Diamond Drill Report for drill hole
EK05-01

Eva Kitto Intrusion

Thunder Bay Mining Division, Ontario
Province of Ontario

J. Laarman and R. Middleton

January 2006
Table of Contents

Introduction 3
Property Location 3
Previous Work 3
Dates and Figures 4
QAQC 4
Results: EK05-01 7
Conclusions and Recommendations 7
Summary of Costs 8
References 9
Statement of Qualifications 10

Table of Figures

Figure 1. Claim continuity map 5
Figure 2. Drill hole plan map 6
Figure 3. Drill section 7

Appendix I Drill logs and section for drill hole EK05-01.
Introduction

This report is a summary of diamond drill work carried out on the Eva Kitto Property, claim TB1245415 which is held by East West Resource Corporation (402-905 West Pender St. Vancouver, B.C. V6C 1L6) and Maple Minerals Corporation (Suite 2810, 130 King Street West, Toronto, Ontario. M5X 1A9) and is written for the purpose of assessment.

Property location

The Eva Kitto property is located approximately 190 km northeast of Thunder Bay near Beardmore, Ontario. The property can be easily accessed by following highway 11/17 east from Thunder Bay to Nipigon, turning north on highway 11 following it past Beardmore, and turning west on road 580 towards Poplar Lodge. The NTS reference is UTM Zone 16, Map 52H/9, ‘Shakespeare Island’

Property

The Eva Kitto property is 50% owned by East West Resources Corporation and 50% by Maple Minerals Corporation. It consists of 21 claim units: 1240493, 1240492, 1233078, 1240304, 1245414, 1247044, 1245417, 1245415, 1240305, 1240302, 1249537, 1245917, 1240306, 1240303, 1245916, 3006074, 3006073, 1245915, 1238190, 1238189, and 1238188 (see figure 1).

Previous Work

1971 The Geological Survey of Canada performed an airborne EM survey over the eastern part of Eva Kitto intrusion

1981 R.H. Sutcliffe, O.G.S, mapped the Nipigon Plate and first delineated the Eva-Kitto Township intrusions

1986 Sutcliffe, as part of his PhD thesis, did petrography, XRF analysis, ion exchange chromatography, and ICP on the picritic rocks of the Nipigon Embayment and concluded the rocks have an Fe-Ti basalt chemistry (like the Osler Group volcanics) and high concentration of incompatible elements probably indicative of crustal contamination

1988 Kenting Earth Sciences performed an airborne EM survey for the Geological Survey of Canada over the Beardmore-Geraldton Belt outlining conductors bordering the intrusion

1989 Questor Surveys Limited performed an airborne TDEM survey for Glen Auden Resources Ltd. and detected anomalies associated with the iron formations

2001 The Ontario Geological Survey mapped the intrusion and revealed a showing with weak copper, nickel and PGE mineralization in a creek (Phoenix Prospect).

2001 Hunter Dickinson Incorporated did prospecting and sampling returning assays of ppb Pt and Pd.

2002 Kennecott Canada Exploration Inc supervised an airborne MegaTEM and magnetics survey done by Fugro Airborne Surveys Corp. EM and magnetic anomalies were prospected with some assays running at 901 and 1065ppb Pt+Pd.

2003 Kennecott Canada Exploration Inc drilled 4 DDH holes. Hole EK-2 intersected disseminated po-cpy mineralization and was the only hole to hit the magnetiferous metapelites of the Archean basement. Assays were up to 0.28%Ni, 0.13%Cu and 563ppb Pt+Pd in a 1.22m interval.

2005 East West Resource Corp and Maple Minerals carry out geological mapping and sampling on the north east margin of the intrusion.

Dates and Figures

Field work started with the preparation of the drill site on Sept. 9th to 13th 2005. Additional work on the drill site was carried out from Nov. 11th to 27th 2005. A drill was mobilized in to the area on Dec. 3rd 2005. The drill was moved to the drill site by helicopter on Dec. 3rd. Drilling started on 6th with drilling being carried out by Falcon Drilling (Prince George, B.C.). Drilling was completed on Dec. 10th 2005. With the drill being mobilized out of the field on the 11th and 12th 2005. Field work finished with completion of core sawing and delivery of samples to the laboratory on January 4th 2006. This report and accompanying logs and figures was produced on January 20th 2006.

