REPORT ON THE
2009
DIAMOND DRILLING PROGRAM
OF THE
ABITIBI EAST PROPERTY
LARDER LAKE MINING DIVISION
NORTHEASTERN ONTARIO

PREPARED FOR

October 14, 2009 J Kevin Montgomery P. Geo., M.Sc. (App.)
 George Sparling
SUMMARY

The Abitibi East Property, held by Golden Chalice Resources Inc., is situated 75 km northeast of Timmins, Ontario. It is comprised of 157 unpatented mining claims (26,146 hectares) located in the Larder Lake Mining Division.

A diamond drilling program consisting of seven holes totalling 2,039 metres was completed on the property from August 13 to September 20, 2009. It was carried out to test two strong VTEM conductors within mafic volcanic stratigraphy on the western extension of the property and to test stratigraphy in the northeast portion of the property. Two drill holes (GCAE09-1 & 2) totalling 553 m tested the separate airborne VTEM conductors and discovered they were caused by graphitic argillite units.

In the northeast portion of the property, the diamond drilling program was successful in locating the southeastern extension of volcanic stratigraphy from the adjoining Explor Resources’ Eastford Lake Property that hosts a gold discovery of 142.26 g/t Au over 3.0 meters (Explor Resources, press release February 9, 2009). This volcanic stratigraphy was intersected in holes GCAE09-5 and 6 of the drill program. It consisted of carbonatized ultramafic volcanic possibly flows and ankeritic-sericitic altered pillowed to massive basalts with sulphidic quartz flooded zones. Gold mineralization was returned from the quartz zones in hole GCAE09-5: 1.52 g/t Au over 0.5m (23.4-23.9 m downhole) and 1.95 g/t Au over 0.7m (91.9-92.6 m). Hole GCAE09-6 located 300 m southeast of GCAE09-05 returned 1.85 g/t Au over 0.8 m (236.7-237.5 m) from a sulphidic quartz flooded zone.

Further exploration work is recommended for the northeast portion of the Abitibi East Property in light of these encouraging shallow gold intersections. A deep penetrating IP survey should be considered over the favourable volcanic stratigraphy in the area of holes 5 and 6. This would outline additional targets for a future diamond drilling program.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page No</th>
</tr>
</thead>
<tbody>
<tr>
<td>INTRODUCTION</td>
<td>1</td>
</tr>
<tr>
<td>LOCATION AND ACCESS</td>
<td>1</td>
</tr>
<tr>
<td>TOPOGRAPHY AND CLIMATE</td>
<td>1</td>
</tr>
<tr>
<td>PROPERTY DESCRIPTION</td>
<td>3</td>
</tr>
<tr>
<td>REGIONAL GEOLOGY</td>
<td>3</td>
</tr>
<tr>
<td>PROPERTY GEOLOGY</td>
<td>6</td>
</tr>
<tr>
<td>DISCUSSION OF CORE DRILLING</td>
<td>6</td>
</tr>
<tr>
<td>RESULTS AND RECOMMENDATIONS</td>
<td>11</td>
</tr>
<tr>
<td>REFERENCES</td>
<td>13</td>
</tr>
<tr>
<td>CERTIFICATE OF QUALIFICATIONS</td>
<td>14</td>
</tr>
</tbody>
</table>

TABLES

<table>
<thead>
<tr>
<th>Table No.</th>
<th>Description</th>
<th>Page No</th>
</tr>
</thead>
<tbody>
<tr>
<td>TABLE 1</td>
<td>Drill Hole Summary Abitibi East Property</td>
<td>6</td>
</tr>
<tr>
<td>TABLE 2</td>
<td>Nickel and Gold Standard values</td>
<td>11</td>
</tr>
</tbody>
</table>

FIGURES

<table>
<thead>
<tr>
<th>Figure No.</th>
<th>Description</th>
<th>Page No</th>
</tr>
</thead>
<tbody>
<tr>
<td>FIGURE 1</td>
<td>Location Map</td>
<td>2</td>
</tr>
<tr>
<td>FIGURE 2</td>
<td>Property Claim Map</td>
<td>4</td>
</tr>
<tr>
<td>FIGURE 3</td>
<td>Regional Geology of the Abitibi East Property</td>
<td>5</td>
</tr>
</tbody>
</table>

APPENDICES

<table>
<thead>
<tr>
<th>Appendix No.</th>
<th>Description</th>
<th>Page No</th>
</tr>
</thead>
<tbody>
<tr>
<td>APPENDIX A</td>
<td>Abitibi East Property Claim Listing</td>
<td>15</td>
</tr>
<tr>
<td>APPENDIX B</td>
<td>Drill Hole Logs</td>
<td>20</td>
</tr>
<tr>
<td>APPENDIX C</td>
<td>Analytical Results</td>
<td></td>
</tr>
<tr>
<td>APPENDIX D</td>
<td>Summary of Expenditures</td>
<td></td>
</tr>
</tbody>
</table>

List of Maps and Sections

(in back pocket)

- Map 1 Property Claim Map
- Map 2 GCAE09-01 drill hole location plan Map
- Map 3 GCAE09-02 drill hole location plan Map
- Map 4 GCAE09-03 to 07 drill hole location plan Map
- GCAE09-01 Section
- GCAE09-02 Section
- GCAE09-03 Section
- GCAE09-04 Section
- GCAE09-05 Section
- GCAE09-06 Section
- GCAE09-07 Section

Abitibi East 2009 Assessment Drilling Report
INTRODUCTION

The Abitibi East Property is comprised of at least 157 contiguous unpatented mining claims (1,615 units) covering approximately 26,146 hectares in ten townships within the Larder Lake Mining Division. The property is held under option by Golden Chalice Resources.

This report describes the diamond drilling program conducted on the Abitibi East Property from August 13 to September 20, 2009. The program was carried out to test two strong VTEM conductors within mafic volcanic stratigraphy on the western extension of the property. It was also designed to test stratigraphy in the northeast portion of the property. This was done to search for the southeastern extension of the volcanic stratigraphy on the adjoining Explor Resources’ Eastford Lake Property that hosts a gold discovery of 142.26 g/t Au over 3.0 meters (Explor Resources, press release February 9, 2009).

The drilling program was co-ordinated and supervised by the author. Drill core logging was carried out by G Sparling of Timmins, Ontario. The field technical tasks associated with the drilling program were conducted by D. Bryant, and R. Bailey, all of Timmins Ontario. The author drafted the maps and figures for this report.

LOCATION AND ACCESS

The Abitibi East Property is situated 65 kilometers northwest of Kirkland Lake Ontario (Figure 1). The project is located within Beatty, Coulson, Knox, Kerrs, McCool, Milligan, Munro, Rickard, Warden and Wilkie townships of the Larder Lake Mining Division. The latitude and longitude of the property, NTS 42 A/NE, is 48 42’N and 80 18’ W. The property is accessible by a network of logging roads, north off Highway 101 near the Perry Lake Lodge (Caldbick, 2007).

TOPOGRAPHY AND CLIMATE

The topography of the Abitibi East Project is flat to gently rolling. Outcrop exposure is low, approximately 1 to 3%. The majority of the property is covered by spruce bog, cedar bog and muskeg. Drainage is influenced by a number of small creeks which generally drain to the northwest. The climate of the project area is warm and dry in the summer months from May to September and cold and snowy from November to March. Temperatures range from +30 Celsius in the summer to –30 Celsius in the winter (Caldbick, 2007).
Figure 1 Location Map
PROPERTY DESCRIPTION

The Abitibi East Property is comprised of two groups of unpatented mining claims. The western group consists of 16 claims (155 claim units) in Knox and Rickard townships (Figure 2). The main block consists of 141 claims (1,615 claim units) in Coulson, Kerrs, Knox, McCool, Milligan, Munro, Rayner Lake, and Warden Townships (Figure 2). The East Abitibi Property is approximately 26,146 hectares in size and wholly owned by Golden Chalice Resources Inc. through staked claims and option agreements (see claim listing in Appendix A).

REGIONAL GEOLOGY

The Abitibi East project is located in the Abitibi Greenstone Belt of the Superior province of the Canadian Shield. The Abitibi Greenstone belt is a large granite-greenstone terrain some 150,000 km² in area extending from Lake Superior in north-central Ontario through into Quebec. Metamorphic grade varies from greenschist to lower amphibolite facies. The Abitibi Greenstone belt is the most prolific Archean terrain in terms of copper-zinc sulphide mineralization and gold mineralization.

Major east and northeast trending growth faults (Destor Porcupine Deformation Zone, Cadillac-Larder Deformation Zone) were active throughout the main periods of volcanism and became the focus of a late period of alkaline volcanism and sedimentation between 2680 and 2677 Ma (Corfu et al 1989). These deformation zones are the focus of most of the major gold deposits found in the Kirkland Lake and Timmins camps. In excess of 120 million ounces of gold has been produced from mines associated with these two structures.

The project is situated in the Duff-Coulson-Rand assemblage and the Stoughton Roquemaure assemblage (Figure 3). The Duff-Coulson-Rand Assemblage is a 5 km wide northwest southeast sequence of felsic volcanic rocks and clastic sedimentary rocks (Jackson, 1991). The extent of this assemblage is defined by the low magnetic signature relative to the adjacent assemblages. The Duff-Coulson assemblage occurs between the north and middle branches of the Porcupine-Destor deformation zone. The northern portion of the Abitibi East Project may be situated within the Stoughton-Roquemaure Assemblage. The Stoughton-Roquemaure assemblage consists of an east striking, south facing sequence of peridotitic and basaltic komatiite, magnesium and iron rich tholeiite, chert, iron formation and felsic tuff horizons (Jensen and Langford, 1985).

Several past producing mines and a number of significant showings are situated in the area. The Potter Mine located in central Munro Township produced 485,000 tonnes at 1.63% Cu, 1.57% Zn from 1967 to 1972. The Potterdoal Property situated in north central
Figure 2 Property Claim Map

Abitibi East 2009 Assessment Drilling Report
Figure 3 Regional Geology of the East Abitibi Property
Munro Township produced 25 tons of ore at a grade of 15% Cu. Mineralization in both instances occurs in thin hyaloclastite and interflow beds within a tholeiitic to komatiitic sequence (Caldbick, 2007).

PROPERTY GEOLOGY

The Abitibi East Project is underlain in the north by mafic volcanic rocks of the Stoughton-Roquemaure Assemblage and in the central and south by felsic volcanic and sedimentary rocks belonging to the Duff-Rand-Coulson Assemblage. The felsic volcanic sequence in the central portion of the property is the key target of exploration on the Abitibi East Project.

The felsic volcanic sequence is approximately 400 meters wide and hosts a number of strong airborne EM anomalies. The felsic volcanic sequence is comprised of a rhyolite breccia/tuff horizon that is crosscut by a major northwest-southeast trending fault known as the Shallow River fault system. The presence of structural controls such as the Shallow River fault and lithological settings such as felsic fragmental rocks are features commonly associated with most volcanogenic massive sulphide deposits. All rocks are intruded by gabbroic sills and dykes which are in turn cut by later felsic dykes and northeast trending diabase dykes (Caldbick, 2007).

DISCUSSION OF CORE DRILLING

A diamond drilling program, consisting of seven holes totalling 2,039 metres, was completed on the property from August 13 to September 20. The diamond drilling program employed one diamond drill rig provided by Crittes Drilling of Timmins, Ontario. On the western Abitibi East claim group, two holes totalling 553 m were drilled to test separate airborne VTEM conductors. This was done to determine whether the conductors were caused by sulphide mineralization. The drilling program on the eastern extension was conducted to test stratigraphy and ground magnetic anomalies. It consisted of five holes (GCAE09-3 to 7) totalling 1,486 metres.

