Report on a Helicopter-Borne AeroTEM II Electromagnetic & Magnetometer Survey

Aeroquest Job # 05046
Shrimp Lake Project
Tahoe Lake Project
Red Lake Area, Ontario
53C/07

for
Canstar Resources Inc.

canstar
resources inc.

2 Toronto Street, Suite 306
Toronto, ON, Canada M5C 2B6
Tel: (416) 363-4377
Fax: (416) 363-4606

by

AEROQUEST LIMITED

4-845 Main Street East
Milton, Ontario, L9T 3Z3
Tel: (905) 693-9129 Fax: (905) 693-9128
www.aeroquestsurveys.com
December, 2005
Report on a Helicopter-Borne AeroTEM II Electromagnetic and Magnetic Survey

Aeroquest Job # 05046
Shrimp Lake Project
Tahoe Lake Project
Red Lake Area, Ontario
53C/07

for

Canstar Resources Inc.

2 Toronto Street, Suite 306
Toronto, ON, Canada M5C 2B6
Tel: (416) 363-4377
Fax: (416) 363-4606

by

AEROQUEST LIMITED

4-845 Main Street East
Milton, Ontario, L9T 3Z3
Tel: (905) 693-9129 Fax: (905) 693-9128
www.aeroquestsurveys.com
December, 2005
1. TABLE OF CONTENTS

1. TABLE OF CONTENTS... 1
 1.1. List of Figures .. 2
 1.2. Appendices .. 2
 1.3. List of Maps (1:10,000) ... 2
2. INTRODUCTION ... 3
3. SURVEY AREA .. 3
4. LOCAL GEOLGY & PREVIOUS WORK ... 5
 4.1. Property ... 5
 4.2. Ownership ... 5
 4.3. Geology .. 6
5. SURVEY SPECIFICATIONS AND PROCEDURES ... 6
 5.1. Navigation ... 6
 5.2. System Drift .. 7
 5.3. Field QA/QC Procedures ... 7
6. AIRCRAFT AND EQUIPMENT ... 7
 6.1. Aircraft .. 7
 6.2. Magnetometer .. 9
 6.3. Electromagnetic System ... 9
 6.4. AERODAS Acquisition System .. 10
 6.5. RMS DGR-33 Acquisition System .. 11
 6.6. Magnetometer Base Station ... 11
 6.7. Radar Altimeter ... 11
 6.8. Video Tracking and Recording System ... 11
 6.9. GPS Navigation System ... 12
 6.10. Digital Acquisition System .. 13
7. PERSONNEL ... 13
8. DELIVERABLES .. 13
9. DATA PROCESSING AND PRESENTATION .. 14
 9.1. Base Map ... 14
 9.2. Flight Path & Terrain Clearance .. 14
 9.3. Electromagnetic Data .. 14
 9.4. Magnetic Data ... 15
10. RESULTS and INTERPRETATION .. 16
 10.1. Magnetic Response ... 16
 10.2. EM Anomalies – General Comments ... 16
 10.3. EM Anomalies -Interpretation ... 19
1.1. List of Figures

Figure 1. Regional location map of the project area ... 4
Figure 2. Project Flight Path and Mining Claims ... 5
Figure 3. Survey helicopter C-GVDE .. 8
Figure 4. The magnetometer bird (A) and AeroTEM II EM bird (B) 8
Figure 5. AeroTEM II Instrument Rack .. 9
Figure 6. Schematic of Transmitter and Receiver waveforms .. 12
Figure 7. AeroTEM response to a ‘thin’ vertical conductor ... 17
Figure 8. AeroTEM response for a ‘thick’ vertical conductor .. 18
Figure 9. AeroTEM response over a ‘thick’ dipping conductor .. 18

1.2. Appendices

Appendix 1: Survey Block Co-ordinates
Appendix 2: Description of Database Fields
Appendix 3: Technical Paper: "Mineral Exploration with the AeroTEM System"
Appendix 4: Instrumentation Specification Sheet

1.3. List of Maps (1:10,000)

Total Magnetic Intensity (TMI) with line contours and EM anomalies
Tilt Derivative of TMI with EM anomalies
Z component off-time EM profiles and EM anomalies
Off-time Z-component channel 3 with contours and EM anomalies
2. INTRODUCTION

This report describes a helicopter-borne geophysical survey carried out on behalf of Canstar Resources Inc. on the Shrimp and Tahoe Project areas, Red Lake area, Ontario.

The principal geophysical sensor is Aeroquest's exclusive AeroTEM II helicopter time domain electromagnetic (HTEM) system which is employed in conjunction with a high-sensitivity cesium vapour magnetometer. Ancillary equipment includes a real-time differential GPS navigation system, radar altimeter, video recorder, and a base station magnetometer.

The total coverage of the survey is 292.1 line-km. The coverage on the Shrimp Lake survey is 196.7 line-km and the Tahoe Lake survey is 95.4 line-km. When windowed to the claim boundaries, the total coverage is 242.0 line-km with 155.1 line-km on the Shrimp Lake block and 86.9 line-km on the Tahoe Lake block. The survey flying described in this report took place on November 14, 2005.

The survey was successful in mapping the conductive and magnetic properties of the survey areas and in identifying several prospective targets for follow-up.

3. SURVEY AREA

The project areas are situated in northwestern Ontario, approximately 165 km northeast of Red Lake (Figure 1). The field crew was based in Red Lake for the duration of the survey. The property is accessible only by helicopter as there are no roads in the area. The helicopter was provided by Wendake Helicoptere, La Sarre, Quebec.
Figure 1. Regional location map of the project area.
4. LOCAL GEOLOGY & PREVIOUS WORK

(after www.canstarresources.com, December, 2005)

4.1. Property

Both survey blocks are located approximately 165 miles northeast of the town of Red Lake, Ontario, Canada. Access to the properties is by air only as no roads extend into the project area.

4.2. Ownership

Canstar Resources Inc. has a 100% ownership in both the Shrimp Lake and Tahoe Lake properties.
4.3. Geology

The Shrimp Lake property is underlain by an altered volcano-sedimentary assemblage, including fragmental volcanics and a coarse, sulphide-rich, cordierite-bearing unit interpreted to be a possible debris flow, and is considered to be highly prospective for volcanogenic massive sulphide (VMS) base metal mineralization.

The Tahoe Lake property is underlain by altered felsic volcanics, including coarse-grained pyroclastics and deformed, grunerite-rich iron formations and is considered to be highly prospective for both VMS-related base metals and iron formation hosted gold mineralization.