QAQC

Supervision of the drilling program was carried out by R. Middleton, and J. Laarman. Core logging was carried out by J. Laarman. Field support, including drill site location was done by J. Laarman and R. Middleton. Core was transported to a secure facility (East West Resource Corporation field office, 1158A Russell Street) in Thunder Bay. Sample intervals were determined by J. Laarman which were then sawn and taken to ALS Chemex in Thunder Bay. Chemex samples underwent primary crushing in Thunder Bay with pulps sent to Vancouver for complete analysis. Results from the analysis are still pending.
Results

Drill log EK05-01 is included in Appendix A. Assay results are still pending from the drill hole.

EK05-01 (419074E, 5491709N, UTM NAD83, Zone 16, Claim 1245415) was drilled to test the extent of ultramafic rocks on the north east margin of the Eva Kitto Intrusion. The drill hole was drilled vertically with a total depth of 245m. The drill hole was dominated by feldspathic lherzolite and feldspathic peridotite with a narrow zone of inter-fingering mafic dykes and Sibley Metasediments occurring at ~50m. Basement was not intersected in the drill hole, and basal mineralization was not tested.

Conclusions and Recommendations

Drilling to date on the Eva Kitto property has tested a select few targets. Platinum and palladium mineralization has been observed in drill hole EK03-02. Drill hole EK05-01 was drilled to test the basal contact for Pt-Pd mineralization in proximity to basement sulfide sources (iron formation) and also assess the potential for possible ‘reef’ type mineralization as observed in the Seagull Intrusion (Heggie, 2005). Fine interstitial sulfides were observed in the ultramafics in the bottom section of the drill hole (>210 metres) indicating sulphur saturation was attained in the intrusion, at some point in the crystallization history of the intrusion. However basal mineralization was not tested as the drill ran out of rods and the hole was stopped at 245m still in ultramafic lithologies. It is recommended that the hole is continued until the basal contact is encountered, testing this area of the intrusion for potential platinum, palladium, nickel and copper mineralization. Analysis of sulfide zones in the existing core may also help in the recognition of potential mineralized reefs.
Summary of Costs

<table>
<thead>
<tr>
<th>Description</th>
<th>Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>Falcon Drilling</td>
<td>$34,747.37</td>
</tr>
<tr>
<td>Whiskair</td>
<td>$23,432.36</td>
</tr>
<tr>
<td>Mob demob</td>
<td>$6,076.53</td>
</tr>
<tr>
<td>Roxy Place Hotel</td>
<td>$1,310.40</td>
</tr>
<tr>
<td>Big Pine: Propane</td>
<td>$341.03</td>
</tr>
<tr>
<td>Garden Lake Timber: core boxes</td>
<td>$636.86</td>
</tr>
<tr>
<td>Diesel: drilling</td>
<td>$1,000.00</td>
</tr>
<tr>
<td>Gas</td>
<td>$400.00</td>
</tr>
<tr>
<td>Jordan Laarman: Geologist</td>
<td>$4,000.00</td>
</tr>
<tr>
<td>Bob Middleton: Drill Supervision</td>
<td>$600.00</td>
</tr>
<tr>
<td>G. Heggie: Geologist</td>
<td>$500.00</td>
</tr>
<tr>
<td>Manual Labours</td>
<td>$8,590.00</td>
</tr>
<tr>
<td>Truck rental: Falcon Drilling</td>
<td>$700.00</td>
</tr>
<tr>
<td>Truck Rental: Geology</td>
<td>$500.00</td>
</tr>
<tr>
<td>Skidoo rental x 3</td>
<td>$1,000.00</td>
</tr>
<tr>
<td>Core Shack</td>
<td>$500.00</td>
</tr>
<tr>
<td>Groceries</td>
<td>$200.00</td>
</tr>
<tr>
<td>Total</td>
<td>$84,534.55</td>
</tr>
</tbody>
</table>
References

Aeromagnetic Vertical Gradient Map C41471G, Shakespeare Island, Ontario. Ministry of