Table 1 Drill Hole Summary Abitibi East Property

<table>
<thead>
<tr>
<th>Hole</th>
<th>Claim No</th>
<th>Easting GPS</th>
<th>Northing GPS</th>
<th>Azimuth</th>
<th>Dip</th>
<th>Length</th>
</tr>
</thead>
<tbody>
<tr>
<td>GCAE09-1</td>
<td>4202666</td>
<td>536004</td>
<td>5398539</td>
<td>003</td>
<td>-60</td>
<td>227</td>
</tr>
<tr>
<td>GCAE09-2</td>
<td>4202669</td>
<td>537300</td>
<td>5396078</td>
<td>180</td>
<td>-60</td>
<td>326</td>
</tr>
<tr>
<td>GCAE09-3</td>
<td>4214736</td>
<td>565929</td>
<td>5394478</td>
<td>050</td>
<td>-50</td>
<td>350</td>
</tr>
<tr>
<td>GCAE09-4</td>
<td>4214736</td>
<td>565984</td>
<td>5394939</td>
<td>050</td>
<td>-50</td>
<td>350</td>
</tr>
<tr>
<td>GCAE09-5</td>
<td>4214737</td>
<td>566557</td>
<td>5395294</td>
<td>050</td>
<td>-50</td>
<td>317</td>
</tr>
</tbody>
</table>
A brief summary of each hole drilled is outlined below. Detail drill logs for each hole are found in Appendix B.

HOLE GCAE09-1

Location: 536004E/ 5398539N (GPS Nad 83)
- Claim: 4202666, Lot 9 Con 2 N1/2 NE1/4 Rickard Twp.
- Dip: -60 Azimuth: 003
- Length: 227 m

Target: airborne VTEM conductor

Summary: The hole intersected the following stratigraphy (Appendix B):

- 0-14.2 m Overburden
- 14.2-180.9 Mafic Intrusive possibly gabbro with variable moderate pervasive silification.
- 180.9-182.1 Mafic Intrusive possibly gabbro
- 182.1-194.1 Mafic Intrusive possibly gabbro with variable moderate pervasive silification.
- 194.1-194.3 Graphitic Argillite.
- 194.3-219.1 Mafic Intrusive possibly gabbro
- 219.1-227 Sulphidic Graphitic Argillite (mudstones) grading into wackes with some argillite bands. Tops appear to be up hole.

227 m End of the hole.

HOLE GCAE09-2

Location: 537300E/ 5396078N (GPS Nad 83)
- Claim: 4202669, Lot 7 Con 1 S1/2 NW1/4 Rickard Twp.
- Dip: -60 Azimuth: 180
- Length: 326 m

Target: airborne VTEM conductor

Summary: The hole intersected the following stratigraphy (Appendix B):

- 0-65.8 m Overburden
- 65.8-77.7 Massive peridotite flow.
- 77.7-112.3 Bleached mafic volcanic flows (andesite or basalt)
- 112.3-118.5 Massive mafic flow (andesite or basalt)
- 118.5-129.7 Bleached mafic volcanic flows (andesite or basalt)
- 129.7-145.1 Diabase Dyke (gabbroic texture)
- 145.1-151.7 Massive mafic flow (andesite or basalt)
- 151.7-152.5 Graphitic Argillite
- 152.5-152.9 Massive pyrite zone
152.9-159.3 Graphitic Argillite
159.3-191.7 Greywackes interbedded with mudstones/argillites
191.7-228.8 Greywackes interbedded with conglomerate beds
228.8-326 Polymitic Debris flow
326 End of the hole.

HOLE GCAE09-3
Location: 565929E/5394478N (GPS Nad 83)
Claim: 4214736, Lot 9 Con 8 S1/2 SE1/4 Milligan Twp.
Dip: -50 Azimuth: 050
Length: 350 m
Target: Stratigraphic testing a magnetic low as a possible porphyry body.
Summary: The hole intersected the following stratigraphy (Appendix B):

<table>
<thead>
<tr>
<th>Depth</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-32</td>
<td>Overburden</td>
</tr>
<tr>
<td>32-68.7</td>
<td>Pillowed Basalts</td>
</tr>
<tr>
<td>68.7-85.6</td>
<td>Massive Basalt</td>
</tr>
<tr>
<td>85.6-232.1</td>
<td>Pillowed Basalts</td>
</tr>
<tr>
<td>232.1-239.4</td>
<td>Feldspar Porphyry</td>
</tr>
<tr>
<td>239.4-243.8</td>
<td>Pillowed Basalts</td>
</tr>
<tr>
<td>243.8-250.4</td>
<td>Bleached Pillowed Basalts</td>
</tr>
<tr>
<td>250.4-263.6</td>
<td>Feldspar Porphyry</td>
</tr>
<tr>
<td>263.6-306.3</td>
<td>Pillowed Basalts</td>
</tr>
<tr>
<td>306.3-329.2</td>
<td>Peridotite flow or intrusive, weak to moderately magnetic</td>
</tr>
<tr>
<td>329.2-350</td>
<td>Mafic Intrusive, weak to moderately magnetic</td>
</tr>
<tr>
<td>350</td>
<td>End of the hole.</td>
</tr>
</tbody>
</table>

HOLE GCAE09-4
Location: 565984E/5394939N (GPS Nad 83)
Claim: 4214736, Lot 9 Con 8 S1/2 SE1/4 Milligan Twp.
Dip: -50 Azimuth: 050
Length: 350 m
Target: Stratigraphic testing a magnetic low as a possible porphyry body.
Summary: The hole intersected the following stratigraphy (Appendix B):

<table>
<thead>
<tr>
<th>Depth</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-28.4</td>
<td>Overburden</td>
</tr>
<tr>
<td>28.4-130</td>
<td>Coarse massive basalt</td>
</tr>
<tr>
<td>130-143.3</td>
<td>Massive Basalt with local pillows</td>
</tr>
<tr>
<td>143.3-147.3</td>
<td>Pillowed Basalts</td>
</tr>
<tr>
<td>147.3-158.5</td>
<td>Massive Basalt</td>
</tr>
<tr>
<td>158.5-166.1</td>
<td>Bleached Amygdaloidal Basalt, strong pervasive ankerite-sericite alteration</td>
</tr>
</tbody>
</table>
166.1-171.3 Pillowed Basalts
171.3-177.2 Quartz-Feldspar Porphyry
177.2-188.5 Pillowed Basalts
188.5-191.5 Bleached Amygdaloidal Basalt, strong pervasive ankerite-sericite alteration
191.5-218.8 Pillowed Basalts
218.8-252.5 Peridotite
252.2-264.4 Quartz-Feldspar Porphyry
264.4-289.7 Peridotite
289.7-291.4 Mafic Intrusive
291.4-294.9 Felsic Intrusive
294.9-295.7 Mafic Intrusive
295.7-304.6 Peridotite
304.6-320.6 Mafic Intrusive
320.6-333 Peridotite
333-350 Mafic Intrusive
350 End of the hole.

HOLE GCAE09-5
Location: 566557E/ 5395294N (GPS Nad 83)
Claim: 4214737, Lot 9 Con 8 S1/2 SE1/4 Milligan Twp.
Dip: -50 Azimuth: 050
Length: 317 m

Target: Stratigraphic testing.
Summary: The hole intersected the following stratigraphy (Appendix B):

0-17 m Overburden
17-29.4 Peridotite
29.4-35.10 Pillowed Basalts
35.10-35.8 Peridotite
35.8-36.6 Quartz Vein
36.6-39.50 Pillowed Basalts
39.5-70.6 Peridotite
70.6-140.9 Pillowed Basalts
140.9-144 Massive Basalts
144-145.8 Sediment (interflow)
145.8-149.9 Porphyritic Massive Basalt
149.9-150.4 Quartz Vein
150.4-152.3 Sediment (interflow)
152.3-154.9 Bleached Basalt, moderate pervasive ankerite-sericite alteration
154.9-164.5 Massive Basalts
164.5-165.8 Mafic Intrusive
165.8-206.5 Porphyritic Massive Basalt
206.5-233.2 Massive Basalts
233.2-261.7 Pillowed Basalts
261.7-263 Sediment (interflow)
263-317 Pillowed Basalts
317 End of the hole.

HOLE GCAE09-6
Location: 566697E/ 5395039N (GPS Nad 83)
Claim: 4214737, Lot 9 Con 8 S1/2 SE1/4 Milligan Twp.
Dip: -50 Azimuth: 045
Length: 251 m
Target: Stratigraphic testing.
Summary: The hole intersected the following stratigraphy (Appendix B):

0-30.2 m Overburden
30.2-37.15 Gabbro
37.15-58.8 Feldspar Porphyry
58.8-76.9 Pillowed Basalts
76.9-94.9 Feldspar Porphyry
94.9-190.3 Pillowed Basalts
190.3-202.8 Massive Basalts
202.8-204.9 Massive Basalts with moderate sericitization.
204.9-238 Porphyritic Massive Basalt
238-246.1 Felsic Intrusive
246.1-246.85 Porphyritic Massive Basalt
246.85-250.1 Feldspar Porphyry
250.1-251 Porphyritic Massive Basalt
251 End of the hole.

HOLE GCAE09-7
Location: 565929E/ 5394478N (GPS Nad 83)
Claim: 4214736, Lot 9 Con 8 S1/2 SE1/4 Milligan Twp.
Dip: -55 Azimuth: 230
Length: 218 m
Target: Stratigraphic testing as a possible intrusive body.
Summary: The hole intersected the following stratigraphy (Appendix B):

0-45 m Overburden
45-57.6 Massive Basalts
57.6-105.9 Pillowed Basalts
The peridotites intersected in the diamond drilling are most likely komatiitic flows, even though no spinifex textures are evident, as they are intercalated with massive to pilowed mafic flows.

A total of 415 sawed core samples were collected from the drill holes (Appendix B). These samples were shipped to Expert Laboratories and were analyzed for Au, Pt, Pd, Ag, Cu, Ni, Zn, Pb and Co. Blank samples of sterile granodiorite were inserted into the sample stream every 50th sample (eg. 115600, 115700, 115750 etc.). Nickel and gold standards were inserted with the samples (every 50th sample eg. 115575, 115675, 115725 etc.), this is now a common practice in the Canadian Exploration business. Expert Laboratories employed an aqua regia digestion analysis with atomic absorption techniques on the samples. The analytical results are found in Appendix C.

<table>
<thead>
<tr>
<th>Standard</th>
<th>Gold (ppb)</th>
<th>Copper (ppm)</th>
<th>Lead (ppm)</th>
<th>Zinc (ppm)</th>
<th>Nickel (ppm)</th>
<th>Arsenic (ppm)</th>
<th>Cobalt (ppm)</th>
<th>Silver (ppm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>NI 115</td>
<td>NR</td>
<td>1700</td>
<td>NR</td>
<td>NR</td>
<td>1900</td>
<td>NR</td>
<td>590</td>
<td>NR</td>
</tr>
<tr>
<td>PM-402</td>
<td>260</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
</tr>
<tr>
<td>PM-417</td>
<td>2090</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
</tr>
<tr>
<td>PM-922</td>
<td>6310</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
</tr>
</tbody>
</table>

Sections for the seven diamond drill holes are found in the map pockets at the back of this report.

The drill core from the 2009 summer drilling program is currently stored at the Hastings Management Core Storage Facility located on Highway 629 (Airport Road), in Timmins, Ontario.

