Geophysical Survey Interpretation Report

Tuned Gradient /
Insight Section DCIP and Ground Magnetic Surveys

On the

The Shining Tree Project
Shining Tree, ON
on behalf of

Pro Minerals Inc.
Vancouver, BC

Marty Kratchovil
David J.W. Dawson
Insight Geophysics Inc.
May 2010
Table of Contents

INTRODUCTION .. 4

SURVEY GRID: PROPERTY LOCATION .. 5

SURVEY PARAMETERS: ... 6

SURVEY EXECUTION ... 8

DRILLING FOCUS / RECOMMENDATIONS ... 12

APPENDIX A : INSTRUMENT SPECIFICATIONS ... 15

APPENDIX B: RAW DATA PLOTS .. 18

STATEMENT OF QUALIFICATIONS .. 25

List of Figures

FIGURE 1 PUBLIC DOMAIN 1STVD MAGNETICS WITH KNOWN PRODUCERS ALL COMMODITIES LOCATION MAP 5
FIGURE 2 ARRAY CARTOON FOR TUNED GRADIENT AND TYPICAL INSIGHT ARRAY SETUP 6
FIGURE 3 GRID REFERENCE SYSTEM FOR THIS REPORT. BLUE CIRCLE MAGNETIC READING, FILLED CIRCLE TUNED
GRADIENT MEASUREMENT, INVERTED TRIANGLE GREEN - INSIGHT SECTION; INVERTED TRIANGLE YELLOW;
CONFIRMATION OF UTM BASELINE ... 10
FIGURE 4 EXAMPLE OF MONITORING TUNED GRADIENT FOR SPATIAL RELEVANCE AND TIME DECAY 11
FIGURE 5 EXAMPLE OF QUALITY CONTROL OF GROUND TOTAL FIELD MAGNETIC SURVEY 11
FIGURE 6 GEOPHYSICAL SUMMARY MAP IN PLAN ... 12
FIGURE 7 GEOPHYSICAL REPRESENTATION OF GENERAL GEOLOGIC SECTION 100E 13
FIGURE 8 GEOPHYSICAL REPRESENTATION OF THE GENERAL GEOLOGIC SECTION 400W 13
FIGURE 9 GEOPHYSICAL SUMMARY PLAN IN RELATION WITH GROUND TFM [NT] 14

List of Tables

TABLE 1 RECEIVER WINDOW SPECIFICS .. 7
TABLE 2 SURVEY COVERAGE ... 10
TABLE 3 FILE NAME: C94 GROUND MAG WITH UTM ROTATION AND TRANSLATION.CSV N=834 24
TABLE 4 FILE NAME: GRADIENT.GDB N=902 .. 24
TABLE 5 FILE NAME: C94 IDEAL GRID IS400W.GDB N=952.. 24
INTRODUCTION

General Information

<table>
<thead>
<tr>
<th>Project Name:</th>
<th>The Shining Tree Project</th>
</tr>
</thead>
<tbody>
<tr>
<td>Survey Type:</td>
<td>Time Domain Induced Polarization / Resistivity</td>
</tr>
<tr>
<td></td>
<td>Tuned Gradient / Insight Sectional</td>
</tr>
<tr>
<td></td>
<td>Ground Magnetic Surveys</td>
</tr>
<tr>
<td>Client:</td>
<td>Pro Minerals Inc.</td>
</tr>
<tr>
<td></td>
<td>1600 - 543 Granville Street</td>
</tr>
<tr>
<td></td>
<td>Vancouver, British Columbia</td>
</tr>
<tr>
<td></td>
<td>V6C 1X8</td>
</tr>
</tbody>
</table>

Client Representatives: Mr. Adrian O'Brien

Spatial and Mine Claim source:

Robert D. Stewart, P. Geo.
330 Ridgevale Drive
Bedford, Nova Scotia, CANADA, B4A 3M1

Property Access: The property was accessed daily by 4 x 4 vehicles.