Coombes, S., Rossell, D. 2003 Report on Diamond Core Drilling on the Eva Kitto
Property. NTS: 052H-09, Thunder Bay Mining Division, Ontario. Kennecott

Fugro Airborne Surveys. Logistics and Processing Report: Airborne Magnetic and
Megatem II Electromagnetic Multicoil Survey of the Eva Kitto Area, Lake
Nipigon, Ontario on behalf of Kennecott Canada Exploration Inc. Job 781, June

Summers, Dorothea and Sandra townships, northwestern Ontario: Phoenix
Bedrock Mapping Project; Ontario Geological Survey, Open File Report 6095,
206p.

Heggie, G.J., 2005. Whole rock geochemistry, mineral chemistry, petrology and Pt, Pd
mineralization of the Seagull Intrusion, Northwestern Ontario; unpublished MSc.

Map 20,115 G 52 H/9a Ontario. Resource Geophysics and Geochemistry Division,

Oliver, J. Eva Kitto Ring Complex Lithogeochemistry. Hunter Dickinson Inc. October

NTS: 052H-09, Thunder Bay Mining Division, Ontario. Kennecott Canada

Salib, P. Interpretation Report Input Mark VI Electromagnetic/Magnetic Survey; Glen
Auden Resources Ltd., Lake Nipigon, Ontario Project #88022. Questor Surveys

Sutcliffe, R.H. Proterozoic rift-related igneous rocks at Lake Nipigon, Ontario;
Statement of Qualifications

I, Jordan Laarman, of 8-2833 Redwood Ave., Thunder Bay, Ontario, Canada, certify that:

1. I am a graduate of the University of Western Ontario, 2004, and hold an H. BSc. Geology degree.

2. I am a member of the Ontario Prospectors Association (2005).

3. I have been employed as a geological assistant by Nunavut Tunngavik Incorporated in 2003.

4. I have been employed as a field geologist by East West Resources Corporation, Maple Minerals Corporation and Canadian Golden Dragon Resources Ltd. in 2004.

 Jordan Laarman, H. BSc.

 Date: January 21, 2006

Attended University of Toronto 1970 – Ph.D Geological program.

Employed during the summers of:
1964 – Keevil Mining Group – Geophysical Engineering and Surveys Ltd. Gaspe geochemistry.
1965 – Selco Exploration – NW Ontario (Magnetics) and NE Quebec (EM, Mag, Gravity, Mining Regs.)
1966 – Selco Exploration – NE Ontario (Geological Mapping)
1967 – Calumet & Hecla Mining – Keweenaw (IP (drill hole) surface and underground) and Michigan (Mag and drill hole IP)

Employed Rosario Resources Corp., 1974-1980, Timmins, Honduras, Nicaragua, Dominican Republic
Consulting Based from Timmins, 1983-1990, various Au/ base metal projects in Manitoba, Quebec, Ontario, USA, Scotland. RC drilling and numerous diamond drill programs.
Management Various junior mining companies, 1990-present, VMS, Cu, Zn, Au, diamonds, Cu-Ni-PGE, Cross Lake discovery, Zn/Ag/Cu near Timmins

Special Assignments:
Uganda – Evaluation of Kilembi Proterozoic Cu, Ni, Co
Siberia – Diamonds and Kimberlites
1995 NWT – Valuations of Lac de Gras area projects
Kyrgyzstan – Gold deposit evaluation

R.S. Middleton, P.Eng. Date:
Appendix I

Drill log and section.
Eva Kitto Property, Northern Ontario
Log of DDH: EK-05-01

UTM Zone (NAD 27) 16U
 mE: 419076
 mN: 5491483

Claim # 1245415
Az: 160°
Hole Length: 246.60m
Casing Length:
Casing: Casing left in hole
Other:

Core: BQ core stored at East West Resources Field Office, Thunder Bay.

Drilled By Falcon Drilling
Setup checked by:
Logged by: Jordan Laarman
Signed:

On: January 9, 2006
0.00 - 10.00m
CASING

10.00 - 34.20m
LHERZOLITE
Massive textured, fine grained unit consists of poikilitic up to 1.4cm tabular clinopyroxenes enclosing 1mm ovoidal cumulate olivines and pyroxenes. 1 to 3mm irregular patches of biotite are dispersed throughout groundmass. Unit consists of 40-45% olivine, 35-45% pyroxene, 3% biotite, <5% plagioclase. Ovoidal olivines are often serpentinized cumulate grains.