5. SURVEY SPECIFICATIONS AND PROCEDURES

The survey specifications are summarized in the following table:

<table>
<thead>
<tr>
<th>Survey Block</th>
<th>Line Spacing (m)</th>
<th>Line direction</th>
<th>TotalCoverage (line-km)</th>
<th>Windowed Coverage (m)</th>
<th>Dates Flown</th>
</tr>
</thead>
<tbody>
<tr>
<td>Shrimp Lake</td>
<td>100</td>
<td>N-S (0°)</td>
<td>196.7</td>
<td>155.1</td>
<td>November 14th 2005</td>
</tr>
<tr>
<td>Tahoe Lake</td>
<td>100</td>
<td>N-S (0°)</td>
<td>95.4</td>
<td>86.9</td>
<td>November 14th 2005</td>
</tr>
</tbody>
</table>

The survey coverage was calculated by adding up the along-line distance of the survey lines and control (tie) lines as presented in the final Geosoft database. The survey coverage indicated in the ‘windowed coverage’ column excludes any survey coverage which falls outside of the claim boundaries as indicated on the final maps.

The survey was flown with a line spacing of 100 m. The control (tie) lines were flown perpendicular to the survey lines with a spacing of 1 km. The nominal EM bird terrain clearance is 30m (98 ft), but can be higher in more rugged terrain. The magnetometer sensor is mounted in a smaller bird connected to the tow rope 17 metres above the EM bird and 21 metres below the helicopter. A second magnetometer sensor is positioned on the tail of the EM bird. This second sensor provides for a higher resolution data set and, when combined with the sensor on the tow rope, provides for a measured vertical gradient measurement.

The nominal survey speed over relatively flat terrain is 75 km/hr and is generally lower in rougher terrain. Scan rates for ancillary data acquisition is 0.1 second for the magnetometer and altimeter, and 0.2 second for the GPS determined position. The EM data is acquired as a data stream at a sampling rate of 38,400 samples per second and is processed to generate final data at 10 samples per second. The 10 samples per second translates to a geophysical reading about every 1.5 to 2.5 metres along the flight path.

5.1. Navigation
Navigation is carried out using a GPS receiver, an AGNAV2 system for navigation control, and an RMS DGR-33 data acquisition system which records the GPS coordinates. The x-y-z position of the aircraft, as reported by the GPS, is recorded at 0.2 second intervals. The system has a published accuracy of under 3 metres. A recent static ground test of the Mid-Tech WAAS GPS yielded a standard deviation in x and y of under 0.6 metres and for z under 1.5 metres over a two-hour period.

5.2. System Drift

Unlike frequency domain electromagnetic systems, the AeroTEM© II system has negligible drift due to thermal expansion. The operator is responsible for ensuring the instrument is properly warmed up prior to departure and that the instruments are operated properly throughout the flight. The operator maintains a detailed flight log during the survey noting the times of the flight and any unusual geophysical or topographic features. Each flight included at least two high elevation ‘background’ checks. During the high elevation checks, an internal 5 second wide calibration pulse in all EM channels was generated in order to ensure that the gain of the system remained constant and within specifications.

5.3. Field QA/QC Procedures

On return of the pilot and operator to the base, usually after each flight, the ProtoDAS streaming EM data and the RMS data are carried on removable hard drives and FlashCards, respectively and transferred to the data processing work station. At the end of each day, the base station magnetometer data on FlashCard is retrieved from the base station unit.

Data verification and quality control includes a comparison of the acquired GPS data with the flight plan; verification and conversion of the RMS data to an ASCII format XYZ data file; verification of the base station magnetometer data and conversion to ASCII format XYZ data; and loading, processing and conversion of the steaming EM data from the removable hard drive. All data is then merged to an ASCII XYZ format file which is then imported to an Oasis database for further QA/QC and for the production of preliminary EM, magnetic contour, and flight path maps.

Survey lines which show excessive deviation from the intended flight path are re-flown. Any line or portion of a line on which the data quality did not meet the contract specification was noted and reflown.

6. AIRCRAFT AND EQUIPMENT

6.1. Aircraft

A Eurocopter (Aerospatiale) AS350BA "A-Star" helicopter - registration C-GVDE was used as survey platform (Figure 3). The helicopter was owned and operated by Wendake helicopters, La Sarre, Québec. The survey aircraft was flown at a nominal terrain clearance of 220 ft (70 m).
Figure 3. Survey helicopter C-GVDE.

Figure 4. The magnetometer bird (A) and AeroTEM II EM bird (B)
6.2. Magnetometer

The Aeroquest airborne survey system employs the Geometrics G-823A cesium vapour magnetometer sensor. Two sensors are used, one in a two metre towed bird airfoil attached to the main tow line, 17 metres above the EM bird, and a second attached to the tail fin of the EM bird. The sensitivity of the magnetometers is 0.001 nanoTesla at a 0.1 second sampling rate. The nominal ground clearance of the magnetometer sensors are 31 m and 47 m, respectively, for the lower and upper sensors. The magnetic data are sampled at 10 Hz by the RMS DGR-33.

6.3. Electromagnetic System

The electromagnetic system is an Aeroquest AeroTEM II time domain towed-bird system. The current AeroTEM II transmitter dipole moment is 38.8 kNIA. The AeroTEM II bird is towed 36 m (125 ft) below the helicopter. More technical details of the system may be found in Appendix 4.

The wave-form is triangular with a symmetric transmitter on-time pulse of 1.1 ms and a base frequency of 150 Hz. The current alternates polarity every on-time pulse. During every Tx on-off cycle (300 per second), 128 contiguous channels of raw x and z component (and a transmitter current monitor, itx) of the received waveform are measured. Each channel width is 26.04 microseconds starting at the beginning of the transmitter pulse. This 128 channel data is referred to as the raw streaming data. The AeroTEM II system has two separate EM data recording streams, the conventional RMS DGR-33 and the AeroDAS system which records the raw streaming data.