Report Authors: This report is primarily based on the work of Marty Kratchovil and Jim Frobes Jr. These data have been quality controlled by David J.W. Dawson. The interpretive portion and opinions within this report are primarily based upon the data manipulation of the vertical sounding DCIP technique: The Insight Array; by David J.W. Dawson. djwdawson@insightgeophysics.com
Survey Grid: Property Location

Property Location

- Province: Ontario

Grid Information

- Established: Prior to and during survey
- Co-ordinate System: Nad83 Zone 17N or picket numbers
- Line Direction: UTM grid north +5 degrees East
- Line Separation: 100 m
- Station Interval: picketed @ 25 m

GPS Reference Points

- All grid referencing for this report has been controlled by:
 - Robert D. Stewart, P. Geo.
 Bedford, Nova Scotia, CANADA, B4A 3M1
 email: stewartrd@msn.com
SURVEY PARAMETERS:

Specifications DCIP

- Array Type: Tuned Gradient and Insight Array
- AB size: maximum 3000m
- MN (Rx dipole spacing): 25m
- Sampling Interval: 25m

The Insight Array is a development of the principles of Insight Geophysics Inc. Coeval development has been referred to The Wenner – Schlumberger array as researched by Pazdirek and Blaha, 1996 and cited by Dr. M. H. Loke in Tutorial: 2-D and 3-D electrical imaging surveys. Copyright 1996 – 2001; Revision date: 1 Sept 2001. The presentation of the Insight Array data is unique to Insight Geophysics Inc. [The Insight Section] and proprietary.

The Gradient Array is a modified Schlumberger array which is best utilized for covering large areas http://www.zonge.com/PDF_Papers/Intro_IP.pdf. The Tuned Gradient Array is an application with proprietary developments by Insight Geophysical Inc.

![Array cartoon for Tuned Gradient and typical Insight Array setup](image)

Instrumentation

- Receiver: Elrec Pro (refer to Appendix B; Instrument Specifications)
Transmitter: Huntec 7500 (refer to Appendix B; Instrument Specifications)

Parameters

- Transmitted Waveform: Square wave @ 0.0625 Hz (4 sec\(^1\))
 50% duty cycle
- Receiver Sampling: Semi log windows (20 windows)

<table>
<thead>
<tr>
<th>Window</th>
<th>Width (ms)</th>
<th>Window</th>
<th>Width (ms)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mdly</td>
<td>160</td>
<td>11</td>
<td>160</td>
</tr>
<tr>
<td>1</td>
<td>80</td>
<td>12</td>
<td>160</td>
</tr>
<tr>
<td>2</td>
<td>80</td>
<td>13</td>
<td>160</td>
</tr>
<tr>
<td>3</td>
<td>80</td>
<td>14</td>
<td>160</td>
</tr>
<tr>
<td>4</td>
<td>80</td>
<td>15</td>
<td>320</td>
</tr>
<tr>
<td>5</td>
<td>80</td>
<td>16</td>
<td>320</td>
</tr>
<tr>
<td>6</td>
<td>80</td>
<td>17</td>
<td>320</td>
</tr>
<tr>
<td>7</td>
<td>80</td>
<td>18</td>
<td>320</td>
</tr>
<tr>
<td>8</td>
<td>160</td>
<td>19</td>
<td>320</td>
</tr>
<tr>
<td>9</td>
<td>160</td>
<td>20</td>
<td>320</td>
</tr>
<tr>
<td>10</td>
<td>160</td>
<td>20</td>
<td>320</td>
</tr>
<tr>
<td>TOTAL</td>
<td>3680ms</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 1 Receiver window specifics

Measured Parameters

- IP measured Parameter: Chargeablity in mV/V
- Resistivity measured Parameters: Primary Voltage in mV and Transmitted Current in mA.

Specifications Total Field Ground Magnetics

- Appendix A
- Sample Interval: 12.5m
- Unit: nT [the nanoTesla]

\(^1\) Please note industry standard dpdp / pdp surveys are sampled ‘2 sec’ or 1Hz primary waves.
Survey Execution

Generalities

Survey Dates: March 13th through March 23rd, 2010
Survey Days: 9 days
Weather Days: 0 days
Mob Days: 1 days
Personnel: Geophysical Operators
Marty Kratchovil
Jim Frobes Jr.

