Results Of A Mobile Metal Ions Process (MMI-M) Soil Geochemical Survey On The Joy North-Gerry Lake Area (KRL1143648) Base and Precious Metal Property, Red Lake, Northwest Ontario

March 26, 2009

Prepared For:
Precambrian Ventures
1127 Ridge Valley Drive
Oshawa, Ontario L1K 2E2

Prepared By:
Mount Morgan Resources Ltd.
50 Dobals Road North
Lac du Bonnet, Manitoba, Canada
R0E 1A0
Tel. /Fax. : 204-284-6869
E-mail: mfedikow@shaw.ca
EXECUTIVE SUMMARY

A Mobile Metal Ions Technology soil geochemical survey based on the collection of 181 samples at the Joy North property of Precambrian Ventures has delineated a significant base metal (Cu, Zn) anomaly with associated precious metals (Ag-Au). The base metal anomaly can be interpreted as the MMI geochemical signature of two distinctive stratigraphic units or as two limbs of a folded stratigraphy. Regardless of the interpretation significant follow-up exploration targets have been identified. One of these is an extremely high-contrast Ag anomaly (>11,000 times background) with associated lesser Au (46RR). Although this anomaly is “single-sample” in character the sampling pattern is based on transects 100 m apart and as such there is significant room for additional precious metal responses of merit and delineation of this anomaly if the sample spacing was reduced to 25 m by 25 m. This same approach could be taken to the more detailed delineation of the base metal anomaly.

The careful collection of a quality dataset has resulted in the delineation of a large and low- to high-contrast base metal anomaly and the delineation of a potentially high-grade precious metal zone. Data quality is interpreted to not be a hindrance to interpretation and recognition of bona fide MMI-M geochemical anomalies.

Future MMI-M surveys in the area should be based on sampling protocols utilized for this survey.
PREAMBLE

The exploitation of mineral commodities in the near-surface geological environment has become increasingly difficult due to the exhaustion of mineralization exposed at surface and the mantling of prospective bedrock by glacially transported till and its derivatives. Thick glaciofluvial and glaciolacustrine sediments topped by organic deposits make mineral exploration in these terrains challenging. For this reason a plethora of innovative exploration geochemical selective and partial digestions, coupled with state-of-the-art instrumentation capable of measuring concentrations in the part per billion (ppb) and sub-part per billion ranges, have been developed. These techniques offer the explorationist tools to "see through" overburden and derive useful mineral exploration data for integration with geology and geophysics and ultimately for drill-testing multivariate anomalies. Disrupted overburden, such as that observed with logging practices (scarification), tends to complicate MMI responses although modified sampling practices can be adopted to rectify this disturbed environment. Areas affected by landslide are also complicating factors.

The proprietary Mobile Metal Ions Process (MMI) soil geochemical technique has been utilized on a wide range of commodity types from base and precious metals to diamonds worldwide. The Process is based upon proprietary partial extraction techniques, specific combinations of ligands to keep metals in solution, and relies on strict adherence to sampling protocols usually established during an
orientation program. Geochemical data resulting from MMI analysis of improperly collected soils cannot be ameliorated with univariate and/or multivariate statistical and graphical solutions.

The recognition of anomalies in geochemical data has progressed from simple visual inspection in small data sets to multivariate, parametric and non-parametric or robust statistical methods for large datasets usually extracted from regional geochemical surveys. Derived parameters from these statistical exercises, such as factor scores or discriminant functions, have been successfully utilized in reducing a large number of potentially useful variables to a select few variables that identify and localize anomalous geochemical signatures. These statistical approaches have been required to manipulate accurate and precise, low-cost, multi-element geochemical data.