Figure 5. AeroTEM II Instrument Rack
6.4. AERODAS Acquisition System

The 128 channels of raw streaming data are recorded by the AeroDAS acquisition system onto a removable hard drive. The streaming data are processed post-survey to yield 33 stacked and binned on-time and off-time channels at a 10 Hz sample rate. The timing of the final processed EM channels is described in the following table:

<table>
<thead>
<tr>
<th>Channel:</th>
<th>Start Gate</th>
<th>End Gate</th>
<th>Start (us)</th>
<th>Stop (us)</th>
<th>Mid (us)</th>
<th>Width (us)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ON 1</td>
<td>25</td>
<td>25</td>
<td>651.0</td>
<td>677.0</td>
<td>664.0</td>
<td>26.0</td>
</tr>
<tr>
<td>ON 2</td>
<td>26</td>
<td>26</td>
<td>677.0</td>
<td>703.1</td>
<td>690.1</td>
<td>26.0</td>
</tr>
<tr>
<td>ON 3</td>
<td>27</td>
<td>27</td>
<td>703.1</td>
<td>729.1</td>
<td>716.1</td>
<td>26.0</td>
</tr>
<tr>
<td>ON 4</td>
<td>28</td>
<td>28</td>
<td>729.1</td>
<td>755.2</td>
<td>742.1</td>
<td>26.0</td>
</tr>
<tr>
<td>ON 5</td>
<td>29</td>
<td>29</td>
<td>755.2</td>
<td>781.2</td>
<td>768.2</td>
<td>26.0</td>
</tr>
<tr>
<td>ON 6</td>
<td>30</td>
<td>30</td>
<td>781.2</td>
<td>807.2</td>
<td>794.2</td>
<td>26.0</td>
</tr>
<tr>
<td>ON 7</td>
<td>31</td>
<td>31</td>
<td>807.2</td>
<td>833.3</td>
<td>820.3</td>
<td>26.0</td>
</tr>
<tr>
<td>ON 8</td>
<td>32</td>
<td>32</td>
<td>833.3</td>
<td>859.3</td>
<td>846.3</td>
<td>26.0</td>
</tr>
<tr>
<td>ON 9</td>
<td>33</td>
<td>33</td>
<td>859.3</td>
<td>885.4</td>
<td>872.3</td>
<td>26.0</td>
</tr>
<tr>
<td>ON 10</td>
<td>34</td>
<td>34</td>
<td>885.4</td>
<td>911.4</td>
<td>898.4</td>
<td>26.0</td>
</tr>
<tr>
<td>ON 11</td>
<td>35</td>
<td>35</td>
<td>911.4</td>
<td>937.4</td>
<td>924.4</td>
<td>26.0</td>
</tr>
<tr>
<td>ON 12</td>
<td>36</td>
<td>36</td>
<td>937.4</td>
<td>963.5</td>
<td>950.5</td>
<td>26.0</td>
</tr>
<tr>
<td>ON 13</td>
<td>37</td>
<td>37</td>
<td>963.5</td>
<td>989.5</td>
<td>976.5</td>
<td>26.0</td>
</tr>
<tr>
<td>ON 14</td>
<td>38</td>
<td>38</td>
<td>989.5</td>
<td>1015.6</td>
<td>1002.5</td>
<td>26.0</td>
</tr>
<tr>
<td>ON 15</td>
<td>39</td>
<td>39</td>
<td>1015.6</td>
<td>1041.6</td>
<td>1028.6</td>
<td>26.0</td>
</tr>
<tr>
<td>ON 16</td>
<td>40</td>
<td>40</td>
<td>1041.6</td>
<td>1067.6</td>
<td>1054.6</td>
<td>26.0</td>
</tr>
<tr>
<td>OFF 0</td>
<td>44</td>
<td>44</td>
<td>1145.8</td>
<td>1171.8</td>
<td>1158.8</td>
<td>26.0</td>
</tr>
<tr>
<td>OFF 1</td>
<td>45</td>
<td>45</td>
<td>1171.8</td>
<td>1197.8</td>
<td>1184.8</td>
<td>26.0</td>
</tr>
<tr>
<td>OFF 2</td>
<td>46</td>
<td>46</td>
<td>1197.8</td>
<td>1223.9</td>
<td>1210.9</td>
<td>26.0</td>
</tr>
<tr>
<td>OFF 3</td>
<td>47</td>
<td>47</td>
<td>1223.9</td>
<td>1249.9</td>
<td>1236.9</td>
<td>26.0</td>
</tr>
<tr>
<td>OFF 4</td>
<td>48</td>
<td>48</td>
<td>1249.9</td>
<td>1276.0</td>
<td>1262.9</td>
<td>26.0</td>
</tr>
<tr>
<td>OFF 5</td>
<td>49</td>
<td>49</td>
<td>1276.0</td>
<td>1302.0</td>
<td>1289.0</td>
<td>26.0</td>
</tr>
<tr>
<td>OFF 6</td>
<td>50</td>
<td>50</td>
<td>1302.0</td>
<td>1328.0</td>
<td>1315.0</td>
<td>26.0</td>
</tr>
<tr>
<td>OFF 7</td>
<td>51</td>
<td>51</td>
<td>1328.0</td>
<td>1354.1</td>
<td>1341.1</td>
<td>26.0</td>
</tr>
<tr>
<td>OFF 8</td>
<td>52</td>
<td>52</td>
<td>1354.1</td>
<td>1380.1</td>
<td>1367.1</td>
<td>26.0</td>
</tr>
<tr>
<td>OFF 9</td>
<td>53</td>
<td>53</td>
<td>1380.1</td>
<td>1406.2</td>
<td>1393.1</td>
<td>26.0</td>
</tr>
<tr>
<td>OFF 10</td>
<td>54</td>
<td>54</td>
<td>1406.2</td>
<td>1432.2</td>
<td>1419.2</td>
<td>26.0</td>
</tr>
<tr>
<td>OFF 11</td>
<td>55</td>
<td>55</td>
<td>1432.2</td>
<td>1458.2</td>
<td>1445.2</td>
<td>26.0</td>
</tr>
<tr>
<td>OFF 12</td>
<td>56</td>
<td>56</td>
<td>1458.2</td>
<td>1484.3</td>
<td>1471.3</td>
<td>26.0</td>
</tr>
<tr>
<td>OFF 13</td>
<td>57</td>
<td>60</td>
<td>1484.3</td>
<td>1510.4</td>
<td>1497.3</td>
<td>26.0</td>
</tr>
<tr>
<td>OFF 14</td>
<td>61</td>
<td>68</td>
<td>1588.4</td>
<td>1796.8</td>
<td>1692.6</td>
<td>208.3</td>
</tr>
<tr>
<td>OFF 15</td>
<td>69</td>
<td>84</td>
<td>1796.8</td>
<td>2213.4</td>
<td>2005.1</td>
<td>416.6</td>
</tr>
<tr>
<td>OFF 16</td>
<td>85</td>
<td>110</td>
<td>2213.4</td>
<td>2890.4</td>
<td>2551.9</td>
<td>677.0</td>
</tr>
</tbody>
</table>
6.5. RMS DGR-33 Acquisition System

In addition to the magnetics, altimeter and position data, six channels of real time processed off-time EM decay in the Z direction and one in the X direction are recorded by the RMS DGR-33 acquisition system at 10 samples per second and plotted real-time on the analogue chart recorder. These channels are derived by a binning, stacking and filtering procedure on the raw streaming data. The primary use of the RMS EM data (Z1 to Z6, X1) is to provide for real-time QA/QC on board the aircraft.