Survey Coverage

The following tables contain the line extents of the survey coverage. They do not include repeated readings in the total distance calculations. Approximately 5% of the data was repeated in the field at the time of collection for quality control purposes.

<table>
<thead>
<tr>
<th>Survey</th>
<th>Line</th>
<th>Min cover</th>
<th>Max cover</th>
<th># of levels</th>
<th>meters</th>
<th>Survey</th>
<th>Line</th>
<th>Min cover</th>
<th>Max cover</th>
<th>meters</th>
</tr>
</thead>
<tbody>
<tr>
<td>IS</td>
<td>100E</td>
<td>200S</td>
<td>550N</td>
<td>5</td>
<td>750</td>
<td>IS</td>
<td>100E</td>
<td>200S</td>
<td>550N</td>
<td></td>
</tr>
<tr>
<td>IS</td>
<td>100E</td>
<td>200S</td>
<td>550N</td>
<td>12</td>
<td></td>
<td>IS</td>
<td>100E</td>
<td>200S</td>
<td>550N</td>
<td></td>
</tr>
<tr>
<td>Grad</td>
<td>400E</td>
<td>75S</td>
<td>300N</td>
<td>375</td>
<td></td>
<td>Grad</td>
<td>350E</td>
<td>100S</td>
<td>300N</td>
<td>400</td>
</tr>
<tr>
<td>Grad</td>
<td>300E</td>
<td>100S</td>
<td>300N</td>
<td>400</td>
<td></td>
<td>Grad</td>
<td>200E</td>
<td>125S</td>
<td>325N</td>
<td>450</td>
</tr>
<tr>
<td>Grad</td>
<td>200E</td>
<td>125S</td>
<td>325N</td>
<td>75</td>
<td></td>
<td>Grad</td>
<td>0E</td>
<td>100N</td>
<td>250N</td>
<td>150</td>
</tr>
<tr>
<td>Grad</td>
<td>100E</td>
<td>200S</td>
<td>550N</td>
<td>750</td>
<td></td>
<td>Grad</td>
<td>100E</td>
<td>550N</td>
<td>625N</td>
<td>75</td>
</tr>
<tr>
<td>Grad</td>
<td>100E</td>
<td>550N</td>
<td>625N</td>
<td>300</td>
<td></td>
<td>Grad</td>
<td>200E</td>
<td>325N</td>
<td>625N</td>
<td>300</td>
</tr>
<tr>
<td>Grad</td>
<td>0E</td>
<td>250N</td>
<td>637.5N</td>
<td>387.5</td>
<td></td>
<td>Grad</td>
<td>100W</td>
<td>100S</td>
<td>650N</td>
<td>750</td>
</tr>
<tr>
<td>Grad</td>
<td>200W</td>
<td>100S</td>
<td>50N</td>
<td>150</td>
<td></td>
<td>Mag</td>
<td>400E</td>
<td>75S</td>
<td>300N</td>
<td>375</td>
</tr>
<tr>
<td>Mag</td>
<td>350E</td>
<td>100S</td>
<td>275N</td>
<td>375</td>
<td></td>
<td>Mag</td>
<td>300E</td>
<td>100S</td>
<td>275N</td>
<td>375</td>
</tr>
<tr>
<td>Mag</td>
<td>200E</td>
<td>112.5S</td>
<td>625N</td>
<td>737.5</td>
<td></td>
<td>Mag</td>
<td>100E</td>
<td>150S</td>
<td>625N</td>
<td>775</td>
</tr>
<tr>
<td>Mag</td>
<td>0E</td>
<td>162.5S</td>
<td>625N</td>
<td>787.5</td>
<td></td>
<td>Mag</td>
<td>0N</td>
<td>650W</td>
<td>425E</td>
<td>1075</td>
</tr>
<tr>
<td>Grad</td>
<td>300W</td>
<td>100S</td>
<td>650N</td>
<td>750</td>
<td></td>
<td>Mag</td>
<td>0N</td>
<td>650W</td>
<td>425E</td>
<td>1075</td>
</tr>
<tr>
<td>Grad</td>
<td>400W</td>
<td>100S</td>
<td>650N</td>
<td>750</td>
<td></td>
<td>Mag</td>
<td>100W</td>
<td>125S</td>
<td>637.5N</td>
<td>762.5</td>
</tr>
<tr>
<td>Grad</td>
<td>500W</td>
<td>100S</td>
<td>650N</td>
<td>750</td>
<td></td>
<td>Mag</td>
<td>200W</td>
<td>100S</td>
<td>637.5N</td>
<td>737.5</td>
</tr>
<tr>
<td>Grad</td>
<td>600W</td>
<td>0N</td>
<td>650N</td>
<td>650</td>
<td></td>
<td>Mag</td>
<td>300W</td>
<td>100S</td>
<td>625N</td>
<td>725</td>
</tr>
<tr>
<td>Grad IS</td>
<td></td>
<td></td>
<td></td>
<td>Mag</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---------</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>-----</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td></td>
<td></td>
</tr>
<tr>
<td>200W 50N 650N</td>
<td>600</td>
<td>Mag 600W 25S 637.5N 662.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>400W 125N 625N</td>
<td>6</td>
<td>Mag 400W 137.5S 637.5N 775</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>500W 125N 625N</td>
<td>16</td>
<td>Mag 500W 100S 637.5N 737.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Tuned Gradient</th>
<th>7687.5 M</th>
</tr>
</thead>
<tbody>
<tr>
<td>Insight Section</td>
<td>1500 M</td>
</tr>
<tr>
<td>Ground TFM</td>
<td>8900 M</td>
</tr>
</tbody>
</table>

