value and the "Between Laboratory" two standard deviations

Gold concentration: 1.16 ±0.06 g/t

PREPARED BY: CDN Resource Laboratories Ltd.
CERTIFIED BY: Duncan Sanderson, B.Sc., Licensed Assayer of British Columbia
INDEPENDENT GEOCHEMIST: Dr. Barry Smee, Ph.D., P. Geo.
DATE OF CERTIFICATION: April 18, 2009

ORIGIN OF REFERENCE MATERIAL:

Standard CDN-GS-1E was prepared using ore supplied by Canadian Gold Hunter Corporation from its Caballo Blanco (North Zone) property in Mexico. It is a high sulphidation gold system with extensive silica flooding and brecciation. The breccia can be filled with iron oxides, but is usually devoid of clay.

METHOD OF PREPARATION:

Reject ore material was dried, crushed, pulverized and then passed through a 270 mesh screen. The +270 material was discarded. The -270 material was mixed for 6 days in a double-cone blender. Splits were taken and sent to 12 commercial laboratories for round robin assaying. Round robin results are displayed below:

<table>
<thead>
<tr>
<th>Lab 1</th>
<th>Lab 2</th>
<th>Lab 3</th>
<th>Lab 4</th>
<th>Lab 5</th>
<th>Lab 6</th>
<th>Lab 7</th>
<th>Lab 8</th>
<th>Lab 9</th>
<th>Lab 10</th>
<th>Lab 11</th>
<th>Lab 12</th>
</tr>
</thead>
<tbody>
<tr>
<td>Au g/t</td>
</tr>
<tr>
<td>GS-1E-1</td>
<td>1.16</td>
<td>1.21</td>
<td>1.21</td>
<td>1.24</td>
<td>1.22</td>
<td>1.14</td>
<td>1.15</td>
<td>1.12</td>
<td>1.18</td>
<td>1.21</td>
<td>1.22</td>
</tr>
<tr>
<td>GS-1E-2</td>
<td>1.13</td>
<td>1.19</td>
<td>1.12</td>
<td>1.17</td>
<td>1.27</td>
<td>1.14</td>
<td>1.14</td>
<td>1.18</td>
<td>1.17</td>
<td>1.15</td>
<td>1.20</td>
</tr>
<tr>
<td>GS-1E-3</td>
<td>1.07</td>
<td>1.16</td>
<td>1.21</td>
<td>1.18</td>
<td>1.25</td>
<td>1.15</td>
<td>1.14</td>
<td>1.14</td>
<td>1.21</td>
<td>1.23</td>
<td>1.15</td>
</tr>
<tr>
<td>GS-1E-4</td>
<td>1.00</td>
<td>1.20</td>
<td>1.18</td>
<td>1.16</td>
<td>1.23</td>
<td>1.15</td>
<td>1.16</td>
<td>1.14</td>
<td>1.21</td>
<td>1.18</td>
<td>1.18</td>
</tr>
<tr>
<td>GS-1E-5</td>
<td>1.05</td>
<td>1.19</td>
<td>1.21</td>
<td>1.14</td>
<td>1.26</td>
<td>1.15</td>
<td>1.16</td>
<td>1.17</td>
<td>1.09</td>
<td>1.16</td>
<td>1.21</td>
</tr>
<tr>
<td>GS-1E-6</td>
<td>1.10</td>
<td>1.18</td>
<td>1.18</td>
<td>1.13</td>
<td>1.22</td>
<td>1.14</td>
<td>1.17</td>
<td>1.17</td>
<td>1.17</td>
<td>1.24</td>
<td>1.17</td>
</tr>
<tr>
<td>GS-1E-7</td>
<td>1.11</td>
<td>1.19</td>
<td>1.15</td>
<td>1.16</td>
<td>1.18</td>
<td>1.15</td>
<td>1.17</td>
<td>1.16</td>
<td>1.16</td>
<td>1.17</td>
<td>1.16</td>
</tr>
<tr>
<td>GS-1E-8</td>
<td>1.13</td>
<td>1.21</td>
<td>1.17</td>
<td>1.12</td>
<td>1.23</td>
<td>1.14</td>
<td>1.10</td>
<td>1.14</td>
<td>1.15</td>
<td>1.21</td>
<td>1.19</td>
</tr>
<tr>
<td>GS-1E-9</td>
<td>1.00</td>
<td>1.13</td>
<td>1.16</td>
<td>1.16</td>
<td>1.26</td>
<td>1.14</td>
<td>1.13</td>
<td>1.13</td>
<td>1.16</td>
<td>1.20</td>
<td>1.16</td>
</tr>
<tr>
<td>GS-1E-10</td>
<td>1.17</td>
<td>1.15</td>
<td>1.15</td>
<td>1.13</td>
<td>1.24</td>
<td>1.15</td>
<td>1.18</td>
<td>1.11</td>
<td>1.17</td>
<td>1.13</td>
<td>1.08</td>
</tr>
</tbody>
</table>