The MMI technology uses a different approach to exploration geochemistry by analyzing soils for a select few commodity elements upon which to base property evaluations. Having stated this, the MMI-M multi-element suite that was utilized to analyze inorganic soils from the Joy North property survey comprises analyses for 45 elements. These consist of a multi-element suite that reports ppb and sub-ppb analyses for base and precious metals, pathfinder elements for these commodities, as well as elements useful for mapping bedrock geology obscured by glacial overburden and its derivatives. A small number of elements in this package report in the ppm concentration range (Al, Ca, Mg, and Fe). The large
number of elements in the database provides an opportunity to assess an area of interest for a wide range of metallic mineral deposits with only minor drawbacks in terms of lower limits of determination. For the Joy North survey only the elements Au, Ag, Pd, Co, Ni, Cd, Cu, Pb and Zn were analyzed. The specific details of this assessment are described below. The Au, Pb and Pd responses in this survey were consistently at or near the LLD and as such were not plotted for interpretive purposes.

TERMS OF REFERENCE

The author of this report was contracted by Mr. Greg Campbell of Precambrian Ventures ("PV") to undertake the interpretation of Mobile Metal Ions soil geochemical survey data from their Joy North property in the Red Lake area of northwestern Ontario. The survey was undertaken to assess the property for MMI geochemical signatures related to base and precious metal mineralization. Soil samples were collected according to protocols described and presented on the SGS website (www.sgs.com/geochemistry). This report represents a final interpretation of work and is completed with recommendations for follow-up exploration.
DESCRIPTION OF THE SURVEY AREA (after G. Campbell, M.Sc., Precambrian Ventures)

Location and Access

The Joy North property is located in the Trout lake River area of NW Ontario. The claims occur in the Gerry Lake Area Claim sheet approximately 50 km southeast of the town of Red Lake. Access to the area is by the Snake Falls Road that leads northeast from Hwy.105, 20 km north of Ear Falls. Recent logging operations access the eastern end of the claim.

Geology

The area is covered by a blanket (5-10m) of clay rich overburden. Bedrock in the area is Achaean in age and consists of the Woman Lake (2,800 Ma) and Confederation Lake (2,730 Ma) assemblage of the Uchi Subprovince. The Confederation Lake assemblage is interpreted to have formed in an arc environment. The belt in the area of the property consists of an east - west trending, south facing sequence of mafic to felsic metavolcanic and metasedimentary rocks that are intruded by irregular dykes, sills and stocks of felsic and mafic plutonic rocks. Metamorphism in the area is amphibolite facies.

The transition between the Woman Lake and Confederation Lake assemblages is believed to occur where a thin but regionally extensive unit of chemical sediment consisting of oxide-sulfide iron formation and marble is found. This transition is apparent on the Joy North Property and is marked by a number of untested AEM conductors.
Mineralization in the Area

The Dixie 18 VMS deposit is located 10 km west of, and on strike with, the Joy North Property. The deposit contains an estimated resource of 150,000 t of 14% Zn and is hosted by altered felsic to intermediate metavolcanic rocks that occur immediately above a horizon of chemical metasedimentary rocks. Another deposit known as the Copperlode A zone is located approximately 10 km to the east-northeast along the same stratigraphic horizon and has similarities to Sedex-style massive sulfide mineralization. This deposit contains a resource of 236,424 tons of 1.94% Cu and 1.22 oz/t Ag. The zone is hosted by highly strained mafic metavolcanic rocks intercalated with interflow metasedimentary rocks and intermediate-mafic tuff and lapilli-tuff. Metasedimentary rocks consist of chert-magnetite-amphibole iron formation. Massive pyroxene and anthophyllite units in the sequence may represent metamorphosed calcareous units (Residents Report, 1990, OGS Misc. Paper 152, p.31). The mafic units contain garnet, andalusite and anthophyllite while the more felsic units are sericite-bearing. These units contain anomalous copper, zinc and gold (up to 0.09 oz/t gold G. Desmeules Occurrence). In addition, there are 5 reported zones of VMS style mineralization located about 1 km to the south of Joy North. The largest zone is the Diamond Willow Zone which reportedly contains 300,000 tons of 4% Cu+Zn and may represent a repetition of the Joy North stratigraphy due to folding.
Previous Work

1994-1995  Inco optioned the property and carried out a magnetic and horizontal-loop EM survey that confirmed the presence of a vertical to steep southward dipping bedrock conductor. Inco terminated exploration for VMS-type deposits so the anomaly was not drilled.