8900 m
Table 2 Survey coverage

Figure 3 Grid reference system for this report. Blue circle magnetic reading, filled circle tuned gradient measurement, inverted triangle green - Insight Section; inverted triangle yellow; confirmation of UTM baseline

Quality Control
Preliminary processing of the IP data was handled with these licensed software packages:

- Prosys software.
- Oasis Montaj
- Geosoft Target
- MatLab
- UBC 2d inversion software

Data Comments

Ground proofing suspicious cultural anomalies near L100E from 1+50N through 2+00N was confirmed by both Insight Array and Tuned Gradient Array.

Abrupt gradients have been left in the Ground Total Field Magnetic Surveys. This area [exploration region] has a history of variable sub parallel to line magnetic structures. All GTRM high gradient features must be ground proofed and are not the primary focus of the conclusions within this report.
Summary

Green inverted triangles [5] are points for ground proofing for sulphide mineralization in outcrop or trench. Line 400W near 200N, 350N and 435N; Line 100E near 125N through 200N and 335N.

Section A – A’ [Figure 6] is highlighted in Figure 7. It is interpreted the primary mineralization targets are associated with the shallow North dipping resistor [more competent] as outline by the dashed red lines. This is believed that his mineral package comes to outcrop surface in multiple locations.
Figure 7 Geophysical representation of general geologic section 100E

Figure 8 Geophysical representation of the general geologic section 400W
Successful results from ground proofing the outlined green inverted triangle locations could lead to the conclusion that the DCIP Insight technology has successfully directly detected these styles of mineralization. Sections 100E and 400W interpretation summaries would be combined with all geologic information with the objective of planning a shallow [<300m drill holes vertical length] exploratory drill program. Emphasis would be placed on drilling the red dashed lines along section.

Insight would like to thank Pro Minerals Inc. and Robert Stewart for their generous assistance during this successful project.

Respectfully Submitted

David J.W. Dawson
Chief Geophysicist
Insight Geophysics Inc
Wednesday, 12 May 2010
APPENDIX A: INSTRUMENT SPECIFICATIONS

- ELREC PRO Ten channel IP receiver

Terraplus is pleased to announce the ELREC PRO, its new ten channel IP receiver, featuring 20 chargeability windows and a graphic LCD display.

The following improvements have been introduced in this new receiver with respect to the previous ELREC 10 unit:

HARDWARE FEATURES:

- The size has been reduced by 4 cm in height: 31x 21x 21 cm
- The power consumption has been reduced by a ratio of three, which means that with less battery it is possible to have a longer autonomy.
- As a result, the new system is 2.5 kg lighter than the ELREC 10, with a weight of 5.5 kg only.
- The data (21 000 readings max.) are stored in flash memories not requiring any lithium battery for safeguard.