RESULTS AND RECOMMENDATIONS

The 2009 summer diamond drilling program tested two of fourteen outlined airborne VTEM anomaly clusters, on the western extension of the Abitibi East Property. In hole GCAE09-01 the cause of the VTEM conductor is a sulphidic graphitic argillite unit from 219.1 to 227 m down hole. The upper part of the graphitic argillite returned an anomalous zinc intercept of 0.28% over 0.65 m (219.1-219.65 m). The second hole GCAE09-02 intersected graphitic argillite from 151.7 to 152.5 m and massive pyrite from 152.5 to 152.9 m. These
sections are the cause of the targeted VTEM conductor. Hole GCAE09-02 did not intersect significant metallic mineralization (Au, Pt, Pd, Ag, Cu, Ni, Zn and Pb).

The other holes (GCAE09-03 to 7) of the 2009 summer diamond drilling program were drilled to test stratigraphy the northern part of the eastern extension of the Abitibi East Property. Drill holes GCAE09-03 and GCAE09-04 were drilled to test magnetic lows within a magnetic high area. Both holes intersected massive and pillow basaltic flows that are intruded by small feldspar or quartz-feldspar porphyry dykes/sills. This mafic volcanic flow stratigraphy was followed by massive peridotites that the author believes to be komatiitic flows. The holes did not intersect significant metallic mineralization (Au, Pt, Pd, Ag, Cu, Ni, Zn and Pb).

Two gold intercepts were returned from hole GCAE09-5 including 1.52 g/t Au over 0.5m (23.4-23.9 m downhole) and 1.95 g/t Au over 0.7m (91.9-92.6 m). Hole GCAE09-6 located 300 m southeast of GCAE09-05 intersected 1.85 g/t Au over 0.8 m (236.7-237.5 m). The gold mineralization occurs within sulphidic quartz flooded zones in a carbonatized ultramafic and in ankeritic-sericitic altered pillow basalt. This volcanic stratigraphy intersected in holes 5 and 6 is the southeastern extension of the volcanic stratigraphy that hosts the Eastford Lake gold discovery on the adjoining Explor Resources Property.

Hole GCAE09-7 was drilled to test a circular magnetic high as a possible kimberlite or mafic intrusive. The hole explained the magnetic high as a highly magnetic homogenous serpentinized peridotite. No significant sulphide mineralization was encountered in the hole and thus no drill core sampling was conducted.

It is recommended that a deep penetrating IP survey be conducted over the favourable volcanic stratigraphy in the area of holes 5 and 6. This would outline additional targets for a second phase of drilling to follow up on the encouraging gold intersections.
REFERENCES

Caldbick, P.
2007 Assessment report on the Abitibi East Property- 2006 Drill results for Golden Chalice Resources

Corfu, F.

Hannington, M. D., Barrie, C. T., and Bleeker, W.

Jackson, S.L., Fyon J.A.

Jensen, L.S. and Langford, F.F.
1985 Geology and Petrogenesis of the Archean Abitibi Belt in the Kirkland Lake Area, Ontario. O.G.S. Misc. paper 123.
CERTIFICATE OF QUALIFICATIONS

I, J. Kevin Montgomery, of the City of Timmins, Province of Ontario, do hereby certify that:

(1) I am a professional Consulting Geologist, residing at 1190 Lozanne Crescent, Timmins Ontario, P4P 1E8.

(3) I am a registered professional geoscientist with the Association of Professional Geoscientists of Ontario.

(4) This report is based on my supervision of the exploration work conducted on the Abitibi East Property in 2009.

(5) I have no personal interest in the property covered by this report.

(6) Permission is granted for the use of this report, in whole or in part, for assessment and qualification requirements but not for advertising purposes.

Dated at Timmins, Ontario
this 14th day of October, 2009 J. Kevin Montgomery, P.Geo., M.Sc. (App.)
APPENDIX A ABITIBI EAST PROPERTY CLAIM LISTING

Abitibi East Property West Block

<table>
<thead>
<tr>
<th>Claim No.</th>
<th>Township</th>
<th>Due_Date</th>
<th>Date Rec.</th>
<th>Work Req.</th>
<th>Units</th>
<th>Size (ha)</th>
</tr>
</thead>
<tbody>
<tr>
<td>4212521</td>
<td>RICKARD</td>
<td>28-Nov-09</td>
<td>28-Nov-06</td>
<td>$3,200</td>
<td>8</td>
<td>129.52</td>
</tr>
<tr>
<td>4202668</td>
<td>RICKARD</td>
<td>28-Nov-09</td>
<td>28-Nov-06</td>
<td>$6,400</td>
<td>16</td>
<td>259.04</td>
</tr>
<tr>
<td>4202669</td>
<td>RICKARD</td>
<td>28-Nov-09</td>
<td>28-Nov-06</td>
<td>$1,600</td>
<td>4</td>
<td>64.76</td>
</tr>
<tr>
<td>4209312</td>
<td>RICKARD</td>
<td>28-Nov-09</td>
<td>28-Nov-06</td>
<td>$6,400</td>
<td>16</td>
<td>259.04</td>
</tr>
<tr>
<td>4209313</td>
<td>RICKARD</td>
<td>28-Nov-09</td>
<td>28-Nov-06</td>
<td>$3,200</td>
<td>8</td>
<td>129.52</td>
</tr>
<tr>
<td>4202666</td>
<td>RICKARD</td>
<td>28-Nov-09</td>
<td>28-Nov-06</td>
<td>$6,400</td>
<td>16</td>
<td>259.04</td>
</tr>
<tr>
<td>4212524</td>
<td>RICKARD</td>
<td>6-Dec-09</td>
<td>06-Dec-06</td>
<td>$6,400</td>
<td>16</td>
<td>259.04</td>
</tr>
<tr>
<td>4212525</td>
<td>KNOX</td>
<td>6-Dec-09</td>
<td>06-Dec-06</td>
<td>$6,400</td>
<td>16</td>
<td>259.04</td>
</tr>
<tr>
<td>4209311</td>
<td>RICKARD</td>
<td>21-Dec-09</td>
<td>21-Dec-06</td>
<td>$1,600</td>
<td>4</td>
<td>64.76</td>
</tr>
<tr>
<td>4210982</td>
<td>RICKARD</td>
<td>21-Dec-09</td>
<td>21-Dec-06</td>
<td>$4,800</td>
<td>12</td>
<td>194.28</td>
</tr>
<tr>
<td>4213529</td>
<td>RICKARD</td>
<td>14-Feb-10</td>
<td>14-Feb-08</td>
<td>$800</td>
<td>2</td>
<td>32.38</td>
</tr>
<tr>
<td>4215960</td>
<td>RICKARD</td>
<td>26-Feb-10</td>
<td>26-Feb-08</td>
<td>$4,000</td>
<td>10</td>
<td>161.9</td>
</tr>
<tr>
<td>4215961</td>
<td>RICKARD</td>
<td>26-Feb-10</td>
<td>26-Feb-08</td>
<td>$5,600</td>
<td>14</td>
<td>226.66</td>
</tr>
<tr>
<td>4215962</td>
<td>RICKARD</td>
<td>26-Feb-10</td>
<td>26-Feb-08</td>
<td>$1,600</td>
<td>4</td>
<td>64.76</td>
</tr>
<tr>
<td>4215963</td>
<td>RICKARD</td>
<td>26-Feb-10</td>
<td>26-Feb-08</td>
<td>$2,800</td>
<td>7</td>
<td>113.33</td>
</tr>
<tr>
<td>4240107</td>
<td>RICKARD</td>
<td>4-Jun-10</td>
<td>04-Jun-08</td>
<td>$800</td>
<td>2</td>
<td>32.38</td>
</tr>
</tbody>
</table>

TOTAL: 155 2509.45

Abitibi East Property Main Block

<table>
<thead>
<tr>
<th>Claim No.</th>
<th>Township</th>
<th>Due_Date</th>
<th>Date Rec.</th>
<th>Work Req.</th>
<th>Units</th>
<th>Size (ha)</th>
</tr>
</thead>
<tbody>
<tr>
<td>3019112</td>
<td>WARDEN</td>
<td>14-Sep-09</td>
<td>14-Sep-05</td>
<td>$6,000</td>
<td>15</td>
<td>242.85</td>
</tr>
<tr>
<td>3013128</td>
<td>KERRS</td>
<td>27-Oct-09</td>
<td>27-Oct-05</td>
<td>$6,400</td>
<td>16</td>
<td>259.04</td>
</tr>
<tr>
<td>3013200</td>
<td>KERRS</td>
<td>27-Oct-09</td>
<td>27-Oct-05</td>
<td>$3,200</td>
<td>8</td>
<td>129.52</td>
</tr>
<tr>
<td>3013267</td>
<td>KERRS</td>
<td>27-Oct-09</td>
<td>27-Oct-05</td>
<td>$1,600</td>
<td>4</td>
<td>64.76</td>
</tr>
<tr>
<td>3013268</td>
<td>KERRS</td>
<td>27-Oct-09</td>
<td>27-Oct-05</td>
<td>$800</td>
<td>2</td>
<td>32.38</td>
</tr>
<tr>
<td>3013269</td>
<td>KERRS</td>
<td>27-Oct-09</td>
<td>27-Oct-05</td>
<td>$3,200</td>
<td>8</td>
<td>129.52</td>
</tr>
<tr>
<td>3013275</td>
<td>KERRS</td>
<td>27-Oct-09</td>
<td>27-Oct-05</td>
<td>$6,400</td>
<td>16</td>
<td>259.04</td>
</tr>
<tr>
<td>4201331</td>
<td>KNOX</td>
<td>27-Oct-09</td>
<td>27-Oct-05</td>
<td>$3,200</td>
<td>8</td>
<td>129.52</td>
</tr>
<tr>
<td>4201332</td>
<td>KNOX</td>
<td>27-Oct-09</td>
<td>27-Oct-05</td>
<td>$1,600</td>
<td>4</td>
<td>64.76</td>
</tr>
<tr>
<td>4201333</td>
<td>KNOX</td>
<td>27-Oct-09</td>
<td>27-Oct-05</td>
<td>$4,800</td>
<td>12</td>
<td>194.28</td>
</tr>
<tr>
<td>4201334</td>
<td>KNOX</td>
<td>27-Oct-09</td>
<td>27-Oct-05</td>
<td>$6,400</td>
<td>16</td>
<td>259.04</td>
</tr>
<tr>
<td>4201415</td>
<td>COULSON</td>
<td>31-Oct-09</td>
<td>31-Oct-05</td>
<td>$1,600</td>
<td>4</td>
<td>64.76</td>
</tr>
<tr>
<td>4201414</td>
<td>COULSON</td>
<td>31-Oct-09</td>
<td>31-Oct-05</td>
<td>$1,600</td>
<td>4</td>
<td>64.76</td>
</tr>
</tbody>
</table>