Mean: 1.09 1.18 1.17 1.16 1.24 1.15 1.15 1.15 1.16 1.19 1.17 1.20
Std. Dev.: 0.061 0.027 0.030 0.034 0.026 0.005 0.025 0.024 0.031 0.036 0.040 0.040
%RSD: 5.56 2.29 2.58 2.97 2.13 0.46 2.17 2.05 2.66 3.05 3.38 3.33

Assay Procedure: all assays were fire assay, gravimetric finish on 30g samples

APP躯ROXIMATE CHEMICAL COMPOSITION:

<table>
<thead>
<tr>
<th>Percent</th>
<th>Percent</th>
</tr>
</thead>
<tbody>
<tr>
<td>SiO2</td>
<td>80.0</td>
</tr>
<tr>
<td>Al2O3</td>
<td>2.5</td>
</tr>
<tr>
<td>Fe2O3</td>
<td>10.0</td>
</tr>
<tr>
<td>CaO</td>
<td>1.3</td>
</tr>
<tr>
<td>MnO</td>
<td><0.1</td>
</tr>
<tr>
<td>S</td>
<td>0.2</td>
</tr>
<tr>
<td>Na2O</td>
<td>0.7</td>
</tr>
<tr>
<td>MgO</td>
<td><0.1</td>
</tr>
<tr>
<td>K2O</td>
<td>0.7</td>
</tr>
<tr>
<td>TiO2</td>
<td>2.2</td>
</tr>
<tr>
<td>LOI</td>
<td>1.0</td>
</tr>
<tr>
<td>C</td>
<td><0.1</td>
</tr>
</tbody>
</table>
Gold Ore Reference Standard: CDN-GS-1E

Statistical Procedures:

The final limits were calculated after first determining if all data was compatible within a spread normally expected for similar analytical methods done by reputable laboratories. Data from any one laboratory was removed from further calculations when the mean of all analyses from that laboratory failed a t-test of the global means of the other laboratories. The mean and standard deviation were calculated using all remaining data. Any analysis that fell outside of the mean ±2 standard deviations was removed from the ensuing data base. The mean and standard deviations were again calculated using the remaining data. This method is different from that used by Government agencies in that the actual “between-laboratory” standard deviation is used in the calculations. This produces upper and lower limits that reflect actual individual analyses rather than a grouped set of analyses. The limits can therefore be used to monitor accuracy from individual analyses, unlike the Confidence Limits published on other standards.

Participating Laboratories:
(not in same order as table of assays)

- Acme Analytical Laboratories Ltd., Vancouver, Canada
- Activation Laboratories, Ancaster, Ontario, Canada
- Activation Laboratories, Thunder Bay, Ontario, Canada
- ALS Chemex, North Vancouver, Canada
- Assayers Canada Ltd., Vancouver, Canada
- Alex Stewart (Assayers) Argentina Ltd.
- Genalysis Lab.Services, Australia
- International Plasma Labs, Richmond, B.C., Canada
- Labtium Inc., Finland
- Omac Laboratory, Ireland
- TSL Laboratories Ltd., Saskatoon, Canada
- Ultra Trace Pty. Ltd., Australia

Legal Notice:

This certificate and the reference material described in it have been prepared with due care and attention. However CDN Resource Laboratories Ltd. nor Barry Smee accept any liability for any decisions or actions taken following the use of the reference material. Our liability is limited solely to the cost of the reference material.