The channel window timing of the RMS DGR-33 6 channel system is described in the table below.

<table>
<thead>
<tr>
<th>RMS Channel</th>
<th>Start time (microsec)</th>
<th>End time (microsec)</th>
<th>Width (microsec)</th>
<th>Streaming Channels</th>
</tr>
</thead>
<tbody>
<tr>
<td>Z1, X1</td>
<td>1269.8</td>
<td>1322.8</td>
<td>52.9</td>
<td>48-50</td>
</tr>
<tr>
<td>Z2</td>
<td>1322.8</td>
<td>1455.0</td>
<td>132.2</td>
<td>50-54</td>
</tr>
<tr>
<td>Z3</td>
<td>1428.6</td>
<td>1587.3</td>
<td>158.7</td>
<td>54-59</td>
</tr>
<tr>
<td>Z4</td>
<td>1587.3</td>
<td>1746.0</td>
<td>158.7</td>
<td>60-65</td>
</tr>
<tr>
<td>Z5</td>
<td>1746.0</td>
<td>2063.5</td>
<td>317.5</td>
<td>66-77</td>
</tr>
<tr>
<td>Z6</td>
<td>2063.5</td>
<td>2698.4</td>
<td>634.9</td>
<td>78-101</td>
</tr>
</tbody>
</table>

6.6. Magnetometer Base Station

The base magnetometer was a GEM Systems GSM-19 overhauser magnetometer with a built in GPS receiver and external GPS antenna. Data logging and UTC time synchronisation was carried out within the magnetometer, with the GPS providing the timing signal. That data logging was configured to measure at 1.0 second intervals. Digital recording resolution was 0.001 nT. The sensor was placed on a tripod in an area free of cultural noise sources. A continuously updated display of the base station values was available for viewing and regularly monitored to ensure acceptable data quality and diurnal levels.

6.7. Radar Altimeter

A Terra TRA 3500/TRI-30 radar altimeter is used to record terrain clearance. The antenna was mounted on the outside of the helicopter beneath the cockpit. The recorded data represents the height of the antenna, i.e. helicopter, above the ground. The Terra altimeter has an altitude accuracy of +/- 1.5 metres.

6.8. Video Tracking and Recording System

A high resolution colour VHS/8mm video camera is used to record the helicopter ground flight path along the survey lines. The video is digitally annotated with GPS position and time and can be used to verify ground positioning information and cultural causes of anomalous geophysical responses.
6.9. GPS Navigation System

The navigation system consists of an Ag-Nav Incorporated AG-NAV2 GPS navigation system comprising a PC-based acquisition system, navigation software, a deviation indicator in front of the aircraft pilot to direct the flight, a full screen display with controls in front of the operator, a Mid-Tech RX400p WAAS-enabled GPS receiver mounted on the instrument rack and an antenna mounted on the magnetometer bird. WAAS (Wide Area Augmentation System) consists of approximately 25 ground reference stations positioned across the United States that monitor GPS satellite data. Two master stations, located on the east and west coasts, collect data from the reference stations and create a GPS correction message. This correction accounts for GPS satellite orbit and clock drift plus signal delays caused by the atmosphere and ionosphere. The corrected differential message is then broadcast through one of two geostationary satellites, or satellites with a fixed position over the equator. The corrected position has a published accuracy of under 3 metres. A recent static ground test of the Mid-Tech WAAS GPS yielded a standard deviation in x and y of under 0.6 metres and for z under 1.5 metres over a two-hour period.

Survey co-ordinates are set up prior to the survey and the information is fed into the airborne navigation system. The co-ordinate system employed in the survey design was WGS84 [World] using the UTM zone 18N projection. The real-time differentially corrected GPS positional data was recorded by the RMS DGR-33 in geodetic coordinates (latitude and longitude using WGS84) at 0.2 second intervals.
6.10. Digital Acquisition System

The AeroTEM© received waveform sampled during on and off-time at 128 channels per decay, 300 times per second, was logged by the proprietary AeroDAS data acquisition system. The channel sampling commences at the start of the Tx cycle and the width of each channel is 26.04 microseconds. The streaming data was recorded on a removable hard-drive and was later backed-up onto DVD-ROM from the field-processing computer.

The RMS Instruments DGR33A data acquisition system was used to collect and record the analogue data stream, i.e. the positional and secondary geophysical data, including processed 6 channel EM, magnetics, radar altimeter, GPS position, and time. The data was recorded on 128Mb capacity FlashCard. The RMS output was also directed to a thermal chart recorder.

7. PERSONNEL

The following AeroQuest personnel were involved in the project:

• Manager of Operations: Bert Simon
• Field Data Processors: Chris Kozak
• Field Operators: Tom Szumigaj
• Data Interpretation and Reporting: Jonathan Rudd, Gord Smith, Marion Bishop

The survey pilot Steve LaBranche was employed directly by the helicopter operator – Wendake Helicopters.

8. DELIVERABLES

The report includes a set of four geophysical maps for each of the two survey areas plotted at a scale of 1:10,000.

Total Magnetic Intensity (TMI) with line contours and EM anomalies
Tilt Derivative of TMI with line contours and EM anomalies
AeroTEM Off-Time Profiles (Z5-Z15) with EM anomalies
Off-time Channel Z3 with line contours and EM anomalies

The coordinate/projection system for the maps is NAD83 Universal Transverse Mercator Zone 15 (for Canada; Central America; Mexico; USA (ex Hawaii Aleutian Islands)). For reference, the latitude and longitude in NAD83 are also noted on the maps. All the maps show flight path trace, skeletal topography, and conductor picks represented by an anomaly symbol classified according to calculated off-time conductance. The anomaly symbol is accompanied by postings denoting the calculated on-time conductance, a thick or thin classification and an anomaly identifier label. The anomaly symbol legend is given in the margin of the maps. The magnetic field data is presented as superimposed line contours with a minimum contour interval of 5 nT. Bold contour lines are separated by 250 nT.