1997-1998  The grid was prospected but no outcrop was located.

2002  VLF and magnetics were completed over the most westerly unit not covered by the Inco survey.

Discussion

A virtually untested AEM target on the Joy North property is a high priority drill target for VMS. In 1970 Caravelle Mines drilled a 44.8 m “winkie” hole (JW-4) to test a vertical-loop anomaly in the claim area. The hole was not located. It intersected various amphibole, amphibole-biotite-garnet, quartz-biotite and calc “gneisses” which are believed to be altered metavolcanic rocks. Disseminated pyrite, pyrrhotite, magnetite and the occasional massive vein of pyrrhotite and magnetite were noted but no assays were reported. In 1995 Inco defined a bedrock conductor with a HLEM EM survey that could be traced for 1,100 metres. The anomaly was not drilled.

Two drill-defined resources of base metal massive sulfide occur at the same stratigraphic horizon, both east and west of the Joy North property. The Diamond
Willow zone held by Tribute/Noranda is located only 1 km to the south and is reported to contain 300,000 tons of 4% Cu+Zn.

**Summary**

An AEM target on the Joy North property is a high priority drill target for VMS. It has been drill tested by only one short drill hole (147 feet) in 1970. The hole intersected biotite-garnet-amphibole schist with pyrite and occasional veins of magnetite and pyrrhotite. The Dixie 18 deposit is located 10 km to the west and contains a resource of 150,000 t of 14% Zn while 10 km to the east, the Copperlode A deposit contains a resource of 236,424 tons of 1.94% Cu and 1.22 oz/t Ag in a highly altered assemblage of deformed mafic volcanic rocks and chemical metasedimentary rocks. Both these deposits are hosted by the same stratigraphic interval as that found on the Joy North property. Two other VMS zones known as the Diamond Willow and Joy Prospects are located only 1 km to the south on the folded repetition of the ore horizon. The Diamond Willow zone is reported to contain 300,000 tons of 4% Cu+Zn.

Gold exploration has not been undertaken in this portion of the Uchi Belt because of the apparent lack of the lower volcanic section (Balmer Series) and poor bedrock exposure. However, with the integration of past AEM surveys and the implementation of deeper penetrating geochemical techniques (MMI analyses), it has become evident that this segment of the Uchi Belt has a number of similarities with the geology in the Red Lake area located 40 km to the northwest. In recent years it has been realized that a number of the major gold deposits in the Red Lake Belt (Madsen, Campbell Red
Mount Morgan Resources Ltd. “Accurate and Precise Geochemistry in Mineral Exploration”

Lake and Goldcorp) occur along a major, highly deformed, unconformity contact marked by the deposition of chemical metasedimentary rocks and conglomerate. This horizon trends southeastward into the claim area where a similar type of contact is found on the property between mafic metavolcanic rocks to chemical metasedimentary rocks.

SAMPLE COLLECTION AND ANALYSIS

Samples were collected according to protocols developed for the landscape environment that exists at Joy North. Some general comments regarding MMI soil geochemical surveys are presented below.

In MMI surveys there are some general approaches that are used to guide sample collection including preferred depths of sampling and these are described briefly here. Additional information is also available from the SGS website. Soil samples, each weighing approximately 250 grams, are usually collected at variable sample spacing along single transects or grids over suspected zones of mineralization (geophysical anomalies) or extrapolated trends of known mineralized zones. Generally, 25-m stations in precious metal exploration and up to 50 m in the case of base metals are the routine spacing. Sample spacing should be established on the basis of a “best-estimate” of the likely target being sought with estimates from historical data or exploration results from nearby programs. Initially, samples are often collected at a closer spacing until it is determined that a larger spacing is appropriate to the target being sought. At the Joy North property soils were sampled from a depth of 10-25 cm below the “zero
datum” or the point at which soil formation is initiated in this environment. The sample is a continuous 15 cm long plug of sediment or a continuous vertical channel of sediment.