Certified by

Duncan Sanderson, Certified Assayer of B.C.

Geochemist

Dr. Barry Smee, Ph.D., P. Geo.
STANDARD REFERENCE MATERIAL: CDN-BL-4

Recommended values:
- Gold concentration: < 0.01 g/t
- Platinum concentration: < 0.01 g/t
- Palladium concentration: < 0.01 g/t

PREPARED BY: CDN Resource Laboratories Ltd.
CERTIFIED BY: Duncan Sanderson, B.Sc., Licensed Assayer of British Columbia
INDEPENDENT GEOCHEMIST: Dr. Barry Smee, Ph. D., P. Geo.
DATE OF CERTIFICATION: November 8, 2006

ORIGIN OF REFERENCE MATERIAL:
Standard CDN-BL-4 was prepared using a blank granitic material.

METHOD OF PREPARATION:
The granitic material was dried, crushed, pulverized and then passed through a 200 mesh screen. The +200 material was discarded. The -200 (<75 micron) material was mixed for 5 days in a double-cone blender. Splits were taken and sent to 10 commercial laboratories for round robin assaying. Round robin results are displayed below:

APPROXIMATE CHEMICAL COMPOSITION:

<table>
<thead>
<tr>
<th></th>
<th>Percent</th>
<th></th>
<th>Percent</th>
</tr>
</thead>
<tbody>
<tr>
<td>SiO2</td>
<td>65.3</td>
<td>Na2O</td>
<td>3.8</td>
</tr>
<tr>
<td>Al2O3</td>
<td>13.9</td>
<td>MgO</td>
<td>2.2</td>
</tr>
<tr>
<td>Fe2O3</td>
<td>6.0</td>
<td>K2O</td>
<td>1.2</td>
</tr>
<tr>
<td>CaO</td>
<td>3.8</td>
<td>TiO2</td>
<td>0.6</td>
</tr>
<tr>
<td>MnO</td>
<td>0.1</td>
<td>LOI</td>
<td>1.4</td>
</tr>
</tbody>
</table>

Statistical Procedures: There was no statistical analysis performed on the data.

Participating Laboratories: (not in same order as table of assays)
- Acme Analytical Laboratories Ltd., Vancouver
- Actlabs, Ontario, Canada
- Alex Stewart Assayers Argentina Ltd.
- Assayers Canada Ltd., Vancouver
- ALS Chemex Laboratories, North Vancouver
- Genalysis Lab. Services, Australia
- Omac Laboratory Ltd., Ireland
- Skyline Laboratory, Arizona, USA
- Teck Cominco - Global Discovery Laboratory, Vancouver
- TSL Laboratories, Saskatoon