The geophysical profile data is archived digitally in a Geosoft GDB binary format database. The database contains the processed streaming data, the RMS data, the base station data, and all processed
channels. A description of the contents of the individual channels in the database can be found in Appendix 3. A copy of this digital data is archived at the Aeroquest head office in Milton.

9. DATA PROCESSING AND PRESENTATION

All in-field and post-field data processing was carried out using Aeroquest proprietary data processing software, and Geosoft Oasis montaj software. Maps were generated using Hewlett Packard ink-jet plotters.

9.1. Base Map

The geophysical maps accompanying this report are based on positioning in the datum of NAD83. The survey geodetic GPS positions have been projected using the Universal Transverse Mercator projection in Zone 15. A summary of the map datum and projection specifications are as follows:

• Ellipse: GRS 1980
• Ellipse major axis: 6378137m eccentricity: 0.081819191
• Datum: North American 1983 - Canada Mean
• Datum Shifts (x,y,z): 0, 0, 0 metres
• Map Projection: Universal Transverse Mercator Zone 15 (Central Meridian 93ºW)
• Central Scale Factor: 0.9996
• False Easting, Northing: 500,000m, 0m

9.2. Flight Path & Terrain Clearance

The position of the survey helicopter was directed by use of the Global Positioning System (GPS). Positions were updated five times per second (5Hz) and expressed as WGS84 latitude and longitude calculated from the raw pseudo range derived from the C/A code signal. The instantaneous GPS flight path, after conversion to UTM co-ordinates, is drawn using linear interpolation between the x/y positions. The terrain clearance was maintained with reference to the radar altimeter. The raw Digital Terrain Model (DTM) was derived by taking the GPS survey elevation and subtracting the radar altimeter terrain clearance values. The calculated topography elevation values are relative and are not tied in to surveyed geodetic heights.

Each flight included at least two high elevation ‘background’ checks. During the high elevation checks, an internal 5 second wide calibration pulse in all EM channels was generated in order to ensure that the gain of the system remained constant and within specifications.

9.3. Electromagnetic Data

The raw streaming data, sampled at a rate of 38,400 Hz (128 channels, 300 times per second) was reprocessed using a proprietary software algorithm developed and owned by Aeroquest Limited. Processing involves the compensation of the X and Z component data for the primary field waveform. Coefficients for this compensation for the system transient are determined and applied to the stream data. The stream data are then pre-filtered, stacked, binned to the 33 on and off-time channels and
checked for the effectiveness of the compensation and stacking processes. The stacked data is then filtered, leveled and split up into the individual line segments. Further base level adjustments may be carried out at this stage.

The final field processing step was to merge the processed EM data with the other data sets into a Geosoft GDB file. The EM fiducial is used to synchronize the two datasets. The processed channels are labeled in the "streaming" database as Zon1 to Zon16, Zoff0 to Zoff16, Xon1 to Xon16, and Xoff0 to Xoff16.

The filtering of the stacked data is designed to remove or minimize high frequency noise that can not be sourced from the geology. Apparent bedrock EM anomalies were interpreted with the aid of an auto-pick from positive peaks and troughs in the on-time Z channel responses correlated with X channel responses. The auto-picked anomalies were reviewed and edited by a geophysicist on a line by line basis to discriminate between thin and thick conductor types. Anomaly picks locations were migrated and removed as required. This process ensures the optimal representation of the conductor centres on the maps.

At each conductor pick, estimates of the on-time and off-time conductance have been generated based on a horizontal plate source model for those data points along the line where the response amplitude is sufficient to yield an acceptable estimate. Some of the EM anomaly picks do not display a tau value; this is due to the inability to properly define the decay of the conductor where the amplitude of the signal response is low. Each conductor pick was then classified according to a set of seven ranges of calculated off-time conductance values. Each symbol is also given an identification letter label, unique to each flight line. Conductor picks that did not yield an acceptable estimate of off-time conductance were classified as a low conductance source.

9.4. Magnetic Data
Prior to any leveling the magnetic data was subjected to a lag correction of -0.1 seconds and a spike removal filter. The filtered aeromagnetic data were then corrected for diurnal variations using the magnetic base station and the intersections of the tie lines. No corrections for the regional reference field (IGRF) were applied. The corrected profile data were interpolated on to a grid using a random grid technique with a grid cell size of 18 metres. The final leveled grid provided the basis for threading the presented contours which have a minimum contour interval of 5 nT.

In order to map shallow basement response a ‘tilt’ derivative product was calculated from the total magnetic intensity (TMI) grid. The Tilt Derivative (TDR) of the TMI enhances small wavelength magnetic features which define shallow basement structures as well as potential mineral exploration targets. The TILT derivative can be thought of as a combination of the first vertical derivative and the total horizontal derivative of the total magnetic intensity.

Mathematically, the TDR is defined as:

\[
TDR = \arctan \left(\frac{VDR}{THDR} \right)
\]

where VDR and THDR are first vertical and total horizontal derivatives, respectively, of the total magnetic intensity T.
VDR = dT/dz
THDR = sqrt ((dT/dx)² + (dT/dy)²)

The calculated TDR grid is presented as a colour sun-shaded image (illumination from the north-northeast). Line contours are also overlain which have a minimum contour interval of 0.01 radians.

10. RESULTS and INTERPRETATION

The survey was successful in mapping the magnetic and conductive properties of the geology throughout the survey area. Below is a brief interpretation of the results. For a more detailed interpretation please contact Aeroquest Limited.

10.1. Magnetic Response

The magnetic data provide a high resolution map of the distribution of the magnetic mineral content of the survey area. This data can be used to interpret the location of geological contacts and other structural features such as faults and zones of magnetic alteration. The sources for anomalous magnetic responses are generally thought to be predominantly magnetite because of the relative abundance and strength of response (high magnetic susceptibility) of magnetite over other magnetic minerals such as pyrrhotite.

The magnetic data ranges from lows of approximately 58,300 nT to highs of over 61,000 nT with an average background of 58,450 nT. The magnetic pattern is generally very active and complex. The two blocks are punctuated by several strong magnetic highs with a generally curvi-linear shape. There is no dominant trend in the magnetic data in either of the survey areas suggesting a complex structural setting. This lack of trend may also suggest an intrusive environment where many of the sources reflect oxidized mafic to ultramafic intrusions.

With a couple of minor exceptions, the magnetic data appear to be reflecting primarily induced magnetization with little evidence of remanent magnetization. In intrusive environments, remanent magnetization is more commonly seen in areas where there has been rapid quenching, so an apparent lack of remanent magnetization in the survey areas suggests slower cooling of the magmas.