At 15.5m, coarser 3mm wide veinlet of dark chert with surrounding medium grained pyroxene 20.3-20.6m, unit is darker - more pyroxenitic - and contains more serpentinized olivine and chert with 1-3% <1mm irregular blebs of marcasite 25.53-26.35m, darker unit At 28.3m, irregular up to 1cm wide magnetite-chert veining continuous throughout unit 10%

Alteration: <1 to 2mm wide irregular oriented dark green chlorite to blue grey chert to light green serpentine fracture veinlets spaced inconsistently 10 to 30cm apart

34.20 - 39.90m
CARBONATIZED LHERZOLITE
Wholesale carbonate bleaching and serpentine vein alteration of olivine and Ca-pyroxenes within unit 35-38.3m, continuous 0.5 to 1cm splitting serpentine-calcite vein runs down axis of core. Vein is calcitized with <1 to 1mm blebs of marcasite scattered along vein 3%. Vein cuts through dominant leuco-carbonatized ultramafic. At 38m, vein is green mafic chlorite 1 to 2mm wide with surrounding vein sugary calcite. At 39.9m, long vertical contact along CA of carbonatized with underlying magnetized ultramafic.

39.90 - 42.00m
MAGNETITE-ALTERED LHERZOLITE
Magnetite-veined, hydrothermal 'leopard-textured' fine to medium euhedral black pyroxene-spotted lherzolite. Magnetite veins up to 2mm thick are continuously dispersed irregularly throughout groundmass 30%; thin <1mm wide pyrite veinlet alteration. At 41.5m, 1 to 2mm rounded pyrrhotite sulphides found within dark magnetite patches.
LHERZOLITE
Unit contains <5% irregular 2mm wide magnetite continuous veining generally horizontal to 15 °CA. Darker altered 1mm cumulate pyroxenes occur along altering veins; minor serpentine-chert-calcite in vein spots.

MAFIC SILL
Chilled leucocratic light brownish grey very fine grained plagioclase-rich groundmass contains <5% 1mm brown porphyritic biotite. Feldspars occur in 3mm weathering spots and constitute up to 5% intercumulus groundmass. From 48.00 to 48.05m, 3cm long mafic injection contains up to 4mm wide patchy coarse biotite altered crystal within surrounding alteration haloes.

48.05-48.15m, 10cm long aureole of very fine magnetite and 2mm dark pyroxene crystals.

CARBONACEOUS PELITE
Black very fine carbonaceous to 1mm spot-bedded turquoise serpentinized. Beds are 1mm wide foliations oriented 75 to 90 °CA. Unit has moderately magnetic groundmass to highly magnetic <1mm veinlets running through <1% of unit.

MAGNETITE SKARN - SIBLEY SANDSTONE
Largely biotitized interlayered magnetite skarn zone with 30% Sibley sandstone digestion. 10cm turquoise to blue Sibley intervals contain medium grain silvery sheafy porphyroblastic biotite minerals. Intervals are separated 3 to 7cm by fine jet blue-black magnetiferous layers at zones with patchy biotitization.

MAGNETITE SKARN
Magnetite skarn with patchy 5cm locally epidotized porphyritic Sibley digestions. Sibley units are wholesale turquoise/black zones with 30% medium grained biotite. Very fine grain pyrite sulphides occur along minor <1mm calcite veinlets.

49.60-49.67m, darker magnetite aureole with 3 to 5mm biotite growths throughout
49.67 - 49.95m **MAFIC SILL**
Chilled mud grey unit. Anhedral rounded carbonate crystals contain 5% 3mm wide amygdular clear/grey-blue to very light green chert filled vein to void fills. Unit contains up to 4mm poikilitic pyroxenes, very minor olivine-serpentine as <1mm ovoidal grains. Unit is <1% 3mm local porphyritic magnetized. At 49.79m, sill is broken up by very fine magnetite with coarse porphyritic biotite near vertical angle to CA - 3cm zone within sill.