Assay Procedure: assays were fire assay, AA or ICP finish on 30g samples.
<table>
<thead>
<tr>
<th>Sample</th>
<th>Au ppb</th>
</tr>
</thead>
<tbody>
<tr>
<td>GS-BL4-1</td>
<td>10</td>
<td>4</td>
<td>6</td>
<td><10</td>
<td><10</td>
<td>9</td>
<td>4</td>
<td>7</td>
<td><10</td>
</tr>
<tr>
<td>GS-BL4-2</td>
<td>10</td>
<td>6</td>
<td>5</td>
<td><10</td>
<td>10</td>
<td>7</td>
<td>4</td>
<td>6</td>
<td><10</td>
</tr>
<tr>
<td>GS-BL4-3</td>
<td>10</td>
<td>5</td>
<td>3</td>
<td><10</td>
<td>10</td>
<td>9</td>
<td>5</td>
<td>6</td>
<td><10</td>
</tr>
<tr>
<td>GS-BL4-4</td>
<td><10</td>
<td>6</td>
<td>5</td>
<td><10</td>
<td><10</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td><10</td>
</tr>
<tr>
<td>GS-BL4-5</td>
<td>10</td>
<td>6</td>
<td>4</td>
<td><10</td>
<td>10</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td><10</td>
</tr>
<tr>
<td>GS-BL4-6</td>
<td>10</td>
<td>5</td>
<td>4</td>
<td><10</td>
<td>10</td>
<td>7</td>
<td>5</td>
<td>6</td>
<td>10</td>
</tr>
<tr>
<td>GS-BL4-7</td>
<td><10</td>
<td>5</td>
<td>4</td>
<td><10</td>
<td><10</td>
<td>9</td>
<td>6</td>
<td>6</td>
<td>10</td>
</tr>
<tr>
<td>GS-BL4-8</td>
<td><10</td>
<td>5</td>
<td>4</td>
<td><10</td>
<td><10</td>
<td>7</td>
<td>9</td>
<td>7</td>
<td><10</td>
</tr>
<tr>
<td>GS-BL4-9</td>
<td>-</td>
<td>6</td>
<td>4</td>
<td><10</td>
<td>10</td>
<td>7</td>
<td>5</td>
<td>17</td>
<td><10</td>
</tr>
<tr>
<td>GS-BL4-10</td>
<td>10</td>
<td>6</td>
<td>1</td>
<td><10</td>
<td>10</td>
<td>6</td>
<td>7</td>
<td>9</td>
<td><10</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sample</th>
<th>Pt ppb</th>
</tr>
</thead>
<tbody>
<tr>
<td>GS-BL4-1</td>
<td><10</td>
<td>< 5</td>
<td>5</td>
<td><10</td>
<td><10</td>
<td><5</td>
<td>4</td>
<td>5</td>
<td><10</td>
</tr>
<tr>
<td>GS-BL4-2</td>
<td><10</td>
<td>< 5</td>
<td><5</td>
<td><10</td>
<td><10</td>
<td><5</td>
<td>4</td>
<td>4</td>
<td><10</td>
</tr>
<tr>
<td>GS-BL4-3</td>
<td><10</td>
<td>5</td>
<td>6</td>
<td><10</td>
<td><10</td>
<td><5</td>
<td>4</td>
<td>4</td>
<td><10</td>
</tr>
<tr>
<td>GS-BL4-4</td>
<td><10</td>
<td>< 5</td>
<td>9</td>
<td><10</td>
<td><10</td>
<td><5</td>
<td>4</td>
<td>5</td>
<td><10</td>
</tr>
<tr>
<td>GS-BL4-5</td>
<td><10</td>
<td>< 5</td>
<td>6</td>
<td><10</td>
<td>10</td>
<td><5</td>
<td>4</td>
<td>3</td>
<td><10</td>
</tr>
<tr>
<td>GS-BL4-6</td>
<td><10</td>
<td>5</td>
<td><5</td>
<td><10</td>
<td>10</td>
<td><5</td>
<td>4</td>
<td>3</td>
<td><10</td>
</tr>
<tr>
<td>GS-BL4-7</td>
<td><10</td>
<td>< 5</td>
<td><5</td>
<td><10</td>
<td>10</td>
<td><5</td>
<td>7</td>
<td>3</td>
<td><10</td>
</tr>
<tr>
<td>GS-BL4-8</td>
<td><10</td>
<td>9</td>
<td>5</td>
<td><10</td>
<td>10</td>
<td><5</td>
<td>4</td>
<td>4</td>
<td><10</td>
</tr>
<tr>
<td>GS-BL4-9</td>
<td>-</td>
<td>< 5</td>
<td>5</td>
<td><10</td>
<td>10</td>
<td><5</td>
<td>4</td>
<td>4</td>
<td><10</td>
</tr>
<tr>
<td>GS-BL4-10</td>
<td><10</td>
<td>< 5</td>
<td>5</td>
<td><10</td>
<td><10</td>
<td><5</td>
<td>4</td>
<td>3</td>
<td><10</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sample</th>
<th>Pd ppb</th>
</tr>
</thead>
<tbody>
<tr>
<td>GS-BL4-1</td>
<td>10</td>
<td>5</td>
<td>5</td>
<td><10</td>
<td><10</td>
<td>6</td>
<td>4</td>
<td>6</td>
<td><10</td>
</tr>
<tr>
<td>GS-BL4-2</td>
<td>10</td>
<td>5</td>
<td>5</td>
<td><10</td>
<td><10</td>
<td>6</td>
<td>4</td>
<td>6</td>
<td><10</td>
</tr>
<tr>
<td>GS-BL4-3</td>
<td>10</td>
<td>5</td>
<td>5</td>
<td><10</td>
<td><10</td>
<td>5</td>
<td>4</td>
<td>5</td>
<td><10</td>
</tr>
<tr>
<td>GS-BL4-4</td>
<td>10</td>
<td>5</td>
<td>5</td>
<td><10</td>
<td>10</td>
<td>6</td>
<td>4</td>
<td>5</td>
<td><10</td>
</tr>
<tr>
<td>GS-BL4-5</td>
<td><10</td>
<td>5</td>
<td>5</td>
<td><10</td>
<td>10</td>
<td>7</td>
<td>4</td>
<td>5</td>
<td><10</td>
</tr>
<tr>
<td>GS-BL4-6</td>
<td><10</td>
<td>5</td>
<td>5</td>
<td><10</td>
<td><10</td>
<td>6</td>
<td>4</td>
<td>5</td>
<td><10</td>
</tr>
<tr>
<td>GS-BL4-7</td>
<td><10</td>
<td>5</td>
<td>8</td>
<td><10</td>
<td><10</td>
<td>6</td>
<td>4</td>
<td>6</td>
<td><10</td>
</tr>
<tr>
<td>GS-BL4-8</td>
<td>10</td>
<td>5</td>
<td>5</td>
<td><10</td>
<td><10</td>
<td>6</td>
<td>4</td>
<td>6</td>
<td><10</td>
</tr>
<tr>
<td>GS-BL4-9</td>
<td>-</td>
<td>5</td>
<td>6</td>
<td><10</td>
<td><10</td>
<td>6</td>
<td>4</td>
<td>6</td>
<td><10</td>
</tr>
<tr>
<td>GS-BL4-10</td>
<td>10</td>
<td>5</td>
<td>4</td>
<td><10</td>
<td>10</td>
<td>5</td>
<td>6</td>
<td>6</td>
<td><10</td>
</tr>
</tbody>
</table>