- The new system is compatible with the existing SWITCH Plus boxes for automatic switching of electrodes according to preset sequences. In such a case, the receiver is used as a single channel unit; with SWITCH Pro boxes (to be developed next), the full ten channel capability of the ELREC PRO will be usable for a higher acquisition speed.

SOFTWARE FEATURES:

- Each new reading is stored as a specific unit file, making easier the grouping of readings corresponding to a given profile, specially for the last (edge) points of a line obtained with a smaller number of dipoles than the main part of the profile.
The data format is compatible with the PROSYS software, which means that the operator can easily visualize the numerical values of the data, automatically sort them according to the standard deviation of the chargeability measurement, merge two files stored under different names, introduce the elevation of each electrode, etc.

The ELECTRE II software can be used to define and upload preset sequences of measurements according to any type of electrode array.

Huntec IP Transmitter 7500

- **Power:** 96-144 V line to neutral, 3 phase, 400 Hz (from Huntec generator set), 7500W
- **Output:** Voltage: 100-3200 V dc in 10 steps
- **Current:** 16A maximum on low ranges
- **Current regulator:** < 0.1% current change for 10% change in load resistance
- **Output frequency:** 1/16 Hz to 1 Hz (time domain and complex resistivity); 1/16 Hz to 4 Hz (frequency domain)
- **Frequency accuracy:** 50 ppm, -300C to 600C
- **Output duty cycle:** (Defined as tON/(tON + tOFF)) ½ to 15/16 in increments of 1/16 (time domain);
 15/16 (complex resistivity); ¾ (frequency domain)
- **Output current meter:** Two ranges; 0-10A, 0-20A
- **Ground resistance meter:** Two ranges; 0-10 kohm, 0-100 kohm
- **Input voltage meter:** 0-150V
- **Dummy load:** Two levels; 2000W, 6000W
- **Temperature range:** -34.0C to 50.0C
- **Size:** 53 x 43 x 43cm
- **Weight:** 50 kg

Magnetometer
Introduction

The GSM-19 v7.0 Overhauser instrument is the total field magnetometer / gradiometer of choice in today's earth science environment - representing a unique blend of physics, data quality, operational efficiency, system design and options that clearly differentiate it from other quantum magnetometers.

With data quality exceeding standard proton precession and comparable to cutting edge optically pumped cesium units, the GSM-19 is a standard (or emerging standard) in many fields, including:

+ Mineral exploration (ground and airborne base station)
+ Environmental and engineering
+ Pipeline mapping
+ Unexploded Ordnance Detection
+ Archeology
+ Magnetic observatory measurements
+ Volcanology and earthquake prediction

Overhauser effect magnetometers are essentially proton precession devices except that they produce an order-of-magnitude greater sensitivity. These "supercharged" quantum magnetometers also deliver high absolute accuracy, rapid cycling (up to 5 readings / second), and exceptionally low power consumption.

The Overhauser effect occurs when a special liquid (with unpaired electrons) is combined with hydrogen atoms and then exposed to secondary polarization from a radio frequency (RF) magnetic field.

The unpaired electrons transfer their strong polarization to hydrogen atoms, thereby generating a strong precession signal - that is ideal for very high-sensitivity total field measurement.

In comparison with proton precession methods, RF signal generation also keeps power consumption to an absolute minimum and reduces noise (i.e. generating RF frequencies are well out of the bandwidth of the precession signal).

In addition, polarization and signal measurement can occur simultaneously - which enables faster, sequential measurements. This, in turn, facilitates advanced statistical averaging over the sampling period and/or increased cycling rates (i.e. sampling speed).

Taking Advantage of the Overhauser Effect

The unique Overhauser unit blends physics, data quality, operational efficiency, system design and options into an instrumentation package that... exceeds proton precession and matches costlier optically pumped cesium capabilities.

And the latest v7.0 technology upgrades provide even more value, including:

- Data export in standard XYZ (i.e. line-oriented) format for easy use in standard commercial software programs
- Programmable export format for full control over output
- GPS elevation values provide input for geophysical modeling
- <1.5m standard GPS for high-resolution surveying
- <1.0 OmniStar GPS
- <0.7m for Newly introduced CDGPS
- Multi-sensor capability for advanced surveys to resolve target geometry
- Picket marketing / annotation for capturing related surveying information on the go.