Lower amplitude linear magnetic responses identify a series of dykes which trend in a variety of directions from northeast to north to northwest. The higher frequency (and gain-controlled) magnetic response visible in the ‘tilt derivative’ map identifies the more subtle linear magnetic highs and offsets which may be important to an understanding of the structural history of the areas. The tilt derivative map also better defines the width and magnetic features throughout the survey areas.

10.2. EM Anomalies – General Comments

The EM anomalies on the maps are classified by conductance (as described earlier in the report) and also by the thickness of the source. A thin, vertically orientated source produces a double peak
anomaly in the z-component response and a positive to negative crossover in the x-component response (Figure 7). For a vertically orientated thick source (say, greater than 10m), the response is a single peak in the z-component response and a negative to positive crossover in the x-component response (Figure 8). Because of these differing responses, the AeroTEM system provides discrimination of thin and thick sources and this distinction is indicated on the EM anomaly symbols (N = thin and K = thick). Where multiple, closely spaced conductive sources occur, or where the source has a shallow dip, it can be difficult to uniquely determine the type (thick vs. thin) of the source (Figure 9). In these cases both possible source types may be indicated by picking both thick and thin response styles. For shallow dipping conductors the ‘thin’ pick will be located over the edge of the source, whereas the ‘thick’ pick will fall over the downdip ‘heart’ of the anomaly.

All cases should be considered when analyzing the interpreted picks and prioritizing for follow-up. Specific anomalous responses which remain as high priority should be subjected to numerical modeling prior to drill testing to determine the dip, depth and probable geometry of the source.
Figure 8. AeroTEM response for a ‘thick’ vertical conductor.

Figure 9. AeroTEM response over a ‘thick’ dipping conductor.
10.3. EM Anomalies - Interpretation

Shrimp Lake Survey

There are several interesting conductive sources identified in the Shrimp Lake survey area. Several of the more prominent magnetic highs have associated or correlating conductive responses. The source for these could be either sulphides or graphite with associated magnetite. Magnetite itself can be conductive, but conductivity more commonly originates from sulphides or graphite.

The most interesting conductor on this block extends from 10160B to 10200E and extends along a magnetic high which, in turn, flanks a small interpreted intrusive in the north-central portion of the survey area. This conductor is strongest near its western terminus on line 10160 where the conductance is computed at 51.6 S. At this point, the anomaly source is interpreted to have a relatively shallow southerly dip with the anomaly symbol over the ‘heart’ of the anomaly.

Several other high conductance sources occur in the survey area and should also be considered for follow-up.

Tahoe Lake Survey

Like the Shrimp Lake survey area, the Tahoe Lake block has several high conductance sources which are worthy of follow-up. The vast majority of the EM anomalies have a very clear magnetic correlation or association. The strongest of the anomalies are labeled as 20160C and 20120C.

All of the EM anomalies should be reviewed in conjunction with any available geological or geochemical information. Prioritization should be based on all available information. The highest priority EM targets should then be subjected to quantitative modeling prior to any drill testing to determine the optimal collar location, azimuth and dip for testing of the source.

Respectfully submitted,

Jonathan Rudd, P.Eng.
Manager of Processing and Interpretation
Aeroquest Limited
December, 2005
APPENDIX 1 – PROJECT CORNER COORDINATES

The two project areas are rectangular in shape as defined in the following: All coordinates are given in UTM Zone 15 – NAD83.

Shrimp Lake

Survey Boundary

517348 5797700
520552 5797700
520552 5792400
517348 5792400

Claim Block Outline

517302 5792551
517309 5795729
517702 5795729
517688 5797722
519308 5797736
520501 5797729
520508 5795729
520108 5795722
520115 5792551

Tahoe Lake

Survey Boundary

511498 5802000
513902 5802000
513902 5798800
511498 5798800

Claim Block Outline

511448 5798835
511448 5802058
513850 5802049
513850 5798826
APPENDIX 2 - Description of Database Fields

The GDB file is a Geosoft binary database. In the database, the Survey lines and Tie Lines are prefixed with an "L" for "Line" and "T" for "Tie".

Databases
- Canstar_Shrimp_AeroTEM_05046_final.gdb
- Canstar_Tahoe_AeroTEM_05046_final.gdb:

<table>
<thead>
<tr>
<th>Column</th>
<th>Units</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>emfid</td>
<td></td>
<td>AERODAS Fiducial</td>
</tr>
<tr>
<td>utctime</td>
<td>hh:mm:ss.ss</td>
<td>UTC time</td>
</tr>
<tr>
<td>x</td>
<td>m</td>
<td>UTM Easting (NAD83, zone 15N)</td>
</tr>
<tr>
<td>y</td>
<td>m</td>
<td>UTM Northing (NAD83, zone 15N)</td>
</tr>
<tr>
<td>X_claim</td>
<td>m</td>
<td>UTM Easting (NAD83, zone 15N) trimmed to claim boundary</td>
</tr>
<tr>
<td>Y_claim</td>
<td>m</td>
<td>UTM Northing (NAD83, zone 15N) trimmed to claim boundary</td>
</tr>
<tr>
<td>bheight</td>
<td>m</td>
<td>Terrain clearance of EM bird</td>
</tr>
<tr>
<td>dtmf</td>
<td>m</td>
<td>Digital Terrain Model</td>
</tr>
<tr>
<td>magL</td>
<td>nT</td>
<td>Total magnetic intensity – Lower sensor</td>
</tr>
<tr>
<td>magU</td>
<td>nT</td>
<td>Total magnetic intensity – Upper sensor</td>
</tr>
<tr>
<td>MVG</td>
<td>nT/m</td>
<td>Measured vertical magnetic gradient</td>
</tr>
<tr>
<td>basemagf</td>
<td>nT</td>
<td>Base station total magnetic intensity</td>
</tr>
<tr>
<td>ZOn</td>
<td>nT/s</td>
<td>Processed Streaming On-Time Z component Channels 1-16</td>
</tr>
<tr>
<td>ZOff</td>
<td>nT/s</td>
<td>Processed Streaming Off-Time Z component Channels 0-16</td>
</tr>
<tr>
<td>XOn</td>
<td>nT/s</td>
<td>Processed Streaming On-Time X component Channels 1-16</td>
</tr>
<tr>
<td>XOff</td>
<td>nT/s</td>
<td>Processed Streaming Off-Time X component Channels 0-16</td>
</tr>
<tr>
<td>pwrline</td>
<td></td>
<td>Powerline monitor (60 Hz)</td>
</tr>
<tr>
<td>Anom_labels</td>
<td></td>
<td>Letter label of conductor pick</td>
</tr>
<tr>
<td>Anom_ID</td>
<td></td>
<td>Letter label of conductor thickness (N or K)</td>
</tr>
<tr>
<td>off_tau</td>
<td>μs</td>
<td>Off-time decay constant</td>
</tr>
<tr>
<td>Off_con</td>
<td>S</td>
<td>Off-time Conductance based on 100m by 100m plate</td>
</tr>
<tr>
<td>On_tau</td>
<td>μs</td>
<td>On-time decay constant</td>
</tr>
<tr>
<td>on_con</td>
<td>S</td>
<td>On-time conductance based on 100m by 100m plate</td>
</tr>
<tr>
<td>grade</td>
<td></td>
<td>Classification from 1-7 based on conductance of conductor pick</td>
</tr>
</tbody>
</table>
APPENDIX 3: AEROTEM DESIGN CONSIDERATIONS