Legal Notice:

This certificate and the reference material described in it have been prepared with due care and attention. However CDN Resource Laboratories Ltd. nor Barry Smee accept any liability for any decisions or actions taken following the use of the reference material. Our liability is limited solely to the cost of the reference material.

Certified by

Duncan Sanderson, Certified Assayer of B.C.

Geochemist

Dr. Barry Smee, Ph.D., P. Geo.
GOLD ORE REFERENCE STANDARD: CDN-GS-P8

Recommended value and the "Between Laboratory" two standard deviations

Gold concentration: 0.78 ± 0.06 g/t

PREPARED BY: CDN Resource Laboratories Ltd.
CERTIFIED BY: Duncan Sanderson, B.Sc., Licensed Assayer of British Columbia
INDEPENDENT GEOCHEMIST: Dr. Barry Smee, Ph.D., P. Geo.
DATE OF CERTIFICATION: April 18, 2009

ORIGIN OF REFERENCE MATERIAL:
Standard CDN-GS-P8 was prepared using ore supplied by Canadian Gold Hunter Corporation from its Caballo Blanco (North Zone) property in Mexico. It is a high sulphidation gold system with extensive silica flooding and brecciation. The breccia can be filled with iron oxides, but is usually devoid of clay.

METHOD OF PREPARATION:
Reject ore material was dried, crushed, pulverized and then passed through a 270 mesh screen. The +270 material was discarded. The -270 material was mixed for 6 days in a double-cone blender. Splits were taken and sent to 12 commercial laboratories for round robin assaying. Round robin results are displayed below:

<table>
<thead>
<tr>
<th>Lab 1</th>
<th>Lab 2</th>
<th>Lab 3</th>
<th>Lab 4</th>
<th>Lab 5</th>
<th>Lab 6</th>
<th>Lab 7</th>
<th>Lab 8</th>
<th>Lab 9</th>
<th>Lab 10</th>
<th>Lab 11</th>
<th>Lab 12</th>
</tr>
</thead>
<tbody>
<tr>
<td>Au g/t</td>
</tr>
<tr>
<td>GS-P8-1</td>
<td>0.76</td>
<td>0.76</td>
<td>0.75</td>
<td>0.79</td>
<td>0.79</td>
<td>0.78</td>
<td>0.75</td>
<td>0.76</td>
<td>0.82</td>
<td>0.82</td>
<td>0.76</td>
</tr>
<tr>
<td>GS-P8-2</td>
<td>0.73</td>
<td>0.80</td>
<td>0.76</td>
<td>0.77</td>
<td>0.79</td>
<td>0.79</td>
<td>0.78</td>
<td>0.73</td>
<td>0.78</td>
<td>0.81</td>
<td>0.76</td>
</tr>
<tr>
<td>GS-P8-3</td>
<td>0.74</td>
<td>0.78</td>
<td>0.79</td>
<td>0.77</td>
<td>0.80</td>
<td>0.79</td>
<td>0.75</td>
<td>0.75</td>
<td>0.79</td>
<td>0.81</td>
<td>0.75</td>
</tr>
<tr>
<td>GS-P8-4</td>
<td>0.76</td>
<td>0.78</td>
<td>0.78</td>
<td>0.78</td>
<td>0.79</td>
<td>0.78</td>
<td>0.72</td>
<td>0.73</td>
<td>0.72</td>
<td>0.82</td>
<td>0.83</td>
</tr>
<tr>
<td>GS-P8-5</td>
<td>0.71</td>
<td>0.78</td>
<td>0.83</td>
<td>0.76</td>
<td>0.81</td>
<td>0.79</td>
<td>0.76</td>
<td>0.75</td>
<td>0.74</td>
<td>0.81</td>
<td>0.79</td>
</tr>
<tr>
<td>GS-P8-6</td>
<td>0.70</td>
<td>0.73</td>
<td>0.81</td>
<td>0.79</td>
<td>0.89</td>
<td>0.80</td>
<td>0.80</td>
<td>0.77</td>
<td>0.82</td>
<td>0.81</td>
<td>0.83</td>
</tr>
<tr>
<td>GS-P8-7</td>
<td>0.66</td>
<td>0.77</td>
<td>0.81</td>
<td>0.76</td>
<td>0.82</td>
<td>0.80</td>
<td>0.79</td>
<td>0.73</td>
<td>0.77</td>
<td>0.82</td>
<td>0.76</td>
</tr>
<tr>
<td>GS-P8-8</td>
<td>0.72</td>
<td>0.77</td>
<td>0.77</td>
<td>0.76</td>
<td>0.85</td>
<td>0.79</td>
<td>0.76</td>
<td>0.79</td>
<td>0.81</td>
<td>0.79</td>
<td>0.78</td>
</tr>
<tr>
<td>GS-P8-9</td>
<td>0.72</td>
<td>0.80</td>
<td>0.83</td>
<td>0.75</td>
<td>0.84</td>
<td>0.78</td>
<td>0.77</td>
<td>0.80</td>
<td>0.78</td>
<td>0.83</td>
<td>0.74</td>
</tr>
<tr>
<td>GS-P8-10</td>
<td>0.78</td>
<td>0.75</td>
<td>0.78</td>
<td>0.80</td>
<td>0.85</td>
<td>0.80</td>
<td>0.80</td>
<td>0.74</td>
<td>0.77</td>
<td>0.82</td>
<td>0.78</td>
</tr>
<tr>
<td>Mean</td>
<td>0.73</td>
<td>0.77</td>
<td>0.79</td>
<td>0.77</td>
<td>0.82</td>
<td>0.79</td>
<td>0.77</td>
<td>0.75</td>
<td>0.78</td>
<td>0.81</td>
<td>0.78</td>
</tr>
<tr>
<td>Std. Dev.</td>
<td>0.035</td>
<td>0.021</td>
<td>0.028</td>
<td>0.016</td>
<td>0.034</td>
<td>0.008</td>
<td>0.035</td>
<td>0.027</td>
<td>0.032</td>
<td>0.011</td>
<td>0.031</td>
</tr>
<tr>
<td>%RSD</td>
<td>4.75</td>
<td>2.69</td>
<td>3.55</td>
<td>2.12</td>
<td>4.14</td>
<td>1.03</td>
<td>4.56</td>
<td>3.53</td>
<td>4.15</td>
<td>1.38</td>
<td>4.02</td>
</tr>
</tbody>
</table>