And all of these technologies come complete with the most attractive prices and warranty in the business!
Insight Geophysics Inc. is especially committed to data openness and availability. All raw data will be made available for this report. Please see the following examples.
Figure 10: Final field data plot of total Chargeability, L400W

Figure 11: Final field data plot of apparent resistivity, L400W
Figure 12: Final field data plot of chargeability, L100E

Figure 13: Final field data plot of apparent resistivity, L100E
Figure 14: Tuned gradient total chargeability and overlay

Figure 15: Tuned Gradient Apparent Resistivity and overlay
Figure 16: Ground Magnetics and overlay

Figure 17: Tuned Gradient and Ground TFM survey summary
Figure 18: Survey Grid with Total Field Magnetics in nT

All raw data is available in Geosoft database or Excel csv format.

<table>
<thead>
<tr>
<th>X</th>
<th>Y</th>
<th>line</th>
<th>station</th>
<th>nT</th>
<th>sq</th>
<th>cor_nT</th>
<th>time</th>
<th>__X</th>
<th>__Y</th>
</tr>
</thead>
<tbody>
<tr>
<td>483479.4</td>
<td>5271771</td>
<td>00400E</td>
<td>00075.00S</td>
<td>56152.7</td>
<td>99</td>
<td>56455.6</td>
<td>110722</td>
<td>400</td>
<td>-75</td>
</tr>
<tr>
<td>483480.3</td>
<td>5271783</td>
<td>00400E</td>
<td>00062.50S</td>
<td>56158.28</td>
<td>99</td>
<td>56461.03</td>
<td>110658</td>
<td>400</td>
<td>-62.5</td>
</tr>
<tr>
<td>483481.3</td>
<td>5271796</td>
<td>00400E</td>
<td>00050.00S</td>
<td>56172.86</td>
<td>99</td>
<td>56475.64</td>
<td>110630</td>
<td>400</td>
<td>-50</td>
</tr>
<tr>
<td>483482.2</td>
<td>5271808</td>
<td>00400E</td>
<td>00037.50S</td>
<td>56149.43</td>
<td>99</td>
<td>56452.34</td>
<td>110610</td>
<td>400</td>
<td>-37.5</td>
</tr>
<tr>
<td>483483.2</td>
<td>5271821</td>
<td>00400E</td>
<td>00025.00S</td>
<td>56135.92</td>
<td>99</td>
<td>56438.92</td>
<td>110542</td>
<td>400</td>
<td>-25</td>
</tr>
<tr>
<td>483484.1</td>
<td>5271833</td>
<td>00400E</td>
<td>00012.50S</td>
<td>56152.48</td>
<td>99</td>
<td>56455.68</td>
<td>110514</td>
<td>400</td>
<td>-12.5</td>
</tr>
<tr>
<td>483485</td>
<td>5271846</td>
<td>00400E</td>
<td>00000.00N</td>
<td>56164.35</td>
<td>99</td>
<td>56467.51</td>
<td>110454</td>
<td>400</td>
<td>0</td>
</tr>
<tr>
<td>483485</td>
<td>5271846</td>
<td>00000N</td>
<td>00400.00E</td>
<td>56146.51</td>
<td>99</td>
<td>56451.65</td>
<td>111414</td>
<td>400</td>
<td>0</td>
</tr>
<tr>
<td>483486</td>
<td>5271858</td>
<td>00400E</td>
<td>00012.50N</td>
<td>56200.13</td>
<td>99</td>
<td>56503.49</td>
<td>110430</td>
<td>400</td>
<td>12.5</td>
</tr>
<tr>
<td>483486.9</td>
<td>5271870</td>
<td>00400E</td>
<td>00025.00N</td>
<td>56174.93</td>
<td>79</td>
<td>56478.13</td>
<td>110406</td>
<td>400</td>
<td>25</td>
</tr>
<tr>
<td>483487.8</td>
<td>5271883</td>
<td>00400E</td>
<td>00037.50N</td>
<td>56168.02</td>
<td>99</td>
<td>56476.55</td>
<td>110342</td>
<td>400</td>
<td>37.5</td>
</tr>
<tr>
<td>483488.8</td>
<td>5271895</td>
<td>00400E</td>
<td>00050.00N</td>
<td>56202.91</td>
<td>99</td>
<td>56506.13</td>
<td>110322</td>
<td>400</td>
<td>50</td>
</tr>
<tr>
<td>483489.7</td>
<td>5271908</td>
<td>00400E</td>
<td>00062.50N</td>
<td>56160.46</td>
<td>99</td>
<td>56458.24</td>
<td>110302</td>
<td>400</td>
<td>62.5</td>
</tr>
<tr>
<td>483490.7</td>
<td>5271920</td>
<td>00400E</td>
<td>00075.00N</td>
<td>56169.69</td>
<td>99</td>
<td>56470.91</td>
<td>110238</td>
<td>400</td>
<td>75</td>
</tr>
<tr>
<td>483491.6</td>
<td>5271933</td>
<td>00400E</td>
<td>00087.50N</td>
<td>56196.25</td>
<td>99</td>
<td>56500.63</td>
<td>110214</td>
<td>400</td>
<td>87.5</td>
</tr>
<tr>
<td>483492.5</td>
<td>5271945</td>
<td>00400E</td>
<td>00100.00N</td>
<td>56155.9</td>
<td>99</td>
<td>56463.32</td>
<td>110154</td>
<td>400</td>
<td>100</td>
</tr>
<tr>
<td>483493.5</td>
<td>5271958</td>
<td>00400E</td>
<td>00112.50N</td>
<td>56190.26</td>
<td>99</td>
<td>56493.28</td>
<td>110126</td>
<td>400</td>
<td>112.5</td>
</tr>
</tbody>
</table>
Table 3