49.95 - 50.10m **SIBLEY SANDSTONE**
Light green-turquoise matrix Sibley unit with 3mm patches of bronzy porphyritic biotite. Unit has sharp contacts at both ends of mafic sill.

50.10 - 50.50m **MAFIC SILL**
As above. Unit contains chert-filled amygdules and minor local 3mm magnetite patches. Few vugs with silica edges were dissolved chert amygdules. At 50.35m, aphanitic carbonaceous <1cm wide bands are oriented vertical to CA.

50.50 - 51.13m **CARBONACEOUS PELITE**
Aphanitic soft carbonaceous pelite.

50.80-51.13m, calcite fills up light green, broken up voidal amygdules. Epidotized mafic sill digestions contain black carbon and are largely <1mm irregular calcite veinletized.

51.13 - 51.85m **LHERZOLITE**
Unit is largely magnetite veined at beginning. From 51.65 to 51.85m, a progressive dominant fine grain 50% magnetized to magnetite-vein rich zone breaks up lherzolite. Coarse 3mm porphyritic bronzy biotites occur as local patches in magnetized part. Unit has a sharp contact with lower mafic sill oriented 60 to 70°CA - varies since a lithologic contact. Contact is very fine grain veinlet pyritized.
51.85 - 52.22m **MAFIC SILL**
Unit is chilled very finely at contact with lherzolite. Unit is phyllitic and very finely biotitised, with minor 3mm vugs to silica filled amygdules. At 52.05m is a 3cm wide carbon interlayer. Surrounding interlayer are 3mm wide carbon patches breaking up the sill unit.

52.22 - 52.75m **SIBLEY SANDSTONE**
52.22-52.45m, prominent 1 to 3mm wide silica-layered sandstone with algal silica to sand layering oriented 70°CA. Fine silvery biotite is scattered throughout chert interbands/aligned 1mm rounded crystal zones
52.45-52.75m, turquoise chert Sibley unit with grey voids of 50% 1mm grey chert; local silica parts

52.75 - 53.80m **MAGNETITE SKARN - SIBLEY SANDSTONE**
Magnetite-Sibley skarn interlayered zone.
53.50-53.67m, siliceous patch of Sibley with >60% silvery up to 6mm coarse sheafy biotite. Sharp contact of Sibley with lower mafic sill oriented 60°CA.

53.80 - 54.15m **MAFIC SILL**
Mafic sill with <5% chert to silica-filled amygdules; one up to 1.5cm wide. Unit has sharp contact oriented 60°CA with lower carbon pelite-Sibley interlayered unit. Few 1mm pyrite-pyrrhotite blebs and one 6mm bleb of pyrrhotite occur at contact in mafic sill.

54.15 - 54.37m **CARBONACEOUS PELITE - SIBLEY SANDSTONE**
Carbonaceous pelite with digested Sibley unit from 54.2 to 54.25m. Sibley unit is biotitised with calcite veinlets.

54.37 - 54.47m **MAFIC SILL**
Unit contains silica amygdules. Sulphides include 1mm blebs of pyrrhotite and veinlet pyrite sulphides at contact with underlying carbon unit.

54.47 - 54.84m **CARBONACEOUS PELITE**
At 54.67m, there's a broken up digestion of mafic sill.
54.84 - 56.12m **LHERZOLITE**
Up to 55m, unit is a wholesale carbonatized silicified cumulate with few magnetite veins along CA.

56.12 - 56.35m **MAFIC SILL**
Largely amygdular-chert filled unit. A 2mm wide serpentine-chert vein runs 25°CA.

56.35 - 58m **MAGNETITE SKARN - PELITE**
Magnetite skarn-pelite dominant zone with Sibley digestion from 56.47 to 56.60m. Sibley unit is turquoise, biotitized with 1mm wide blue magnetite layering and up to 5mm coarse porphyrite biotite. Silvery blades of <1mm biotite are dispersed 10-20% throughout very fine groundmass of magnetiferous pelite.