TOTAL: 155 2509.45
<table>
<thead>
<tr>
<th>Drilling Number</th>
<th>Driller</th>
<th>Drilling Date 1</th>
<th>Drilling Date 2</th>
<th>Drilling Cost</th>
<th>Units</th>
<th>Unit Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>4201416</td>
<td>COULSON</td>
<td>31-Oct-09</td>
<td>31-Oct-05</td>
<td>$1,600</td>
<td>4</td>
<td>64.76</td>
</tr>
<tr>
<td>4201417</td>
<td>COULSON</td>
<td>31-Oct-09</td>
<td>31-Oct-05</td>
<td>$5,425</td>
<td>16</td>
<td>259.04</td>
</tr>
<tr>
<td>4201418</td>
<td>COULSON</td>
<td>31-Oct-09</td>
<td>31-Oct-05</td>
<td>$4,720</td>
<td>12</td>
<td>194.28</td>
</tr>
<tr>
<td>4209669</td>
<td>WARDEN</td>
<td>21-Dec-09</td>
<td>21-Dec-05</td>
<td>$2,400</td>
<td>6</td>
<td>97.14</td>
</tr>
<tr>
<td>4207655</td>
<td>WARDEN</td>
<td>21-Dec-09</td>
<td>21-Dec-05</td>
<td>$2,400</td>
<td>6</td>
<td>97.14</td>
</tr>
<tr>
<td>4209668</td>
<td>WARDEN</td>
<td>22-Dec-09</td>
<td>22-Dec-05</td>
<td>$1,600</td>
<td>4</td>
<td>64.76</td>
</tr>
<tr>
<td>4209661</td>
<td>WARDEN</td>
<td>22-Dec-09</td>
<td>22-Dec-05</td>
<td>$3,200</td>
<td>8</td>
<td>129.52</td>
</tr>
<tr>
<td>4209670</td>
<td>WARDEN</td>
<td>22-Dec-09</td>
<td>22-Dec-05</td>
<td>$4,800</td>
<td>12</td>
<td>194.28</td>
</tr>
<tr>
<td>4209662</td>
<td>WARDEN</td>
<td>22-Dec-09</td>
<td>22-Dec-05</td>
<td>$1,600</td>
<td>4</td>
<td>64.76</td>
</tr>
<tr>
<td>4209663</td>
<td>WARDEN</td>
<td>23-Dec-09</td>
<td>23-Dec-05</td>
<td>$3,600</td>
<td>9</td>
<td>145.71</td>
</tr>
<tr>
<td>4209664</td>
<td>WARDEN</td>
<td>23-Dec-09</td>
<td>23-Dec-05</td>
<td>$3,200</td>
<td>8</td>
<td>129.52</td>
</tr>
<tr>
<td>4209665</td>
<td>WARDEN</td>
<td>4-Jan-10</td>
<td>04-Jan-06</td>
<td>$3,600</td>
<td>9</td>
<td>145.71</td>
</tr>
<tr>
<td>4209666</td>
<td>WARDEN</td>
<td>4-Jan-10</td>
<td>04-Jan-06</td>
<td>$3,600</td>
<td>9</td>
<td>145.71</td>
</tr>
<tr>
<td>4209674</td>
<td>MCCOOL</td>
<td>25-Jan-10</td>
<td>25-Jan-06</td>
<td>$6,400</td>
<td>16</td>
<td>259.04</td>
</tr>
<tr>
<td>4209673</td>
<td>MCCOOL</td>
<td>25-Jan-10</td>
<td>25-Jan-06</td>
<td>$4,800</td>
<td>12</td>
<td>194.28</td>
</tr>
<tr>
<td>4209675</td>
<td>MCCOOL</td>
<td>25-Jan-10</td>
<td>25-Jan-06</td>
<td>$1,600</td>
<td>4</td>
<td>64.76</td>
</tr>
<tr>
<td>4209672</td>
<td>MCCOOL</td>
<td>25-Jan-10</td>
<td>25-Jan-06</td>
<td>$4,800</td>
<td>12</td>
<td>194.28</td>
</tr>
<tr>
<td>4209676</td>
<td>MCCOOL</td>
<td>25-Jan-10</td>
<td>25-Jan-06</td>
<td>$3,200</td>
<td>8</td>
<td>129.52</td>
</tr>
<tr>
<td>4209677</td>
<td>MCCOOL</td>
<td>25-Jan-10</td>
<td>25-Jan-06</td>
<td>$6,400</td>
<td>16</td>
<td>259.04</td>
</tr>
<tr>
<td>4209671</td>
<td>MCCOOL</td>
<td>25-Jan-10</td>
<td>25-Jan-06</td>
<td>$6,400</td>
<td>16</td>
<td>259.04</td>
</tr>
<tr>
<td>4209667</td>
<td>MCCOOL</td>
<td>25-Jan-10</td>
<td>25-Jan-06</td>
<td>$3,200</td>
<td>8</td>
<td>129.52</td>
</tr>
<tr>
<td>4209679</td>
<td>MUNRO</td>
<td>2-Feb-10</td>
<td>02-Feb-06</td>
<td>$2,400</td>
<td>6</td>
<td>97.14</td>
</tr>
<tr>
<td>4209678</td>
<td>MCCOOL</td>
<td>2-Feb-10</td>
<td>02-Feb-06</td>
<td>$1,600</td>
<td>4</td>
<td>64.76</td>
</tr>
<tr>
<td>4209587</td>
<td>MUNRO</td>
<td>8-Feb-10</td>
<td>08-Feb-06</td>
<td>$6,400</td>
<td>16</td>
<td>259.04</td>
</tr>
<tr>
<td>4209588</td>
<td>MCCOOL</td>
<td>8-Feb-10</td>
<td>08-Feb-06</td>
<td>$1,600</td>
<td>4</td>
<td>64.76</td>
</tr>
<tr>
<td>4209589</td>
<td>MUNRO</td>
<td>8-Feb-10</td>
<td>08-Feb-06</td>
<td>$1,600</td>
<td>4</td>
<td>64.76</td>
</tr>
<tr>
<td>4209590</td>
<td>MCCOOL</td>
<td>8-Feb-10</td>
<td>08-Feb-06</td>
<td>$3,200</td>
<td>8</td>
<td>129.52</td>
</tr>
<tr>
<td>4209639</td>
<td>MCCOOL</td>
<td>8-Feb-10</td>
<td>08-Feb-06</td>
<td>$800</td>
<td>2</td>
<td>32.38</td>
</tr>
<tr>
<td>4240165</td>
<td>RAYNER LAKE</td>
<td>2-Apr-10</td>
<td>02-Apr-08</td>
<td>$2,000</td>
<td>5</td>
<td>80.95</td>
</tr>
<tr>
<td>4240164</td>
<td>RAYNER LAKE</td>
<td>2-Apr-10</td>
<td>02-Apr-08</td>
<td>$4,400</td>
<td>11</td>
<td>178.09</td>
</tr>
<tr>
<td>4240163</td>
<td>RAYNER LAKE</td>
<td>2-Apr-10</td>
<td>02-Apr-08</td>
<td>$6,000</td>
<td>15</td>
<td>242.85</td>
</tr>
<tr>
<td>4240162</td>
<td>RAYNER LAKE</td>
<td>2-Apr-10</td>
<td>02-Apr-08</td>
<td>$400</td>
<td>1</td>
<td>16.19</td>
</tr>
<tr>
<td>4202781</td>
<td>COULSON</td>
<td>10-Apr-10</td>
<td>10-Apr-06</td>
<td>$2,400</td>
<td>6</td>
<td>97.14</td>
</tr>
<tr>
<td>4202780</td>
<td>WARDEN</td>
<td>10-Apr-10</td>
<td>10-Apr-06</td>
<td>$1,600</td>
<td>4</td>
<td>64.76</td>
</tr>
<tr>
<td>4200110</td>
<td>RAYNER LAKE</td>
<td>28-Apr-10</td>
<td>28-Apr-08</td>
<td>$496</td>
<td>3</td>
<td>48.57</td>
</tr>
<tr>
<td>4202905</td>
<td>COULSON</td>
<td>10-May-10</td>
<td>10-May-05</td>
<td>$3,200</td>
<td>8</td>
<td>129.52</td>
</tr>
<tr>
<td>4203858</td>
<td>COULSON</td>
<td>10-May-10</td>
<td>10-May-05</td>
<td>$5,600</td>
<td>14</td>
<td>226.66</td>
</tr>
<tr>
<td>3013171</td>
<td>COULSON</td>
<td>30-Jun-10</td>
<td>30-Jun-05</td>
<td>$3,600</td>
<td>9</td>
<td>145.71</td>
</tr>
<tr>
<td>Project Number</td>
<td>Contractor</td>
<td>Start Date</td>
<td>End Date</td>
<td>Value</td>
<td>Drills</td>
<td>Rate</td>
</tr>
<tr>
<td>----------------</td>
<td>------------</td>
<td>------------</td>
<td>----------</td>
<td>-------</td>
<td>--------</td>
<td>------</td>
</tr>
<tr>
<td>3013158</td>
<td>COULSON</td>
<td>30-Jun-10</td>
<td>30-Jun-05</td>
<td>$6,400</td>
<td>16</td>
<td>259.04</td>
</tr>
<tr>
<td>3013174</td>
<td>COULSON</td>
<td>30-Jun-10</td>
<td>30-Jun-05</td>
<td>$3,200</td>
<td>8</td>
<td>129.52</td>
</tr>
<tr>
<td>3013173</td>
<td>COULSON</td>
<td>30-Jun-10</td>
<td>30-Jun-05</td>
<td>$4,800</td>
<td>12</td>
<td>194.28</td>
</tr>
<tr>
<td>3013172</td>
<td>COULSON</td>
<td>30-Jun-10</td>
<td>30-Jun-05</td>
<td>$2,800</td>
<td>7</td>
<td>113.33</td>
</tr>
<tr>
<td>3013153</td>
<td>WARDEN</td>
<td>30-Jun-10</td>
<td>30-Jun-05</td>
<td>$6,400</td>
<td>16</td>
<td>259.04</td>
</tr>
<tr>
<td>3013160</td>
<td>COULSON</td>
<td>30-Jun-10</td>
<td>30-Jun-05</td>
<td>$6,400</td>
<td>16</td>
<td>259.04</td>
</tr>
<tr>
<td>3013152</td>
<td>KERRS</td>
<td>30-Jun-10</td>
<td>30-Jun-05</td>
<td>$6,400</td>
<td>16</td>
<td>259.04</td>
</tr>
<tr>
<td>3013170</td>
<td>COULSON</td>
<td>30-Jun-10</td>
<td>30-Jun-05</td>
<td>$6,400</td>
<td>16</td>
<td>259.04</td>
</tr>
<tr>
<td>3013155</td>
<td>WARDEN</td>
<td>30-Jun-10</td>
<td>30-Jun-05</td>
<td>$6,076</td>
<td>16</td>
<td>259.04</td>
</tr>
<tr>
<td>3013156</td>
<td>WARDEN</td>
<td>30-Jun-10</td>
<td>30-Jun-05</td>
<td>$6,400</td>
<td>16</td>
<td>259.04</td>
</tr>
<tr>
<td>3013157</td>
<td>KNOX</td>
<td>30-Jun-10</td>
<td>30-Jun-05</td>
<td>$6,400</td>
<td>16</td>
<td>259.04</td>
</tr>
<tr>
<td>3013159</td>
<td>KNOX</td>
<td>30-Jun-10</td>
<td>30-Jun-05</td>
<td>$6,400</td>
<td>16</td>
<td>259.04</td>
</tr>
<tr>
<td>3013161</td>
<td>COULSON</td>
<td>30-Jun-10</td>
<td>30-Jun-05</td>
<td>$1,600</td>
<td>4</td>
<td>64.76</td>
</tr>
<tr>
<td>3013167</td>
<td>COULSON</td>
<td>30-Jun-10</td>
<td>30-Jun-05</td>
<td>$6,400</td>
<td>16</td>
<td>259.04</td>
</tr>
<tr>
<td>3013151</td>
<td>KERRS</td>
<td>30-Jun-10</td>
<td>30-Jun-05</td>
<td>$6,400</td>
<td>16</td>
<td>259.04</td>
</tr>
<tr>
<td>3013162</td>
<td>KNOX</td>
<td>30-Jun-10</td>
<td>30-Jun-05</td>
<td>$1,600</td>
<td>4</td>
<td>64.76</td>
</tr>
<tr>
<td>3013168</td>
<td>COULSON</td>
<td>30-Jun-10</td>
<td>30-Jun-05</td>
<td>$6,400</td>
<td>16</td>
<td>259.04</td>
</tr>
<tr>
<td>3013166</td>
<td>COULSON</td>
<td>30-Jun-10</td>
<td>30-Jun-05</td>
<td>$6,400</td>
<td>16</td>
<td>259.04</td>
</tr>
<tr>
<td>3013165</td>
<td>COULSON</td>
<td>30-Jun-10</td>
<td>30-Jun-05</td>
<td>$6,400</td>
<td>16</td>
<td>259.04</td>
</tr>
<tr>
<td>3013164</td>
<td>KNOX</td>
<td>30-Jun-10</td>
<td>30-Jun-05</td>
<td>$4,800</td>
<td>12</td>
<td>194.28</td>
</tr>
<tr>
<td>3013163</td>
<td>KNOX</td>
<td>30-Jun-10</td>
<td>30-Jun-05</td>
<td>$6,400</td>
<td>16</td>
<td>259.04</td>
</tr>
<tr>
<td>3013169</td>
<td>COULSON</td>
<td>30-Jun-10</td>
<td>30-Jun-05</td>
<td>$3,200</td>
<td>8</td>
<td>129.52</td>
</tr>
<tr>
<td>4214727</td>
<td>MILLIGAN</td>
<td>3-Aug-10</td>
<td>03-Aug-07</td>
<td>$1,600</td>
<td>4</td>
<td>64.76</td>
</tr>
<tr>
<td>4214738</td>
<td>MILLIGAN</td>
<td>3-Aug-10</td>
<td>03-Aug-07</td>
<td>$4,800</td>
<td>12</td>
<td>194.28</td>
</tr>
<tr>
<td>4214733</td>
<td>MILLIGAN</td>
<td>3-Aug-10</td>
<td>03-Aug-07</td>
<td>$6,400</td>
<td>16</td>
<td>259.04</td>
</tr>
<tr>
<td>4214737</td>
<td>MILLIGAN</td>
<td>3-Aug-10</td>
<td>03-Aug-07</td>
<td>$4,800</td>
<td>12</td>
<td>194.28</td>
</tr>
<tr>
<td>4214736</td>
<td>MILLIGAN</td>
<td>3-Aug-10</td>
<td>03-Aug-07</td>
<td>$6,400</td>
<td>16</td>
<td>259.04</td>
</tr>
<tr>
<td>4214739</td>
<td>MILLIGAN</td>
<td>3-Aug-10</td>
<td>03-Aug-07</td>
<td>$6,400</td>
<td>16</td>
<td>259.04</td>
</tr>
<tr>
<td>4214735</td>
<td>MILLIGAN</td>
<td>3-Aug-10</td>
<td>03-Aug-07</td>
<td>$6,400</td>
<td>16</td>
<td>259.04</td>
</tr>
<tr>
<td>4214734</td>
<td>MILLIGAN</td>
<td>3-Aug-10</td>
<td>03-Aug-07</td>
<td>$4,800</td>
<td>12</td>
<td>194.28</td>
</tr>
<tr>
<td>4214732</td>
<td>MILLIGAN</td>
<td>3-Aug-10</td>
<td>03-Aug-07</td>
<td>$4,800</td>
<td>12</td>
<td>194.28</td>
</tr>
<tr>
<td>4214731</td>
<td>MILLIGAN</td>
<td>3-Aug-10</td>
<td>03-Aug-07</td>
<td>$4,800</td>
<td>12</td>
<td>194.28</td>
</tr>
<tr>
<td>4214730</td>
<td>MILLIGAN</td>
<td>3-Aug-10</td>
<td>03-Aug-07</td>
<td>$1,600</td>
<td>4</td>
<td>64.76</td>
</tr>
<tr>
<td>4214728</td>
<td>MILLIGAN</td>
<td>3-Aug-10</td>
<td>03-Aug-07</td>
<td>$1,600</td>
<td>4</td>
<td>64.76</td>
</tr>
<tr>
<td>4214726</td>
<td>MILLIGAN</td>
<td>3-Aug-10</td>
<td>03-Aug-07</td>
<td>$1,600</td>
<td>4</td>
<td>64.76</td>
</tr>
<tr>
<td>4214760</td>
<td>MILLIGAN</td>
<td>3-Aug-10</td>
<td>03-Aug-07</td>
<td>$6,400</td>
<td>16</td>
<td>259.04</td>
</tr>
<tr>
<td>4214740</td>
<td>MILLIGAN</td>
<td>3-Aug-10</td>
<td>03-Aug-07</td>
<td>$6,400</td>
<td>16</td>
<td>259.04</td>
</tr>
<tr>
<td>4214729</td>
<td>MILLIGAN</td>
<td>3-Aug-10</td>
<td>03-Aug-07</td>
<td>$1,600</td>
<td>4</td>
<td>64.76</td>
</tr>
<tr>
<td>4214772</td>
<td>MCCOOL</td>
<td>3-Aug-10</td>
<td>03-Aug-07</td>
<td>$800</td>
<td>2</td>
<td>32.38</td>
</tr>
<tr>
<td>4214763</td>
<td>MCCOOL</td>
<td>3-Aug-10</td>
<td>03-Aug-07</td>
<td>$6,400</td>
<td>16</td>
<td>259.04</td>
</tr>
<tr>
<td>4214764</td>
<td>MCCOOL</td>
<td>3-Aug-10</td>
<td>03-Aug-07</td>
<td>$6,400</td>
<td>16</td>
<td>259.04</td>
</tr>
<tr>
<td>4214765</td>
<td>MCCOOL</td>
<td>3-Aug-10</td>
<td>03-Aug-07</td>
<td>$6,400</td>
<td>16</td>
<td>259.04</td>
</tr>
</tbody>
</table>