<table>
<thead>
<tr>
<th>C</th>
<th>LMB</th>
<th>ID</th>
<th>INSIGHT GEOPHYSICS INC.</th>
<th>PRO MINERALS INC.</th>
<th>24</th>
<th>MAY 2010</th>
</tr>
</thead>
<tbody>
<tr>
<td>Table 3 File name:</td>
<td>C94 ground mag with UTM rotation and translation.csv</td>
<td>N=834</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 4

<table>
<thead>
<tr>
<th>C</th>
<th>LMB</th>
<th>ID</th>
<th>INSIGHT GEOPHYSICS INC.</th>
<th>PRO MINERALS INC.</th>
<th>24</th>
<th>MAY 2010</th>
</tr>
</thead>
<tbody>
<tr>
<td>Table 4 File name:</td>
<td>Gradient.gdb</td>
<td>N=902</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 5

<table>
<thead>
<tr>
<th>C</th>
<th>LMB</th>
<th>ID</th>
<th>INSIGHT GEOPHYSICS INC.</th>
<th>PRO MINERALS INC.</th>
<th>24</th>
<th>MAY 2010</th>
</tr>
</thead>
<tbody>
<tr>
<td>Table 5 File name:</td>
<td>C94 ideal grid IS400W.gdb</td>
<td>N=952</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
STATEMENT OF QUALIFICATIONS

- I have a Bachelor of Science Degree [Geology] from Lakehead University, 1985
- I have successfully completed all the required undergraduate courses for the Bachelor of Science Degree [Geophysics] from the University of Western Ontario; 1986-87.
- I have worked continuously in these fields; concentrating on hard rock mineral exploration, since 1985.
- I have not worked in Australia or Antarctica.
- I am a contracted service provider to Pro Minerals in the professional capacity of project design, quality control and interpretive data manipulations and conclusions presented within this report.
- I have no equity interest in Pro Minerals Inc.
- All statements made within and surrounding this report have been made with my best intent and abilities.

Respectfully submitted;

David J.W. Dawson
Insight Geophysics Inc.