58 - 58.52m **MAFIC SILL**
1 to 3mm silica-chert amygdules occur <5% throughout unit. From 58.19 to 58.26m, there’s magnetiferous pelite. Calcite veinlets run within sill. 1% 1 to 2mm porphyritic bronzy biotite grains are dispersed in sill.

58.52 - 60.10m **LHERZOLITE**
Unit has sharp contact oriented 65°CA with upper mafic sill. Unit contains few 1 to 2mm wide magnetite-pyroxene veins with calcite. Unit has diffuse broken contact with lower Sibley sandstone.

60.10 - 60.20m **SIBLEY SANDSTONE**
Crumbly unit with mafic 2mm round crs; coarse biotite at contact with lherzolite.

60.20 - 60.65m **MAFIC SILL**
Brown-grey massive textured leucocratic unit contains poikilitic pyroxenes.

60.65 - 60.95m **CARBONACEOUS PELITE** with silvery biotite

60.95 - 61.28m **MAFIC SILL**
At 61.15m, there’s a 3cm wide interlayer of carbonaceous pelite.
MAGNETIFEROUS PELITE - SIBLEY SKARN ZONE, MAFIC SILL
61.28 - 61.89m
- 61.47-61.54m, turquoise patch of Sibley
- 61.61-61.67m, 61.81-61.89m, mafic sill

MAGNETIFEROUS PELITE - SIBLEY SKARN ZONE
61.89 - 62.92m
Interlayered (diffusely) mt-pelite Sibley skarn zone with 1mm blades of biotite dispersed 10 to 20%. Layering is oriented 45°CA.

SIBLEY SANDSTONE
62.92 - 63.25m
Light green crumbly epidotized unit.

MAFIC SILL
63.25 - 63.35m
Unit contains 1 to 3mm wide chert amygdules. Contact with lower lherzolite is 45°CA.

LHERZOLITE
63.35 - 140.00m
Massively textured fine grained olivine-pyroxene cumulate.

- 66.60-67.33m, up to 4mm wide continuous fracture vein of calcite along CA with dark pyroxene.
- 69.70-71.45m, calcite vein along CA with dark pyroxene, biotite as 0.5cm wide aureole. In wider area at 71.20m, vein contains dark green chert-serpentine. At 71.30m, vein contains vuggy calcite.
- 71.80-72.10m, two 1cm wide green chert-serpentine with altered pyroxene veins spaced 10cm apart run 20 to 25°CA.
- 73.00-74.65m, zone of calcite-chert fracture veinlets with haloes up to 2.5cm wide, interval spacing 5 to 10cm apart, run 40 to 45°CA.
- 75.55m, single 1cm wide to 2cm haloed calcite vein runs 35°CA.
- 76.30-76.90m, largely irregularly fractured, calcite vugged in spots, dark serpentinized with magnetite - moderately magnetic and slightly hematized zone with bronzied coarse grain biotite at 76.90m.
- 77.57m, dark green haloed 0.5cm wide serpentine vein runs 80°CA.
- 77.70-77.85m, large patched green serpentine veined with surrounding fine magnetized zone, minor hematite, white vuggy calcite with serpentine.
78.40-78.60m, irregular fracture veinlets of magnetite-pyroxene.
79.00-79.40m, large patched green serpentinized with surrounding magnetite, pyroxene vein altered zones.
79.10-89.10m, lherzolite contains 5 to 20cm interval spaced dominant veinlet calcite-magnetite-pyroxene fracture veinlets generally run 40°CA; 0.5 to 1cm wide serpentine with calcite in thicker veined spots from 80.33-80.65m, 82.17-82.60m.
89.10-89.90m, brecciated zone of leucocratic coarse grain biotitized clasts 1.5 to 10cm wide - digestions. After 89.90m, continue zone of fracture magnetite-calcite veins.
90.35-91.15m, light green-white serpentine calcite brecciated veins with selvaging of magnetite - altered zone.
91.15-99.30m, lherzolite contains 1-2mm wide continuous irregular fracture magnetite-calcite veinletting. At 97.00m, veinlets are 35 to 45°CA and are spaced 30 to 40cm apart.
99.30-106.00m, continuous flat fracture veinlets.
106.00-111.00m, 15 to 20°CA orientation in fracture veinlets, spaced 5 to 20cm apart.
111.70-115.50m, unit is largely vein magnetite-pyroxenitized: 0.5cm wide green chlorite-serpentine veins with 1.5cm alteration haloes of magnetite-pyroxene surrounded by irregular 1 to 2mm wide pyroxene-magnetite veinlets; coarse grain up to 3mm wide blady silver-bronze biotite minerals border the serpentine-chlorite veins. Vein is vuggled in spots that were calcite filled. The large vein is generally continuous along CA.
115.50-116.40m, 1 to 2mm wide magnetite-pyroxene veinlets spaced 5 to 10cm apart run 40 to 45°CA.
116.40-126.60m, veinlets spaced 30 to 40cm apart oriented 20 to 30°CA.
127.35-127.82m, veinlets spaced 10cm apart oriented 40°CA.
127.82-128.30m, 0.3cm wide light green calcite-serpentine vein with bordering 1 to 2mm wide blady coarse grain biotite minerals and surrounding pyroxene-magnete pre alteration haloe runs 15°CA.
128.30-140m, lherzolite contains few vertical calcite-chert veins that are 2 to 3mm wide and spaced 50cm to 1m apart.
132.62-132.71m, a magnetite-calcite 2mm wide vein runs vertical to CA and is followed by a 0.7cm wide green chert-serpentine vein that runs 70°CA. Vein contain 1cm wide magnetite-pyroxene haloes.
139.30 toward 140m, general irregular en echelon fracturing angles up 15 to 20°CA.