Abitibi East 2009 Assessment Drilling Report
<table>
<thead>
<tr>
<th>Drill Number</th>
<th>Contractor</th>
<th>Date Range</th>
<th>Amount</th>
<th>Depth</th>
<th>Fee/Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>4214766</td>
<td>MCCOOL</td>
<td>3-Aug-10</td>
<td>$6,400</td>
<td>16</td>
<td>259.04</td>
</tr>
<tr>
<td>4214741</td>
<td>MILLIGAN</td>
<td>3-Aug-10</td>
<td>$4,800</td>
<td>12</td>
<td>194.28</td>
</tr>
<tr>
<td>4214768</td>
<td>MCCOOL</td>
<td>3-Aug-10</td>
<td>$3,200</td>
<td>8</td>
<td>129.52</td>
</tr>
<tr>
<td>4214758</td>
<td>MILLIGAN</td>
<td>3-Aug-10</td>
<td>$6,400</td>
<td>16</td>
<td>259.04</td>
</tr>
<tr>
<td>4214762</td>
<td>MCCOOL</td>
<td>3-Aug-10</td>
<td>$6,400</td>
<td>16</td>
<td>259.04</td>
</tr>
<tr>
<td>4214771</td>
<td>MCCOOL</td>
<td>3-Aug-10</td>
<td>$2,400</td>
<td>6</td>
<td>97.14</td>
</tr>
<tr>
<td>4214767</td>
<td>MCCOOL</td>
<td>3-Aug-10</td>
<td>$6,400</td>
<td>16</td>
<td>259.04</td>
</tr>
<tr>
<td>4214773</td>
<td>MCCOOL</td>
<td>3-Aug-10</td>
<td>$4,800</td>
<td>12</td>
<td>194.28</td>
</tr>
<tr>
<td>4214774</td>
<td>MCCOOL</td>
<td>3-Aug-10</td>
<td>$2,400</td>
<td>6</td>
<td>97.14</td>
</tr>
<tr>
<td>4214777</td>
<td>MUNRO</td>
<td>3-Aug-10</td>
<td>$1,600</td>
<td>4</td>
<td>64.76</td>
</tr>
<tr>
<td>4214778</td>
<td>MUNRO</td>
<td>3-Aug-10</td>
<td>$800</td>
<td>2</td>
<td>32.38</td>
</tr>
<tr>
<td>4214779</td>
<td>WARDEN</td>
<td>3-Aug-10</td>
<td>$1,200</td>
<td>3</td>
<td>48.57</td>
</tr>
<tr>
<td>4214780</td>
<td>WARDEN</td>
<td>3-Aug-10</td>
<td>$3,600</td>
<td>9</td>
<td>145.71</td>
</tr>
<tr>
<td>4214770</td>
<td>MCCOOL</td>
<td>3-Aug-10</td>
<td>$6,400</td>
<td>16</td>
<td>259.04</td>
</tr>
<tr>
<td>4214745</td>
<td>MILLIGAN</td>
<td>3-Aug-10</td>
<td>$4,800</td>
<td>12</td>
<td>194.28</td>
</tr>
<tr>
<td>4214742</td>
<td>MILLIGAN</td>
<td>3-Aug-10</td>
<td>$6,400</td>
<td>16</td>
<td>259.04</td>
</tr>
<tr>
<td>4214769</td>
<td>MCCOOL</td>
<td>3-Aug-10</td>
<td>$6,400</td>
<td>16</td>
<td>259.04</td>
</tr>
<tr>
<td>4214744</td>
<td>MILLIGAN</td>
<td>3-Aug-10</td>
<td>$6,400</td>
<td>16</td>
<td>259.04</td>
</tr>
<tr>
<td>4214761</td>
<td>MCCOOL</td>
<td>3-Aug-10</td>
<td>$6,400</td>
<td>16</td>
<td>259.04</td>
</tr>
<tr>
<td>4214746</td>
<td>MILLIGAN</td>
<td>3-Aug-10</td>
<td>$6,400</td>
<td>16</td>
<td>259.04</td>
</tr>
<tr>
<td>4214747</td>
<td>MILLIGAN</td>
<td>3-Aug-10</td>
<td>$4,800</td>
<td>12</td>
<td>194.28</td>
</tr>
<tr>
<td>4214748</td>
<td>MILLIGAN</td>
<td>3-Aug-10</td>
<td>$4,800</td>
<td>12</td>
<td>194.28</td>
</tr>
<tr>
<td>4214749</td>
<td>MILLIGAN</td>
<td>3-Aug-10</td>
<td>$6,400</td>
<td>16</td>
<td>259.04</td>
</tr>
<tr>
<td>4214750</td>
<td>MILLIGAN</td>
<td>3-Aug-10</td>
<td>$4,800</td>
<td>12</td>
<td>194.28</td>
</tr>
<tr>
<td>4214752</td>
<td>MILLIGAN</td>
<td>3-Aug-10</td>
<td>$4,800</td>
<td>12</td>
<td>194.28</td>
</tr>
<tr>
<td>4214753</td>
<td>MILLIGAN</td>
<td>3-Aug-10</td>
<td>$4,800</td>
<td>12</td>
<td>194.28</td>
</tr>
<tr>
<td>4214754</td>
<td>MILLIGAN</td>
<td>3-Aug-10</td>
<td>$4,800</td>
<td>12</td>
<td>194.28</td>
</tr>
<tr>
<td>4214755</td>
<td>MILLIGAN</td>
<td>3-Aug-10</td>
<td>$4,800</td>
<td>12</td>
<td>194.28</td>
</tr>
<tr>
<td>4214756</td>
<td>MILLIGAN</td>
<td>3-Aug-10</td>
<td>$4,800</td>
<td>12</td>
<td>194.28</td>
</tr>
<tr>
<td>4214757</td>
<td>MILLIGAN</td>
<td>3-Aug-10</td>
<td>$4,800</td>
<td>12</td>
<td>194.28</td>
</tr>
<tr>
<td>4214759</td>
<td>MILLIGAN</td>
<td>3-Aug-10</td>
<td>$6,400</td>
<td>16</td>
<td>259.04</td>
</tr>
<tr>
<td>4214751</td>
<td>MILLIGAN</td>
<td>3-Aug-10</td>
<td>$6,400</td>
<td>16</td>
<td>259.04</td>
</tr>
<tr>
<td>4214743</td>
<td>MILLIGAN</td>
<td>3-Aug-10</td>
<td>$6,400</td>
<td>16</td>
<td>259.04</td>
</tr>
<tr>
<td>4214725</td>
<td>WARDEN</td>
<td>2-Mar-11</td>
<td>$3,200</td>
<td>8</td>
<td>129.52</td>
</tr>
<tr>
<td>4214723</td>
<td>WARDEN</td>
<td>2-Mar-11</td>
<td>$3,200</td>
<td>8</td>
<td>129.52</td>
</tr>
<tr>
<td>4220671</td>
<td>WARDEN</td>
<td>26-Mar-11</td>
<td>$1,600</td>
<td>4</td>
<td>64.76</td>
</tr>
<tr>
<td>4220675</td>
<td>WARDEN</td>
<td>26-Mar-11</td>
<td>$1,600</td>
<td>4</td>
<td>64.76</td>
</tr>
<tr>
<td>4220674</td>
<td>WARDEN</td>
<td>26-Mar-11</td>
<td>$1,600</td>
<td>4</td>
<td>64.76</td>
</tr>
<tr>
<td>4220672</td>
<td>WARDEN</td>
<td>26-Mar-11</td>
<td>$4,800</td>
<td>12</td>
<td>194.28</td>
</tr>
<tr>
<td>4220670</td>
<td>MILLIGAN</td>
<td>26-Mar-11</td>
<td>$6,000</td>
<td>15</td>
<td>242.85</td>
</tr>
<tr>
<td>ID</td>
<td>Name</td>
<td>Start Date</td>
<td>End Date</td>
<td>Charge</td>
<td>Hours</td>
</tr>
<tr>
<td>--------</td>
<td>---------</td>
<td>------------</td>
<td>----------</td>
<td>--------</td>
<td>-------</td>
</tr>
<tr>
<td>4220673</td>
<td>WARDEN</td>
<td>26-Mar-11</td>
<td>26-Mar-07</td>
<td>$1,600</td>
<td>4</td>
</tr>
<tr>
<td>3010069</td>
<td>COULSON</td>
<td>2-Apr-11</td>
<td>02-Apr-03</td>
<td>$6,400</td>
<td>16</td>
</tr>
<tr>
<td>3011233</td>
<td>WARDEN</td>
<td>2-Apr-11</td>
<td>02-Apr-03</td>
<td>$1,336</td>
<td>4</td>
</tr>
<tr>
<td>3016952</td>
<td>MUNRO</td>
<td>8-Jun-11</td>
<td>08-Jun-07</td>
<td>$830</td>
<td>3</td>
</tr>
<tr>
<td>3016964</td>
<td>WARDEN</td>
<td>10-Jul-11</td>
<td>10-Jul-07</td>
<td>$276</td>
<td>1</td>
</tr>
<tr>
<td>3010062</td>
<td>COULSON</td>
<td>2-Apr-13</td>
<td>02-Apr-03</td>
<td>$3,200</td>
<td>8</td>
</tr>
</tbody>
</table>