Assay Procedure: all assays were fire assay, gravimetric finish on 30g samples

APPROXIMATE CHEMICAL COMPOSITION:

<table>
<thead>
<tr>
<th></th>
<th>Percent</th>
<th></th>
<th>Percent</th>
</tr>
</thead>
<tbody>
<tr>
<td>SiO2</td>
<td>75.6</td>
<td>Na2O</td>
<td>0.5</td>
</tr>
<tr>
<td>Al2O3</td>
<td>2.3</td>
<td>MgO</td>
<td><0.1</td>
</tr>
<tr>
<td>Fe2O3</td>
<td>15.6</td>
<td>K2O</td>
<td>0.8</td>
</tr>
<tr>
<td>CaO</td>
<td>1.2</td>
<td>TiO2</td>
<td>1.7</td>
</tr>
<tr>
<td>MnO</td>
<td><0.1</td>
<td>LOI</td>
<td>1.0</td>
</tr>
<tr>
<td>S</td>
<td>0.1</td>
<td>C</td>
<td><0.1</td>
</tr>
</tbody>
</table>
GOLD ORE REFERENCE STANDARD: CDN-GS-P8

Statistical Procedures:

The final limits were calculated after first determining if all data was compatible within a spread normally expected for similar analytical methods done by reputable laboratories. Data from any one laboratory was removed from further calculations when the mean of all analyses from that laboratory failed a t test of the global means of the other laboratories. The means and standard deviations were calculated using all remaining data. Any analysis that fell outside of the mean ±2 standard deviations was removed from the ensuing data base. The mean and standard deviations were again calculated using the remaining data. This method is different from that used by Government agencies in that the actual “between-laboratory” standard deviation is used in the calculations. This produces upper and lower limits that reflect actual individual analyses rather than a grouped set of analyses. The limits can therefore be used to monitor accuracy from individual analyses, unlike the Confidence Limits published on other standards.

Participating Laboratories:
(not in same order as table of assays)

- Acme Analytical Laboratories Ltd., Vancouver, Canada
- Activation Laboratories, Ancaster, Ontario, Canada
- Activation Laboratories, Thunder Bay, Ontario, Canada
- ALS Chemex, North Vancouver, Canada
- Assayers Canada Ltd., Vancouver, Canada
- Alex Stewart (Assayers) Argentina Ltd.
- Genalysis Lab.Services, Australia
- International Plasma Labs, Richmond, B.C., Canada
- Labtium Inc., Finland
- Omac Laboratory, Ireland
- TSL Laboratories Ltd., Saskatoon, Canada
- Ultra Trace Pty. Ltd., Australia

Legal Notice:

This certificate and the reference material described in it have been prepared with due care and attention. However CDN Resource Laboratories Ltd. nor Barry Smee accept any liability for any decisions or actions taken following the use of the reference material. Our liability is limited solely to the cost of the reference material.

Certified by ________________________________
Duncan Sanderson, Certified Assayer of B.C.

Geochemist ________________________________
Dr. Barry Smee, Ph.D., P. Geo.
APPENDIX 3
QA/QC FIGURES FOR THIS REPORT
Figure 3-1 Control chart for Trueclaim’s blanks analyzed by AGAT.

Figure 3-2 Control chart for Trueclaim’s standard CDN-GS-P8 analyzed by AGAT.
Figure 3-3 Control chart for Trueclaim’s standard CDN-GS-1E analyzed by AGAT.

Figure 3-4 Control chart for Trueclaim’s standard CDN-GS-5E analyzed by AGAT.
Figure 3-5 AGAT’s pulp duplicates. A) Primary vs secondary analysis of Au and B) pair mean vs absolute pair difference for Au.
Figure 3-6 Comparison of coarse (+) and fine (-) fraction by screen metallics analyses.