Samples are bagged on site without preparation and shipped to SGS Laboratories (Toronto, Ont.) for MMI-M analysis. The MMI-M is a neutral extraction with analytical finish by inductively coupled plasma-mass spectrometry (ICP-MS).

DATA TREATMENT AND PRESENTATION
In exploration surveys where sampling and analytical protocols have been determined by an orientation survey, analytical data is examined visually for analyses less than the lower limit of detection (<LLD) for ICP-MS. Data <LLD are replaced with a value ½ of the LLD for statistical calculations and graphical representation. For most exploration surveys, MMI data is plotted as response ratios. For the calculation of response ratios the 25th percentile is determined using the software program SYSTAT (V10) and the arithmetic mean of the lower quartile used to normalize all analyses. The normalized data represent “response ratios” which are then utilized in subsequent plots. Zeros resulting from this calculation are replaced with “1”. Response ratios are a simple way to compare MMI data collected from different grids, areas and environments from year to year. This normalized approach also significantly removes or "smoothes"
analytical variability due to inconsistent dissolution or instrument instability. For the Joy North survey the interpretation is based on response ratios.

Analytical data as received from Precambrian Ventures/SGS Mineral Services is presented in Appendix 1. Analytical data from analytical duplicates, replicate analyses of standard MMI reference materials and analytical blanks are given in Appendix 2. The 25th percentiles and backgrounds used to calculate response ratios are included in Appendix 2 with the edited analytical data. The variation in concentration of MMI-M suite elements on the Joy North property is discussed in a geochemical narrative based on bubble plots produced with Vertical Mapper, a module within MAPINFO. Individual element plots are presented in Appendix 3.

RESULTS

Data Reproducibility-Analytical Duplicates

Analytical duplicate sample analyses are presented in Appendix 2 and permit an assessment of the ability to reproduce analyses at a wide range in concentration. It is observed that the duplicate pairs exhibit a very high degree of reproducibility across a wide range in concentration for most MMI-M elements including the base and precious metal commodity elements. Any variability that exists between duplicates is generally within +/- 25% and as such is interpreted not to be a hindrance to interpretation and the recognition of bona fide trends in the dataset. Most variability occurs at or near the lower limit of determination. Some analytical duplicate pairs exhibit significant variance at lower concentration levels near the
analytical limits of determination. It is noted that this variability is not uniform for all duplicate pairs and for most pairs the reproducibility for these elements is excellent. When duplicate pairs are assessed using simple linear regression there is a single outlier recognized for the important commodity elements in this study including Cu and Zn. The “Outliers and Influence” plots below illustrate this characteristic. The variability in the Cu analyses is almost nil and the single outlier is not extraordinary in its reproducibility in duplicate pair analyses.
Standard Reference Materials
Standard reference materials analyses were not quoted with the raw analytical data.

Analytical Blank Replicates
Analytical blanks were not quoted with the raw MMI data.

Method of Interpretation
Multivariate statistical and graphical techniques were not utilized for the interpretation of MMI data in the Joy North survey. A simple visual approach was used. The MMI-M data were examined for anomalous spikes or groups of elevated responses for single and/or coincident elements. Element groupings
such as Au-Ag, Au-Ag-Pd, Zn-Cd, Ni-Co, Ni-Co-Ag and Ni-Cu all have relevance to underlying geological conditions and their contained mineralization and are used to assist the rankings of any particular MMI response in terms of follow-up.

When concentration-only data is reviewed unique “spikes” or anomalous responses are assessed. When response ratios are used there are general guidelines brought to bear on the interpretation. Generally, a response ratio of 1-10 times background is interpreted to be of little or no interest, >20 or 20 times background is an initial indication of a low-contrast anomalous response although this "threshold" is not universal. A response of between 20 and 50 is used as a moderate response with RR>50 being referred to as high contrast. Often, pattern recognition in the interpretation of geochemical data is paramount, particularly when interpreting bubble plots or contoured data.