TOTAL
1460 23637.4
DRILL HOLE RECORD

Drill Hole: GCAE09-01

Project: Abitibi East West Extension

Property: Rickard Township

Claim: 4202666

Northing: 5398539.00

Easting: 536004.00

Elevation: 290.00

Depth	**Azimuth**	**Dip**
26 | 4.5 | -60.0
79 | 4.5 | -60.0
128 | 3.8 | -59.7
179 | 4.5 | -59.8

Units: Metric

Core size: NQ

Grid:

Materials left: Casing

Collar survey: Handheld GPS

DH Survey method: Reflex

Date(s) logged: August 18, 2009

Purpose: N/A

Core storage: Hastings Facility Timmins

Geology

| From | To | Sample | From | To | L | Au | Pt | Pd | Ag | Cu | Ni | Zn | Pb | Co | Cu(%) | Ni(%) | resin | ppm |
| (m) | (m) | (m) | (m) | (m) | pb | pb | pb | ppm | % | % |

.00° 14.20° OVERBURDEN

- 15m Of nw casing.

14.20° 180.90° MAIFIC INTRUSIVE (UNDIFFERENTIATED)

- Variable coloration from grey black to grey to grey white.
- 31.50° 32.00° .50° 7° <5° <5° <2° 97° 34° 35° 11° 29°
- 32.00° 33.00°1.00° 9° <5° <5° <2° 165° 39° 31° 12° 34°
- Medium to fine grained sections due to alteration,
- 33.00° 34.00°1.00° 26° <5° <5° <2° 213° 40° 35° 13° 37°
- Locally weakly magnetic, hardness of 5-6, massive,
- 34.00° 34.50° .50° 14° <5° <5° <2° 198° 41° 30° 12° 46°
- Homogeneous, 30-40% white (plagioclase ?)
- Feldspars, gabbroic.
- Dominant alterations are locally weak to moderate.
- Dark green to black chlorite with minor.
- Silification causing rock to bleach a lighter.
- Grey and the texture to become medium to fine.
- Grained.
- Good overall RQD of 90% plus with minor fracturing.
- Throughout at 30, 50 and 60 degrees to core axis.
- The fractures are filled sporadically with 1-4mm of.
- Dark green chlorite, white calcite and orange brown.
- Oxidation in the first five meters of the hole.
- Good recovery of 90-95% with occasional broken core.
- 1-2% Hairlike to 1.5cm grey-white calcite +/- clear.
- White quartz stringers are sporadically distributed.
- Throughout unit and they are oriented at generally.
- 50-60 degrees to core axis with a few at 20-30°.
| Sample | From ° | To ° | L ° Au ° Pt ° Pd ° Ag ° Cu ° Ni ° Zn ° Pb ° Co/Cu (%)° Ni (%)° |
|--------|--------|-----|-----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|
| 046.00 | 14.20 | 14.50 | Broken core, 15% RQD, oxidized fractured. |
| 18.10 | 19cm preoccident, calcite rich, bleached grey to brown |
| 18.90 | 17cm white grey calcite-quartz stringer, with trace pyrite. |
| 19.30 | 4cm angular grey fragment, possible diabase fragment (?), non magnetic. |
| 28.90 | 6cm grey siliceous section with splashes of brassy brown pyrrhotite. |
| 32.00 | 34.00 | 0.5%-1% brassy brown pyrrhotite splashes and a few specks of pyrite associated with calcite-quartz stringers. |
| 34.00 | 5cm clear-white quartz stringer/veinet at 40 degrees to core axis with splashes of pyrrhotite. |
| 40.40 | 20cm vuggy calcite stringers at 10° degrees to core axis. |
| 44.40 | 42cm pale grey, fine grained, slightly siliceous section, gradual contacts. |
| 56.00 | 67.00 Slightly siliceous section with silicified white feldspar spots/veinlets. |
| 104.10 | 107.50 | Broken core (70% rqd) with 5% low angle quartz veining, (0-10 degrees to core axis). |
| 119.70 | 120.10 | Slightly siliceous section with silicified white feldspar spots/veinlets. |
stringers cut by clear quartz stringers, trace pyrite-pyrhotite.

122.30 122.60 Broken core, 0% RQD.

146.00 150.20 A few minor sections of broken vuggy core up to 4-6 cm in width, minor slips (?).

165.20 165.90 Minor broken-blocky core, 80% RQD.

178.50 178.80 Mafic dyke/intrusive, dark green, waxy basaltic texture, fine grained, 0.5% specks of black chlorite (less than 1 mm in size), 2% oval to sub-rounded pale white phenocrysts/amygdules, trace brassy pyrrhotite associated with irregular chlorite stringers, contacts at 25° and 40 degrees to core axis.

Lower contact at 60 degrees to core axis.

31.50 32.00 Bracket sample, trace pyrite-pyrhotite.

32.00 33.00 Trace pyrite-pyrhotite.

33.00 34.00 Trace pyrite-pyrhotite.

34.00 34.50 Bracket sample, trace pyrite-pyrhotite, minor quartz.

180.90° 182.10° MAFIC INTRUSIVE (UNDIFFERENTIATED)

Same as 178.5-178.8m.

1% Thin milky white calcite stringers at 60-70° degrees to core axis with sporadic low angle stringers.

Trace to at very best 0.5% pale yellow brown pyrite and/or brassy brown pyrrhotite (magnetic) associated predominately with fractures/stringers; occasional interstitial pyrite. Localized specks of...

194.10° 194.30° GRAPHITIC ARGILLITE
- Dark black grey, fine grained, slightly conductive, 115565° 194.10° 194.30° .20° 5° <5° <5° <2° 144° 51° 448° 22° 34°
- Foliated/sheared, very hard, non magnetic.
- Weakly graphic, siliceous, weak calcite alteration.
- Good RQD of 90% with thin conductive graphite.
- Local fractures at 40 degrees to core.
- 2-3% White calcite stringers alternating with argillic beds.
- Trace yellow-brown pyrite specks with rare pyrrhotite.
- Lower contact, sharp, planar, 40 degrees to core axis.
- 194.10 194.30° Graphitic, trace-0.5% pyrite.

194.30° 219.10° MAFIC INTRUSIVE (UNDIFFERENTIATED)
- Pale green-grey with darker sections, medium with 115566° 194.30° 196.30° 1.00° <5° <5° <5° <2° 131° 49° 10° 24° 52°
- Coarse-grained sections, massive, homogeneous.
- 115568° 195.30° 196.70° .00° .40° 20° <5° <5° <2° 178° 44° 74° 18° 51°
- No reaction to HCl, minor chlorite alteration and 115569° 196.50° 197.20° .70° 6° <5° <5° <2° 53° 28° 55° 12° 28°
- Local silicified sections marked by finer grained 115570° 197.20° 197.90° .70° 5° <5° <5° <2° 94° 27° 54° 12° 26°
- Textures and pale grey/brownish bleaching.
- Chlorite alteration.
- Good RQD of 90-95% with minor 50-70 degrees to core 115572° 199.00° 200.10° 1.10° <5° <5° <2° 78° 30° 37° 11° 28°
- Axis fracturing filled occasionally with calcite 115573° 200.10° 201.00° 1.00° 6° <5° <5° <2° 74° 34° 32° 10° 24°
- and chlorite.
- 115574° 200.10° 202.10° .10° 12° <5° <5° <2° 250° 44° 43° 13° 43°
- 1-2% White to milky white calcite stringers are 115575° 202.10° 203.10° .00° 14° 78° 81° .9° 1760° 92° 58° 39° 1.98°
- Dominant +/- clear quartz and green chlorite at 115576° 202.10° 203.10° 1.00° 26° <5° <5° <2° 84° 75° 30° 10° 26°
- 75-90 degrees to core axis. 0.5-1% thin chlorite 115577° 203.10° 203.80° .70° 11° <5° <5° <2° 125° 33° 37° 11° 30°
- Stringers throughout, occasional clear quartz 115578° 203.80° 204.80° 1.00° 7° <5° <5° <2° 90° 34° 27° 9° 32°
- Stringers.
- 115579° 204.80° 205.80° 1.00° 12° <5° <5° <2° 74° 35° 29° 11° 32°
- Pale white feldspathic-silicified bleches to 115580° 205.80° 206.80° 1.00° 15° <5° <5° <2° 80° 33° 26° 10° 30°
- Halo's occur around stringers locally. The 115581° 206.80° 207.80° 1.00° 6° <5° <5° <2° 76° 34° 36° 12° 34°
- Concentrations of sulphides increases within or 115582° 207.80° 208.80° 1.00° 21° <5° <5° <2° 32° 23° 26° 8° 19°
- Relative to the location of these bleches. 115583° 208.80° 209.80° 1.00° 8° <5° <5° <2° 50° 34° 35° 10° 26°
194.30 195.70 Pale grey-brownish bleached section, 209.80 210.80 Pale grey-brownish bleached section, 195.70 209.80 210.80 Pale grey-brownish bleached section, 209.80 210.80 211.80 212.80 Pale grey-brownish bleached section, 211.80 212.80 213.80 214.80 Pale grey-brownish bleached section, 213.80 214.80 215.80 216.80 Pale grey-brownish bleached section, 215.80 216.80 217.80 218.80 Pale grey-brownish bleached section, 217.80 218.80 219.80 220.80 Pale grey-brownish bleached section, 219.80 220.80 221.80 222.80 Pale grey-brownish bleached section, 221.80 222.80 223.80 224.80 Pale grey-brownish bleached section, 223.80 224.80 Sharp, planar contact at 50 degrees to core axis.