Helicopter-borne EM systems offer an advantage that cannot be matched from a fixed-wing platform. The ability to fly at slower speed and collect data with high spatial resolution, and with great accuracy, means the helicopter EM systems provide more detail than any other EM configuration, airborne or ground-based. Spatial resolution is especially important in areas of complex geology and in the search for discrete conductors. With the advent of helicopter-borne high-moment time domain EM systems the fixed wing platforms are losing their only advantage – depth penetration.

Advantage 1 – Spatial Resolution

The AeroTEM system is specifically designed to have a small footprint. This is accomplished through the use of concentric transmitter-receiver coils and a relatively small diameter transmitter coil (5 m). The result is a highly focused exploration footprint, which allows for more accurate “mapping” of discrete conductors. Consider the transmitter primary field images shown in Figure 1, for AeroTEM versus a fixed-wing transmitter.

![Figure 1](image1.png)

The footprint of AeroTEM at the earth’s surface is roughly 50m on either side of transmitter

The footprint of a fixed-wing system is roughly 150 m on either side of the transmitter

Figure 1. A comparison of the footprint between AeroTEM and a fixed-wing system, highlights the greater resolution that is achievable with a transmitter located closer to the earth’s surface. The AeroTEM footprint is one third that of a fixed-wing system and is symmetric, while the fixed-wing system has even lower spatial resolution along the flight line because of the separated transmitter and receiver configuration.

At first glance one may want to believe that a transmitter footprint that is distributed more evenly over a larger area is of benefit in mineral exploration. In fact, the opposite is true; by energizing a larger surface area, the ability to energize and detect discrete conductors is reduced. Consider, for example, a comparison between AeroTEM and a fixed-wing system over the Mesamax Deposit (1,450,000 tonnes of 2.1% Ni, 2.7% Cu, 5.2 g/t Pt/Pd). In a test survey over three flight lines spaced 100 m apart, AeroTEM detected the Deposit on all three flight lines. The fixed-wing system detected the Deposit only on two flight lines. In exploration programs that seek to expand the flight line spacing in an effort to reduce the cost of the airborne survey, discrete conductors such as the Mesamax Deposit can go undetected. The argument often put forward in favor of using fixed-wing systems is that because of their larger footprint, the flight line spacing can indeed be widened. Many fixed-wing surveys are flown at 200 m or 400 m. Much of the survey work performed by Aeroquest has been to survey in areas that were previously flown at these wider line spacings. One of the reasons for AeroTEM’s impressive discovery record has been the strategy of flying closely spaced lines and finding all the discrete near-surface conductors. These higher resolution surveys are being flown within existing mining camps, areas that improve the chances of discovery.
Figure 2. Fixed-wing (upper) and AeroTEM (lower) comparison over the eastern limit of the Mesamax Deposit, a Ni-Cu-PGE zone located in the Raglan nickel belt and owned by Canadian Royalties. Both systems detected the Deposit further to the west where it is closer to surface.

The small footprint of AeroTEM combined with the high signal to noise ratio (S/N) makes the system more suitable to surveying in areas where local infrastructure produces electromagnetic noise, such as power lines and railways. In 2002
Aeroquest flew four exploration properties in the Sudbury Basin that were under option by FNX Mining Company Inc. from Inco Limited. One such property, the Victoria Property, contained three major power line corridors.

The resulting AeroTEM survey identified all the known zones of Ni-Cu-PGE mineralization, and detected a response between two of the major power line corridors but in an area of favorable geology. Three boreholes were drilled to test the anomaly, and all three intersected sulphide. The third borehole encountered 1.3% Ni, 6.7% Cu, and 13.3 g/t TPMs over 42.3 ft. The mineralization was subsequently named the Powerline Deposit.

The success of AeroTEM in Sudbury highlights the advantage of having a system with a small footprint, but also one with a high S/N. This latter advantage is achieved through a combination of a high-moment (high signal) transmitter and a rigid geometry (low noise). Figure 3 shows the Powerline Deposit response and the response from the power line corridor at full scale. The width of power line response is less than 75 m.

Figure 3. The Powerline Deposit is located between two major power line corridors, which make EM surveying problematic. Despite the strong response from the power line, the anomaly from the Deposit is clearly detected. Note the thin formational conductor located to the south. The only way to distinguish this response from that of two closely spaced conductors is by interpreting the X-axis coil response.

Advantage 2 – Conductance Discrimination

The AeroTEM system features full waveform recording and as such is able to measure the on-time response due to high conductance targets. Due to the processing method (primary field removal), there is attenuation of the response with increasing conductance, but the AeroTEM on-time measurement is still superior to systems that rely on lower base frequencies to detect high conductance targets, but do not measure in the on-time.

The peak response of a conductive target to an EM system is a function of the target conductance and the EM system base frequency. For time domain EM systems that measure only in the off-time, there is a drop in the peak response of a target as the base frequency is lowered for all conductance values below the peak system response. For example, the AeroTEM peak response occurs for a 10 S conductor in the early off-time and 100 S in the late off-time for a 150 Hz base frequency. Because base frequency and conductance form a linear relationship when considering the peak response of any EM system, a drop in base frequency of 50% will double the conductance at which an EM system shows its peak response.
the base frequency were lowered from 150 Hz to 30 Hz there would be a fivefold increase in conductance at which the peak response of an EM occurred.

However, in the search for highly conductive targets, such as pyrrhotite-related Ni-Cu-PGM deposits, a fivefold increase in conductance range is a high price to pay because the signal level to lower conductance targets is reduced by the same factor of five. For this reason, EM systems that operate with low base frequencies are not suitable for general exploration unless the target conductance is more than 100 S, or the target is covered by conductive overburden.