FELDSPATIC LHERZOLITE
Lherzolite contains more weathering out of plagioclase to 10% and is still dominant olivine-pyroxene cumulate; biotite is progressive to 15%. Olivine is more weathered out/serpentinized throughout groundmass.

140.00-151.00m
140.00-144.30m, variable orientations - 25, 35, 60, 70°CA - of 0.5cm wide green-blue chert serpentine veins spaced 10 to 15cm apart in local spots. Veins contain 1cm wide dark pyroxene haloes. At 144.30m, there are discontinuous angle veins.

144.55-144.70m, 146-147m, blue-green 0.3 to 0.6cm wide chert-serpentine veins run along CA and contain up to 2cm wide pyroxene-serpentine haloes.

149.15-152.75m **LHERZOLITE** - contains shallow 5 to 10°CA lithologic contact with overlying feldspathic lherzolite.

152.75-155.38m **FELDSPATHIC LHERZOLITE** - contains sharp 45°CA contact with underlying lherzolite

154.10-154.34m, two 2 to 3mm wide chert-serpentine veins run 20°CA.

155.38-162.80m **LHERZOLITE** - contact with underlying feldspathic lherzolite along CA.

155.85-156.22m and 157.40-157.63m, 2 to 3mm wide serpentine veins run along CA.

159.90-160.45m, three 1 to 2mm wide serpentine veins run 10 to 20°CA.

162.80-164.35m **FELDSPATHIC LHERZOLITE** - contact with underlying lherzolite is 5°CA.

164.35-165.80m **LHERZOLITE**

165.80-166.60m **FELDSPATHIC LHERZOLITE**

166.33-166.84m, 0.5cm wide green serpentine vein with pyroxenitic alteration runs along CA.

166.60-169.35m **LHERZOLITE**

169.35-177.70m **FELDSPATHIC LHERZOLITE**

At 175.82 and 176.00m, two angle fracture veinlets oriented 35 and 48°CA.

177.70-183.00m **LHERZOLITE**

Shallow fingering of lherzolite with underlying feldspathic lherzolite - coagulation - melt contacts with feldspathic lherzolite as more fractionated member. Unit becomes pyrrhotite-chalcopyrite mineralized at 182.60m.
179.70-183.93m, thin 2mm wide angle fracture veinlets of blue chert, minor calcite are spaced 5 to 20cm apart and are generally 25 to 30°CA.
180.48-180.93m, fracture serpentine-chert veinlets run along CA discontinuously throughout.
At 182.60m, unit contains a 1cm patch of fine interstitial pyrrhotite mineralization.