196.50 197.20 Trace-0.5% pyrite and pyrrhotite.
197.20 197.90 Trace-0.5% pyrite and pyrrhotite.
197.90 199.00 Trace-0.5% pyrite and pyrrhotite.
199.00 200.10 Trace pyrite and pyrrhotite.
200.10 201.10 Trace pyrite and pyrrhotite.
201.10 202.10 Trace pyrite and pyrrhotite.
202.10 Standard ni 115.
202.10 203.10 Trace pyrite and pyrrhotite.
203.10 203.80 0.5%-1% pyrrhotite, trace pyrite, silicified blotch.
203.80 204.80 Trace pyrite.
204.80 205.80 Trace pyrite and pyrrhotite.
205.80 206.80 0.5% pyrrhotite, trace pyrite.
206.80 207.80 Trace pyrite and pyrrhotite.
207.80 208.80 Trace pyrite and pyrrhotite.
208.80 209.80 Trace-0.5% pyrrhotite, trace pyrite.
209.80 210.80 Trace pyrite and pyrrhotite.
210.80 211.80 Trace pyrite and pyrrhotite.
211.80 212.80 Trace pyrite and pyrrhotite.
212.80 213.80 Trace pyrite and pyrrhotite.
213.80 214.80 Trace pyrite and pyrrhotite.
<table>
<thead>
<tr>
<th>Sample From (m)</th>
<th>Sample To (m)</th>
<th>Sample (m)</th>
<th>L</th>
<th>Au</th>
<th>Pt</th>
<th>Pd</th>
<th>Ag</th>
<th>Cu</th>
<th>Ni</th>
<th>Zn</th>
<th>Pb</th>
<th>Co</th>
<th>Cu (%)</th>
<th>Ni (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>213.60</td>
<td>214.50</td>
<td>Trace pyrite and pyrrhotite.</td>
<td></td>
</tr>
<tr>
<td>214.50</td>
<td>215.40</td>
<td>Trace pyrite and pyrrhotite.</td>
<td></td>
</tr>
<tr>
<td>215.40</td>
<td>216.30</td>
<td>Trace pyrite and pyrrhotite.</td>
<td></td>
</tr>
<tr>
<td>216.30</td>
<td>217.20</td>
<td>0.5%-1% pyrite, trace pyrrhotite.</td>
<td></td>
</tr>
<tr>
<td>217.20</td>
<td>218.20</td>
<td>Trace pyrite and pyrrhotite.</td>
<td></td>
</tr>
<tr>
<td>218.20</td>
<td>219.10</td>
<td>0.5-1.5% pyrite, trace pyrrhotite.</td>
<td></td>
</tr>
<tr>
<td>219.10</td>
<td>227.00</td>
<td>GRAPHITIC ARGILLITE</td>
<td></td>
</tr>
<tr>
<td>219.10</td>
<td>219.75</td>
<td>Sulphidic graphic argillite (mudstones) grading115594</td>
<td></td>
</tr>
<tr>
<td>220.40</td>
<td>221.50</td>
<td>Dark black, fine grained, hard, non magnetic,115597</td>
<td></td>
</tr>
<tr>
<td>222.20</td>
<td>223.50</td>
<td>Weak graphite, calcite, sericite and silicification.115600</td>
<td></td>
</tr>
<tr>
<td>224.10</td>
<td>225.80</td>
<td>Decent RQD of 85% minor fracturing at 20-30, 50 and115651</td>
<td></td>
</tr>
<tr>
<td>225.80</td>
<td>227.00</td>
<td>Weak to moderate fracturing at 0, 30 and 60 degrees to115654</td>
<td></td>
</tr>
</tbody>
</table>

213.60 214.50 Trace pyrite and pyrrhotite.
214.50 215.40 Trace pyrite and pyrrhotite.
215.40 216.30 Trace pyrite and pyrrhotite.
216.30 217.20 0.5%-1% pyrite, trace pyrrhotite.
217.20 218.20 Trace pyrite and pyrrhotite.
218.20 219.10 0.5-1.5% pyrite, trace pyrrhotite.
219.10 227.00 GRAPHITIC ARGILLITE

Sulphidic graphic argillite (mudstones) grading*115594* 219.10* 219.75* .65* 17* 5* 5* .2 194 50 2776 34 64* 219.75* 220.40* .65* 7* 5* 5* .2 118 51 444 33 58* 220.40* 220.70* .30* 59* 5* 5* .2 132 52 162 35 51* 220.70* 221.50* .80* 11* 5* 5* .2 121 46 64 38 51* 221.50* 222.20* .70* 15* 5* 5* .2 125 49 38 37 53* 222.20* 222.90* .70* 10* 5* 5* .2 138 56 48 50 60* 222.90* 223.50* .60* 6* 5* 5* .2 64 30 19 24 24* 223.50* 224.10* .60* 8* 5* 5* .2 96 44 71 21 32* 224.10* 225.00* .90* 7* 5* 5* .2 234 113 856 28 55* 225.00* 225.80* .80* 10* 5* 5* .2 41 27 240 13 14* 225.80* 226.40* .60* 8* 5* 5* .2 69 15 181 11 11* 226.40* 227.00* .60* 16* 5* 5* .2 77 25 429 11 12* 227.00* 227.60* 8-10% fine and coarse pyrite as irregular blastos/patches from 3cm to 3.5cm.
227.60 228.50 20-25% pyrite, dominantly as very fine pyrite disseminations/patches with coarser pyrite associated with stringers/ fractures.
228.50 229.50 30% quartz-calcite veining with 3-5% localized orthoclase feldspars, local vugs, brecciated, trace-0.5% pyrite.
229.50 230.80 Fine to coarse grained, graphite stained, mudstone-wackes, 10-15% coarse pyrite as disseminations, stringers and stringer/ fracture association.
230.80 232.00 Wackes grading from fine to coarse down hole, 1-3% pyrite disseminations, higher concentrations noted in graphitic areas, a few 1cm wide low angle quartz-calcite stringers.
<table>
<thead>
<tr>
<th>From</th>
<th>To</th>
<th>Geology</th>
<th>Sample</th>
</tr>
</thead>
<tbody>
<tr>
<td>219.10</td>
<td>219.75</td>
<td>30-40% pyrite.</td>
<td></td>
</tr>
<tr>
<td>219.75</td>
<td>220.40</td>
<td>20-30% pyrite.</td>
<td></td>
</tr>
<tr>
<td>220.40</td>
<td>220.70</td>
<td>8-10%.</td>
<td></td>
</tr>
<tr>
<td>220.70</td>
<td>221.50</td>
<td>15-20% pyrite.</td>
<td></td>
</tr>
<tr>
<td>221.50</td>
<td>222.20</td>
<td>25-30% pyrite.</td>
<td></td>
</tr>
<tr>
<td>222.20</td>
<td>222.90</td>
<td>20-25% pyrite.</td>
<td></td>
</tr>
<tr>
<td>222.90</td>
<td>223.50</td>
<td>1-2% sulphides.</td>
<td></td>
</tr>
<tr>
<td>223.50</td>
<td>224.10</td>
<td>2-3% sulphides.</td>
<td></td>
</tr>
<tr>
<td>224.10</td>
<td>225.00</td>
<td>15-20% coarse pyrite.</td>
<td></td>
</tr>
<tr>
<td>225.00</td>
<td>225.80</td>
<td>3-5% pyrite, local pyrite stringers.</td>
<td></td>
</tr>
<tr>
<td>225.80</td>
<td>226.40</td>
<td>1-2% pyrite, trace pyrrhotite.</td>
<td></td>
</tr>
<tr>
<td>226.40</td>
<td>227.00</td>
<td>1-2% pyrite.</td>
<td></td>
</tr>
</tbody>
</table>

227.00

END OF HOLE
<table>
<thead>
<tr>
<th>Sample</th>
<th>From</th>
<th>To</th>
<th>L</th>
<th>Au</th>
<th>Pt</th>
<th>Pd</th>
<th>Ag</th>
<th>Cu</th>
<th>Ni</th>
<th>Zn</th>
<th>Pb</th>
<th>Co</th>
<th>Cu (%)</th>
<th>Ni (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>115656</td>
<td>70.70</td>
<td>71.70</td>
<td>1.00</td>
<td>9°</td>
<td>6°</td>
<td><5°</td>
<td><2°</td>
<td>91°</td>
<td>1085°</td>
<td>64°</td>
<td>21°</td>
<td>77°</td>
<td></td>
<td></td>
</tr>
<tr>
<td>115657</td>
<td>71.70</td>
<td>72.70</td>
<td>1.00</td>
<td>5°</td>
<td><5°</td>
<td><2°</td>
<td>82°</td>
<td>1098°</td>
<td>113°</td>
<td>21°</td>
<td>78°</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>115658</td>
<td>72.70</td>
<td>73.70</td>
<td>1.00</td>
<td>7°</td>
<td>7°</td>
<td>7°</td>
<td><2°</td>
<td>86°</td>
<td>937°</td>
<td>69°</td>
<td>23°</td>
<td>64°</td>
<td></td>
<td></td>
</tr>
<tr>
<td>115659</td>
<td>73.70</td>
<td>74.70</td>
<td>0.90</td>
<td>8°</td>
<td>7°</td>
<td><2°</td>
<td>83°</td>
<td>885°</td>
<td>37°</td>
<td>19°</td>
<td>61°</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>115660</td>
<td>74.70</td>
<td>75.70</td>
<td>0.90</td>
<td>9°</td>
<td>6°</td>
<td>6°</td>
<td><2°</td>
<td>81°</td>
<td>991°</td>
<td>353°</td>
<td>46°</td>
<td>66°</td>
<td></td>
<td></td>
</tr>
<tr>
<td>115661</td>
<td>75.70</td>
<td>76.70</td>
<td>0.70</td>
<td>6°</td>
<td>6°</td>
<td>5°</td>
<td><2°</td>
<td>96°</td>
<td>760°</td>
<td>135°</td>
<td>19°</td>
<td>57°</td>
<td></td>
<td></td>
</tr>
<tr>
<td>115662</td>
<td>76.70</td>
<td>76.90</td>
<td>0.70</td>
<td>8°</td>
<td>5°</td>
<td>5°</td>
<td><2°</td>
<td>90°</td>
<td>760°</td>
<td>135°</td>
<td>19°</td>
<td>57°</td>
<td></td>
<td></td>
</tr>
<tr>
<td>115663</td>
<td>77.70</td>
<td>78.70</td>
<td>0.80</td>
<td>5°</td>
<td>5°</td>
<td>5°</td>
<td><2°</td>
<td>134°</td>
<td>472°</td>
<td>104°</td>
<td>19°</td>
<td>50°</td>
<td></td>
<td></td>
</tr>
<tr>
<td>115664</td>
<td>75.70</td>
<td>76.70</td>
<td>0.70</td>
<td>6°</td>
<td>6°</td>
<td>5°</td>
<td><2°</td>
<td>96°</td>
<td>760°</td>
<td>135°</td>
<td>19°</td>
<td>57°</td>
<td></td>
<td></td>
</tr>
<tr>
<td>115665</td>
<td>76.70</td>
<td>76.90</td>
<td>0.70</td>
<td>8°</td>
<td>5°</td>
<td>5°</td>
<td><2°</td>
<td>90°</td>
<td>760°</td>
<td>135°</td>
<td>19°</td>
<td>57°</td>
<td></td>
<td></td>
</tr>
<tr>
<td>115666</td>
<td>77.70</td>
<td>78.70</td>
<td>0.80</td>
<td>5°</td>
<td>5°</td>
<td>5°</td>
<td><2°</td>
<td>134°</td>
<td>472°</td>
<td>104°</td>
<td>19°</td>
<td>50°</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
silvery mineral noted associated with pyrrhotite along with trace chalcopyrite.