Despite the excellent progress that has been made in modeling software over the past two decades, there has been little work done on determining the optimum form of an EM system for mineral exploration. For example, the optimum configuration in terms of geometry, base frequency and so remain unknown. Many geophysicists would argue that there is no single ideal configuration, and that each system has its advantages and disadvantages. We disagree.

When it comes to detecting and discriminating high-conductance targets, it is necessary to measure the pure inphase response of the target conductor. This measurement requires that the measured primary field from the transmitter be subtracted from the total measured response such that the secondary field from the target conductor can be determined. Because this secondary field is in-phase with the transmitter primary field, it must be made while the transmitter is turned on and the transmitter current is changing. The transmitted primary field is several orders of magnitude larger than the secondary field. AeroTEM uses a bucking coil to reduce the primary field at the receiver coils. The only practical way of removing the primary field is to maintain a rigid geometry between the transmitter, bucking and receiver coils. This is the main design consideration of the AeroTEM airframe and it is the only time domain airborne system to have this configuration.

Figure 4. The off-time and on-time response nomogram of AeroTEM for a base frequency of 150 Hz. The on-time response is much stronger for higher conductance targets and this is why on-time measurements are more important than lower frequencies when considering high conductance targets in a resistive environment.

Advantage 3 – Multiple Receiver Coils

AeroTEM employs two receiver coil orientations. The Z-axis coil is oriented parallel to the transmitter coil and both are horizontal to the ground. This is known as a maximum coupled configuration and is optimal for detection. The X-axis coil is oriented at right angles to the transmitter coil and is oriented along the line-of-flight. This is known as a minimum coupled configuration, and provides information on conductor orientation and thickness. These two coil configurations combined provide important information on the position, orientation, depth, and thickness of a conductor that cannot be matched by the traditional geometries of the HEM or fixed-wing systems. The responses are free from a system geometric effect and can be easily compared to model type curves in most cases. In other words, AeroTEM data is very easy to interpret. Consider, for example, the following modeled profile:
Figure 5. Measured (lower) and modeled (upper) AeroTEM responses are compared for a thin steeply dipping conductor. The response is characterized by two peaks in the Z-axis coil, and a cross-over in the X-axis coil that is centered between the two Z-axis peaks. The conductor dips toward the higher amplitude Z-axis peak. Using the X-axis cross-over is the only way of differentiating the Z-axis response from being two closely spaced conductors.

HEM versus AeroTEM

Traditional helicopter EM systems operate in the frequency domain and benefit from the fact that they use narrowband as opposed to wide-band transmitters. Thus all of the energy from the transmitter is concentrated in a few discrete frequencies. This allows the systems to achieve excellent depth penetration (up to 100 m) from a transmitter of modest power. The Aeroquest Impulse system is one implementation of this technology.

The AeroTEM system uses a wide-band transmitter and delivers more power over a wide frequency range. This frequency range is then captured into 16 time channels, the early channels containing the high frequency information and the late time channels containing the low frequency information down to the system base frequency. Because frequency domain HEM systems employ two coil configurations (coplanar and coaxial) there are only a maximum of three comparable frequencies per configuration, compared to 16 AeroTEM off-time and 12 AeroTEM on-time channels.
Figure 6 shows a comparison between the Dighem HEM system (900 Hz and 7200 Hz coplanar) and AeroTEM (Zaxis) from surveys flown in Raglan, in search of highly conductive Ni-Cu-PGM sulphide. In general, the AeroTEM peaks are sharper and better defined, in part due to the greater S/N ratio of the AeroTEM system over HEM, and also due to the modestly filtered AeroTEM data compared to HEM. The base levels are also better defined in the AeroTEM data. AeroTEM filtering is limited to spike removal and a 5-point smoothing filter. Clients are also given copies of the raw, unfiltered data.

![Graph comparing Dighem HEM and AeroTEM surveys](image)

Figure 6. Comparison between Dighem HEM (upper) and AeroTEM (lower) surveys flown in the Raglan area. The AeroTEM responses appear to be more discrete, suggesting that the data is not as heavily filtered as the HEM data. The S/N advantage of AeroTEM over HEM is about 5:1.

Aeroquest Limited is grateful to the following companies for permission to publish some of the data from their respective surveys: Wolfden Resources, FNX Mining Company Inc, Canadian Royalties, Nova West Resources, Aurogin Resources, Spectrem Air. Permission does not imply an endorsement of the AeroTEM system by these companies.
APPENDIX 4: AeroTEM Instrumentation Specification Sheet

AEROTEM Helicopter Electromagnetic System

System Characteristics

- Transmitter: Triangular Pulse Shape Base Frequency 30 or 150 Hz
- Tx On Time - 5,750 (30Hz) or 1,150 (150Hz) µs
- Tx Off Time - 10,915 (30Hz) or 2,183 (150Hz) µs
- Loop Diameter - 5 m
- Peak Current - 250 A
- Peak Moment - 38,800 NIA
- Typical Z Axis Noise at Survey Speed = 10 nT peak
- Sling Weight: 270 Kg
- Length of Tow Cable: 40 m
- Bird Survey Height: 30 m or less nominal

Receiver

- Two Axis Receiver Coils (x, z) positioned at centre of transmitter loop
- Selectable Time Delay to start of first channel 21.3, 42.7, or 64.0 ms

Display & Acquisition

- PROTODAS Digital recording at 128 samples per decay curve at a maximum of 300 curves per second (26.05 µs channel width)
- RMS Channel Widths: 52.9, 132.3, 158.7, 158.7, 317.5, 634.9 µs
- Recording & Display Rate = 10 readings per second.
- On-board display - six channels Z-component and 1 X-component

System Considerations

Comparing a fixed-wing time domain transmitter with a typical moment of 500,000 NIA flying at an altitude of 120 m with a Helicopter TDEM at 30 m, notwithstanding the substantial moment loss in the airframe of the fixed wing, the same penetration by the lower flying helicopter system would only require a sixty-fourth of the moment. Clearly the AeroTEM system with nearly 40,000 NIA has more than sufficient moment. The airframe of the fixed wing presents a response to the towed bird, which requires dynamic compensation. This problem is non-existent for AeroTEM since transmitter and receiver positions are fixed. The AeroTEM system is completely portable, and can be assembled at the survey site within half a day.

Tel: +1 905 693-9129. Fax: +1 905 693-9128.
Email: sales@aeroquestsurveys.com