183.00-183.67m **FELDSPATIC LHERZOLITE**
Unit contains melt xenocryst of lherzolite: an elongate 10cm long x 1.5cm wide rounded finger

183.67-184.58m **LHERZOLITE**

184.58-184.85m **FELDSPATIC LHERZOLITE**

184.85-186.07m **LHERZOLITE**
At 185.70m, unit contains a 4cm patch of pyrrhotite and lesser chalcopyrite sulphides.
At 185.78m, vertical fracture veinlet.

186.07-186.45m **FELDSPATIC LHERZOLITE**

186.45-192.75m **LHERZOLITE**
At 187.14, 188.30, 189.73, 189.86, and 190.22m, unit contains 80 to vertical CA fracture veinlets.
At 190.22m, a 3mm wide vein of serpentine-chert with a 0.3cm pyroxene haloe runs 75°CA.
191.48-197.47m, longer more continuous zone of pyroxenitic fracture veinlets due to shallower angles of 20°CA that taper off along CA.

192.75-193.09m **FELDSPATIC LHERZOLITE**
193.09-198.55m **LHERZOLITE**
198.55-198.65m **FELDSPATIC LHERZOLITE**
198.65-198.90m **LHERZOLITE**
198.90-199.40m **FELDSPATIC LHERZOLITE**
199.40-199.60m **LHERZOLITE**
199.60-199.80m **FELDSPATHIC LHERZOLITE**
199.80-200.15m **LHERZOLITE**
200.15-200.45m **FELDSPATHIC LHERZOLITE**

200.45-218.00m **LHERZOLITE**
Unit is 1% patchy fine interstitial pyrrhotite-chalcopyrite mineralized from 202.60m to 215.85m.

At 205.70, 205.92m, two fracture veinlets of serpentine are oriented 65°CA.
206.37-210.50m, fracture veinlets are spaced 10 to 30cm apart and are oriented 15 to 30°CA.
At 217.30m, a 2mm wide blue chert vein runs 25°CA.

218.00-218.20m **FELDSPATHIC LHERZOLITE** - pinch out

218.20-246.60m **LHERZOLITE**
Unit is 1% patchy fine interstitial pyrrhotite-chalcopyrite mineralized from 220.80 to 232.40m and from 238.80 to 246.00m.

218.25-223.35m, fracture veinlets run 75 to 90°CA and are irregularly spaced 10 to 25cm apart.
223.35-223.70m, small fracture veinlets 40 to 60°CA are spaced 20 to 30cm apart.
231.00-231.30m, a 2cm thick serpentine vein that forks wider is oriented 20°CA and contains a 3cm wide alteration halo of dominant 1 to 2mm ovoidal cumulate pyroxene grains - orthocumulate with interstitial olivine. Few remelted 0.5cm wide bronzy biotite grains occur in halo of vein.
231.30-236.40m, en echelon chlorite-chert fracture veinlets occur as a discontinuous series throughout unit and are oriented 20°CA. Veinlets flatten out to 10°CA past 233.00m
237.53-241, fracture veinletting of chlorite-chert-magnetite are discontinuous throughout unit and are oriented 10 to 20°CA.
238.90-241.20m, lherzolite is wholepyroxenitized with pyroxene-magnetite veinletting to >50%.
240.60-240.69m and 241.00-241.15m, unit is 70% halo pyroxenitized with 1 to 2mm blebs of pyrrhotite sulphide. Magnetite veining runs 70 to 80°CA. A vein contains a 1.5cm squirt of serpentine-chert.
At 240.40 and 240.47m, two 2mm wide magnetite-pyroxene veins run 35°CA
241.30-242.20m, 2 to 3mm wide magnetite-coarse grain pyroxene vein runs along CA with minor 2cm wide blob of serpentine.
242.78-243.15m, 2mm thick magnetite veins with surrounding coarse grain pyroxenitization run irregularly throughout unit.
243.15-246.60m, variably oriented black chert veinlets run discontinuously throughout unit at 20 to 30°CA orientation and are spaced 15cm apart where veins become steeper 2mm wide green serpentine-chert angled at 80°CA.

EOH
Drill Plan Map
East West Resource Corp. & Mega Uranium
Eva Kitto Property

- EK05-01
 -90°, 245m

Scale: 1:3770