Areal Distribution of Anomalous Responses In The Joy North Survey Area

Vertical Mapper Bubble Plots

The variation in concentration and the resulting morphologies of anomalous responses in the MMI-M data from the Joy North survey area are described in the following section. Plots are produced with Vertical Mapper a module within MAPINFO with bubble plots draped upon a DWG file illustrating pertinent exploration/geological observations. The DWG file was supplied by Mr. Greg Campbell of Precambrian Ventures.
The Joy North MMI-M geochemical narrative uses the shortened “JN” to describe observations on the property. In addition the use of truncated data to assess less conspicuous element trends in lower-contrast responses is used throughout the following section. These responses can often be masked by one or more very large-contrast responses. Accordingly, any response ratio of >100 is re-set to 100 and the data re-plotted. A sample location map with labels is presented below.

Base Metal Responses

**CuRR (1-265RR):** Very high-contrast Cu responses are present on the grid. In non-truncated data the responses appear to form an ovoid or circular anomalous response centered on an east-west-trending coincident magnetic and
HLEM electromagnetic anomaly developed between grid lines 94+00E and 98+00E. Truncated (>100RR) data provides better definition of this ovoid anomaly and indicates the anomaly extends further west to the east end of a second magnetic anomaly that is also centered on the axis of the HLEM anomaly. A linear, more-or-less east-west trending Cu anomaly occurs at the northern limit of sampling although no geophysical anomaly is associated with this 7-sample response which may be open to the north. Better anomaly definition can be expected with MMI surveys undertaken on sampling transects that are <100 m apart. It is noted that the axis of the HLEM anomaly bisects the MMI-M ovoid Cu anomaly. As such it is possible that the HLEM anomaly axis represents a structure developed axial planar to a folded stratigraphy whose MMI signature has produced the ovoid or bi-lobate Cu anomaly described above and depicted below.
ZnRR (1-18RR): The Zn responses from Joy North are characteristically low-contrast with maxima of 18 times background. Notwithstanding the low-contrast responses the same general morphology of the Cu anomaly is reproduced for the Zn anomaly. The axis of the HLEM geophysical anomaly bisects the Zn ovoid anomaly. In the Zn data there appears to be two distinctive east-west linear anomalies; one on the north side of the HLEM anomaly axis and the second on the south side. There is a strong suggestion from the MMI-M Zn data that rather than two separate linear Zn anomalies, these two anomalous trends converge at the west end of the anomaly at line 90+00E. In this case, the north and south Zn trends are actually the geochemical signatures of mineralization contained within
two limbs of a folded stratigraphy and the HLEM anomaly axis approximates an axial planar geophysical response from a structure. The Zn anomaly is effectively coincident with the Cu anomaly.

**CdRR (1-8RR):** Very low-contrast Cd responses are present on the Joy North grid however there is excellent coincidence with Zn responses and accordingly, define a similar ovoid or east-west-trending fold. The highest Cd response is
coincident with the HLEM-magnetic geophysical anomaly just east of grid line 90+00E. Coincident Zn-Cd responses are necessary for the interpretation of these anomalous as being representative of bedrock-hosted Zn mineralization.
**NiRR (1-73RR):** A single-sample NiRR anomaly occurs at the northern limit of sampling on transect 91+50E. There are no other significant responses or trends of responses on the grid.
**CoRR (1-160RR):** The presence of elevated Co responses in MMI-M data has been interpreted as being representative to infer the presence of bedrock-hosted iron-sulphide (pyrite, pyrrhotite) mineralization. The Joy North grid is marked by high-contrast (to 160 times background) Co responses. These responses are restricted to an area north of the HLEM anomaly axis on the northern half of grid/sampling transects 94+00E and 95+00E. In this area these responses will coincide with Cu and Zn anomalies that are the geochemical signatures of mineralization within a bed-specific stratigraphy or the northern limb of a folded stratigraphy.
Precious and Related Metal Responses