Wednesday, 12 May 2010
Legend:
Green inverted triangles [5] are points for ground proofing for sulphide mineralization in outcrop or trench. Line 400W near 200N; 350N and 435N; Line 100E near 125N through 200N and 335N.
Blue inverted triangles are relative maxima [peaks] in the Tuned Gradient apparent resistivity. [note 13.5 kohm*m contour]
Red inverted triangles are relative maximums in the Tuned Gradient chargeability. [note 10 mV/V contour]
Yellow inverted triangles are the positional reference points originally used to locate tenn data in NAD 83.
An idealized Grid N-S section of L100W 200S through 550N is inserted below.
Overprinted numbers demonstrate data reproducibility and that outlying non-re-producible values were culled.

Pro Minerals Inc.
The Shining Tree Project
Tuned Gradient and Ground TFM surveys
Plan GIS C 94 UTM Local.map
Geophysical Summary Interpretation Overlay/Tuned Gradient Chargeability
May 2010
Insight Geophysics Inc.
Legend:

Green inverted triangles [5] are points for ground proofing for sulphide mineralization in outcrop or trench. Line 400W near 200N, 350N and 435N; Line 100E near 125N through 200N and 335N.

Blue inverted triangles are relative maximums [peaks] in the Tuned Gradient apparent resistivity. [note 13.6 kohm*m contour]

Red inverted triangles are relative maximums in the Tuned Gradient chargeability. [note 10 mV/V contour]

Yellow inverted triangles are the positional reference points originally used to locate them within NAD 83.

An idealized Grid N-S section of L100W 200S through 550N is inserted below.

Overprinted numbers demonstrate data repetitiveness and that outlying non-re producible values were culled.
Legend:
Green inverted triangles [5] are points for ground proofing for sulphide mineralization in outcrop or trench. Line 400W near 200N, 350N and 435N; Line 100E near 125N through 200N and 235N.
Blue inverted triangles are relative maxima [peaks] in the Tuned Gradient apparent resistivity [note 13.5 kohm* m contour]
Red inverted triangles are relative maxima in the Tuned Gradient chargeability [note 10 mV/N contour]
Yellow inverted triangles are the positional reference points originally used to locate these data in NAD 83.
An idealized Grid N-S section of L 100W 200S through 550N is inserted below.
Overprinted numbers demonstrate data repetibility and that outlying non-reproductive values were culled.

Pro Minerals Inc.
The Shining Tree Project
Tuned Gradient and Ground TFM surveys
Plan GIS C 94 UTM Local.map
Geophysical Summary Interpretation Overlay + Ground Magnetics
May 2010
Insight Geophysics Inc.
The Shining Tree Project
Tuned Gradient and Ground TFM surveys
Plan GIS C 94 UTM Local.map
Geophysical Summary Interpretation Overlay + Ground Magnetics
May 2010
Pro Minerals Inc.
Insight Geophysics Inc.
Pro Minerals Inc.
The Shining Tree Project
Tuned Gradient and Ground TFM surveys
Plan GIS C 94 UTM Local.map
Geophysical Summary Interpretation Overlay + Ground Magnetics
May 2010
Insight Geophysics Inc.
blue dashed lines are actual claim fabric and idealized claim fabric from claim maps

PRO MINERALS INC.
Beilby Lake Property, Shining Tree Project
Churchill Twp; Larder Lake Mining Division, Ontario

ALL GRID LINES ON CLAIM FABRIC
BASED ON GPS MAPPING BY
ROBERT D STEWART P.Geo.
PRO MINERALS INC.
Beilby Lake Property, Shining Tree Project
Churchill Twp; Larder Lake Mining Division, Ontario

GRID STATIONS WITH CLAIM FABRIC EVIDENCE
BASED ON GPS MAPPING BY R. D. STEWART P.Geo.
Pro Minerals Inc.
Beilby Lake Property, Shining Tree Project
Churchill Township, Ontario
Posted Chargeability Gradient IP Readings

Station Unique Gradient IP Readings From Insight Geophysics Inc. Winter 2010 survey
Claim and grid station locations based on April 2010 mapping by Robert D Stewart, P.Geo.
Station Unique Gradient IP Readings From Insight Geophysics Inc. Winter 2010 survey
Claim and grid station locations based on April 2010 mapping by Robert D Stewart, P.Geo.

Pro Minerals Inc.
Belby Lake Property, Shining Tree Project
Churchill Township, Ontario

Posted Apparent Resistivity Gradient IP Readings