**AgRR (1-RR):** An extremely high Ag response of 11,348RR (2040 ppb Ag) occurs on the grid at UTM coordinate 491000E, 5642075N in the southeastern portion of the grid and adjacent line 98+00E. In non-truncated data this is the only response or pattern of response of merit. Truncated data provides a pattern of somewhat scattered areas of multiple samples with elevated Ag responses. There appears to be an east-west trend of elevated Ag south of the HLEM anomaly axis and a similar but lower contrast Ag anomaly on the north side of the axis. The western extremity of the southern Ag anomaly is marked by 5 adjacent samples extending northwards from 98+00N between grid lines 90+00E and 91+00E. This east-west trend of anomalous Ag occurs south of mafic volcanic rocks exposed in outcrop and as such the Ag responses may represent the lithologic signature of a felsic lithology.

The association of a 2.3 ppb/46RR moderate-contrast Au anomaly with the extremely high Ag anomaly in the southeastern grid area is significant and is interpreted as the MMI geochemical signature of precious metals mineralization which may be related to base metal mineralization in the area or as stand-alone precious metal mineralization. More detailed sampling in this area will elucidate this possibility.
DISCUSSION

This MMI-M survey at the JN property has identified a multi-sample low- to high-contrast base metal anomaly. The anomaly does not appear to correspond to the presence of an HLEM anomaly defined by historic exploration but rather tells a different story. These responses are summarized in table form below.
significantly different story. The form of both the Cu and Zn (with Cd) defines a possible folded stratigraphy or two distinct and separate stratigraphic intervals that are mineralized with Cu- and Zn-sulphide mineralization. The folded stratigraphy concept would seem to have credence based on the presence of a fold closure that is present on the western portion of the grid. The historic HLEM anomaly axis may therefore be the geophysical signature of an axial planar structure that transects both the Cu and Zn anomalies. It is noted that based on MMI-M data alone the absence of a significant MMI-M response over the HLEM conductor would tend to suggest that this anomaly should not be the focus of continued exploration.

Regardless of the accuracy of either interpretation the property is marked by separate and distinct follow-up base metal exploration targets. This may very well include precious metal targets as the very high Ag and to a lesser extent Au anomaly from the southeast property area is unusual in its magnitude. The anomaly may be larger and include more than the one sample that is currently responding however the sampling transects have been set at 100 m and as such there is significant area between the sampling transects that if sampled could provide additional details about this anomaly.
CONCLUSIONS AND RECOMMENDATIONS

The following preliminary conclusions are evident from this MMI-M exploration survey on the Joy North property.

1. The survey has successfully demonstrated that MMI-M partial extractions on inorganic and to a lesser extent organic soil samples can isolate MMI-M precious and base metal anomalies. This includes the commodity elements Au, Ag, Cu and Zn.

2. The grid is characterized by a bi-lobate Cu and Zn-Cd base metal anomaly. The bi-lobate description can be interpreted in one of two ways. Firstly, the north and south “halves” of the anomaly are representative of the geochemical signature of two distinctive stratigraphic units that have identical mineralized characteristics and therefore MMI-M signatures, or that these two anomalous responses are two limbs of a folded stratigraphy.

3. The location of the axis of the HLEM conductor is such that it appears to transect the fold described in 2. In such a way as to be axial planar. This is the exact location where a structure can be expected although the absence of an MMI-M geochemical signature related to this axis suggests that this feature is not a follow-up exploration target.
4. The single-sample Ag-Au anomaly located in the southeast portion of the grid is of exceptional tenor although it is a single sample anomaly with no adjacent elevated responses. This might be explained by the significant distance of 100 m between sampling transects. More detailed sampling on transects at 25 m will provide details regarding this precious metal response and whether it is worth pursuing.

5. Sampling materials collected for MMI analysis are effective and appropriate sample media for an MMI survey.

6. The selection of 9 MMI-M elements for this study has been successful in defining significant precious and base metal responses.

7. The analyses generated by the MMI-M extraction are accurate and precise in terms of analytical duplicates and are effective for the detection of low- to high-contrast MMI-M geochemical anomalies.

The recommendations that flow from this survey are as follows:

1. The MMI process does not indicate the grade of mineralization responsible for the production of an MMI anomaly nor does it indicate the depth of the source region for the anomaly. Accordingly, it is strongly recommended that an attempt at modeling the geological setting of the target mineralization based on their geophysical responses with emphasis on depth to source be
undertaken prior to a diamond drill program. This exercise can greatly assist the drilling when attempting to provide explanations for the geological context of geophysical and MMI anomalies. The attitude of the target can be effectively delineated in this manner.

2. Prior to diamond drill testing the MMI dataset should be integrated with all available geophysical surveys so that multivariate drill targets can be determined.

3. The presence of the multi-sample Cu-Zn anomaly is an important follow-up target and may be indicative of folded stratigraphy. This may have significant implications for thickness of mineralized sections. A geophysical survey capable of delineating stratigraphy should be undertaken to deduce whether there is a folded stratigraphy on the property.

4. Detailed (25 m x 25 m) sampling should be undertaken in the vicinity of the Ag-Au anomaly.

5. Any additional MMI-M surveys should be undertaken using sampling protocols established during this exploration survey.

6. Orientation surveys should be undertaken prior to a full-blown exploration program with a significant MMI component. This orientation program should
be based on vertical profiling to ascertain the most representative and significant sample depth for the isolation of a bona fide anomaly.

7. The inclusion of a soil sample to act as a standard in the future is an absolute necessity if the quality of analytical data is to be monitored with field duplicates. The necessary standards should have a significant range in concentration for the commodity elements of interest.
CERTIFICATE of AUTHOR


1. I am currently a self-employed Consulting Geologist/Geochemist with an office at:

   50 Dobals Road North,
   Lac du Bonnet, Manitoba, Canada R0E 1A0.

2. I graduated with a degree in Honors Geology (B.Sc.) from the University of Windsor (Windsor, Ont.) in 1975. In addition, I earned a M.Sc. in geophysics and geochemistry from the University of Windsor and a Doctor of Philosophy (Ph.D.) in exploration geochemistry from the School of Applied Geology, University of New South Wales (Sydney) in 1982.

3. I am a Member of the Association of Professional Engineers and Geoscientists of Manitoba. I am also a Fellow of the Association of Applied Geochemists, and a Member of the Prospectors and Developers Association of Canada. I am registered as a Certified Professional Geologist ("C.P.G.") with the American Institute of Professional Geologists (Westminster, Colorado, U.S.A.).

4. I have worked as a geologist for a total of thirty-three years since my graduation from university; as a graduate student, as an employee of major and junior mining companies, the Manitoba Geological Survey and as an independent consultant.

5. I have read the definition of “qualified person” set out in National Instrument 43-101 (“NI 43-101”) and certify that by reason of my education, affiliation with a professional association (as defined in NI 43-101) and past relevant work experience, I fulfill the requirements to be a “qualified person” for the purposes of NI 43-101.

6. I am responsible for the preparation of the technical report titled "Results Of A Mobile Metal Ions Process (MMI-M) Soil Geochemical Survey On The Joy..."
Mount Morgan Resources Ltd. “Accurate and Precise Geochemistry in Mineral Exploration”

North-Gerry Lake Area (KRL1143648) Base and Precious Metal Property, Sault Ste. Marie Mining Division, Red Lake, Northwest Ontario”.

7. I have not had prior involvement with the property that is the subject of the Technical Report.

8. I am not aware of any material fact or material change with respect to the subject matter of the Technical Report that is not reflected in the Technical Report, the omission to disclose which makes the Technical Report misleading.

9. I am independent of the issuer applying all of the tests in section 1.5 of National Instrument 43-101.

10. I consent to the filing of the Technical Report with any stock exchanges or other regulatory authority and any publication by them, including electronic publication in the public company files on the web sites accessible by the public, of the Technical Report.

Dated this 26th Day of March, 2009.

________________________.
Signature of Qualified Person

“M.A.F. Fedikow”
Print name of Qualified Person