75.50 76.90 Sections of broken core comprised of series of clustered fracturing at 50-60 degrees to core axis, limonite on fractures, 70% RQD, nil to trace pyrite.

76.90 77.15 Altered khaki green-yellow sercite-ankerite alteration.

77.40 12cm white-milky carbonate-calcite-quartz vein.

Lower contact at 65 degrees to core axis.

70.70 71.70 Check sampling, trace pyrite and pyrrhotite.

71.70 72.70 Check sampling, trace pyrite and pyrrhotite.

72.70 73.70 Check sampling, trace pyrite and pyrrhotite.

73.70 74.60 Trace-0.5% pyrrhotite, trace pyrite.

74.60 75.50 0.5%-1% pyrrhotite, trace pyrite and chalcopyrite, silver mineral (?) ().

75.50 76.20 Broken core, trace pyrite.

76.20 76.90 Broken core, trace pyrite.

76.90 77.70 Sercite-ankerite altered, trace pyrite.

77.70 112.30 MAFIC VOLCANIC (UNDIFFERENTIATED)

Bleached volcanic, andesite to basalt in 115664 77.70 78.70 1.00 6° <5° <5° <2° 131° 256° 20° 57° composition.

Pale grayish-brownish with sections of pale green to green, fine grained, hard-very hard, non-magnetic, rare local calcite-quartz filled amygdules (i.e. 79m), locally pillowed (?), locally leucoxenitic.

Sericite with either calcite or ankerite bleached sections, minor localized silicification.

Decent RQD of 70-75% with several sections of broken core.

Weak to moderately fractured at 60, 65, 70 with some at 30-40 degrees to core axis. Fracture filling consists of 2mm or less calcite and dark green-black chlorite. Pale brown orange to deep orange limonite oxidation is also present in localized sections.

Trace to at very best 0.5% fine disseminated pyrite associated with stringers/ fractures. Coarser more spectacular looking pyrite does occur on and with fractures.

1-3% Multiple generations of white to grey-white calcite +/- quartz stringers from hairlike to 2cm wide and variably oriented at 40, 50 and 60 degrees to core axis.
78.40 80.00 Broken core, RQD of 35-40%, strongly oxidized locally, 80-100cm missing core, 45% rec.
80.00 82.10 2-3% green laths of chlorite with very weak fuchsite alteration, random orientations, looks like chicken scratch spinifex, range in size from a few mm to a few cm.
84.20 12cm dark grayish calcite-quartz stringer/ veinlet with rare fine pyrite.
85.20 86.30 Dark grayish, altered, highly oxidized section cut by a few quartz-calcite stringers (4-5 cm wide), nil-trace pyrite.
86.30 89.10 Highly broken core with minor interflow sediments (graphite, argillite), 10% RQD, poorly recovery of 55-60%, rare pyrite.
91.30 A few gouge filled slips, 2-4mm clay material, 50-60 degrees to core axis.
97.70 98.20 Broken core, 0% rgd.
108.50 112.30 Weak shear foliation at 55-60 degrees to core axis, unit is less bleached and has a more typical mafic volcanic look, scattered coarse pyrite along shear planes but only in trace amounts.
Gradual lower contact.
77.70 78.70 Bracket sample, check contact of unit, rare pyrite.
112.30° 118.50° MAFIC VOLCANIC (UNDIFFERENTIATED)
Probably andesite or basalt, pale green to greenish brownish sections, medium grained, massive, hard, non magnetic, 1-2% coarse leucoxene.
Dominantly chlorite with bleached sericitic, calcite and ankerite altered sections.
Good RQD of 85% with minor fracturing at 40-60 degrees to core axis with chlorite and calcite filling, occasional red hematite stained fractures.
Local weak 50-60 degrees to core axis shear foliation.
1% 65-70 Degrees to core axis calcite stringers.
Minor more coarse to cubic pyrite along stringers/fractures.
118.10 118.50 Weakly sheared section at 55 degrees to core axis, some broken core, minor slips.
Lower contact planar, 50 degrees to core axis.
117.50 118.50 Trace pyrite.
118.50° 129.70° MAFFIC VOLCANIC (UNDIFFERENTIATED)

- Bleached volcanic, andesite to basalt in °115666° 118.50° 119.40° .90° 17° <5° <5° .2° 146° 84° 100° 19° 47°
- composition:
 - Pale brownish grey grading to dark green grey with °115668° 120.30° 121.20° .90° <5° <5° <5° <.2° 161° 98° 119° 19° 54°
- depth, fine grained, hard, non magnetic, locally °115669° 121.20° 122.10° .90° <5° <5° <5° <.2° 161° 96° 114° 19° 54°
- sheared foliated.
 - °115670° 122.10° 123.00° .90° <5° <5° <5° <.2° 167° 105° 96° 17° 56°
- Sericite with either calcite or ankerite bleached °115671° 123.00° 123.90° .90° <5° <5° <5° <.2° 174° 105° 110° 18° 56°
- sections grading to chlorite-calcite and minor °115672° 123.90° 124.80° .90° 29° <5° <5° <5° <.2° 170° 99° 162° 20° 58°
- silicification with depth.
 - °115673° 124.80° 125.80°1.00° 5° <5° <5° <.2° 158° 52° 214° 18° 54°
- Good RQD of 90% with minor fracturing at 40, 50 and °115674° 125.80° 126.80°1.00° 26° <5° <5° <5° <.2° 161° 63° 141° 20° 54°
- 70 degrees to core axis. Minor calcite and chlorite °115675° 126.80° 126.80° .00°2031° <5° <5° .8° 477° 78° 100° 26°385°
- fracture filling and hematite staining.
 - °115676° 126.80° 127.50° .70° 12° <5° <5° <5° <.2° 78° 33° 309° 12° 27°
- Weak shear-foliation at 55-60 degrees to core axis, °115677° 127.50° 128.20° .70° 6° <5° <5° <5° <.2° 119° 90° 88° 16° 50°
- local moderate strength.
 - °115678° 128.20° 129.00° .80° 7° <5° <5° <5° <.2° 116° 67° 97° 17° 50°
 - A few generations of calcite +/- quartz stringers °115679° 129.00° 129.70° .70° 11° <5° <5° <5° <.2° 96° 107° 140° 16° 48°
 - at 25 and 50 degrees to core axis with occasional° quartz-calcite veins up to 6cm wide.
 - 118.50 124.50 Trace to at very best 0.5%° yellow-brown pyrite associated with° stringers/ fractures.
 - 124.50 129.70 Gradual grading into slightly more° medium grained, massive,° chlorite-calcite altered particularly° of flow with up to 1-2% coarse yellow° brown pyrite. Section seems slightly° more felsic.
 - 126.80 127.50 Pale grey-black, fine grained° silicified section with inter flow° sediments.
 - Faulted lower contact at 50 degrees to core axis.
 - 118.50 119.40 3% quartz-calcite, trace pyrite.
 - 119.40 120.30 Bleached, trace pyrite.
 - 120.30 121.20 Bleached, trace pyrite.
 - 121.20 122.10 Bleached, trace pyrite.
 - 122.10 123.00 Bleached, trace pyrite.
 - 123.00 123.90 Bleached, trace pyrite.
 - 123.90 124.80 Bleached, trace pyrite.
 - 124.80 125.80 Chlorite-calcite altered, trace° pyrite.
 - 125.80 126.80 Chlorite-calcite altered, 1% pyrite.
 - 126.80 Standard ppm.
 - 126.80 127.50 Silicified, 1-2% pyrite.
 - 127.50 128.20 Chlorite-calcite altered, trace° pyrite.
 - 128.20 129.00 Chlorite-calcite altered, trace° pyrite.
 - 129.00 129.70 Chlorite-calcite altered, trace° pyrite.

129.70° 145.10° DIABASE
Gabbroic texture. Locally clustered white-yellow plagioclase phenocrysts up to 1.5 cm. Moderate fracturing at 20-30, 40 and 60 degrees to core axis with dark green chlorite filling (1-3 mm) associated with stringers/shear-foliation. 129.70 130.00 30 cm fault gouge, slightly conductive, composed of 3-4 mm sized host rock material held together with clay. 131.40 132.50 Broken core, 0% rqd. 143.60 Fine grained to lower contact. Lower contact in broken core. 129.70 130.70 Bracket sample, check contact of unit, rare pyrite. 144.10 145.10 Trace pyrite.

145.10 151.70 MAFIC VOLCANIC (UNDIFFERENTIATED)

146.10 147.10*1.00° 26° <5° <5° <2° 118° 410° 76° 18° 63°

Dark green-grey, fine grained, hard, non magnetic, *115681°* 144.10° 145.10°*1.00° 7° 13° 12° <2° 247° 134° 98° 21° 62°

Foliated. *115681°* 144.10° 145.10°*1.00° 24° <5° 5° <2° 106° 121° 43° 18° 100°

No reaction to HCl, weak chlorite and *115684°* 147.10° 148.10°*1.00° 5° <5° 6° <2° 110° 443° 44° 16° 71°

Silicification. *115685°* 148.10° 149.00° 6° <5° 5° <2° 121° 177° 85° 18° 56°

Good RQD of 85% with minor fracturing at 50-60° *115686°* 149.00° 149.90°* 90° 6° 5° <7° <2° 123° 166° 76° 17° 53°

Degrees to core axis with chlorite and calcite *115687°* 149.90° 150.80°* 90° 7° <5° 5° <2° 121° 138° 84° 18° 51°

Filling, occasional red hematite stained fractures. *115688°* 150.80° 151.70° 90° 9° 13° 8° <2° 125° 138° 178° 18° 50°

Weak to moderate shear-foliation at 50 degrees to core axis throughout unit. 1% Irregular quartz and/or calcite stringers. Trace to 1% yellow brown pyrite along shear/foliation and stringers/ fractures. Unit is similar to 124.5-129.7 m.

150.90 9 cm diabase dyklet, 1% plagioclase phenocrysts, contacts at 50 degrees to core axis. Lower contact at 60 degrees to core axis. 145.10 146.10 1% pyrite, silicified, sheared. 147.10 148.10 1% pyrite, silicified, sheared. 149.00 149.90 0.5% pyrite. 149.90 150.80 0.5% pyrite. 150.80 151.70 0.5% pyrite.
151.70° 152.50° GRAPHITIC ARGILLITE
- Dark black, fine grained, moderately hard, non-graphitic.
- Magnetic, slight conductivity.
- Weakly calcite and weakly to moderately graphite altered.
- RQD of 50% with broken/blocky core throughout.
- Fracturing at 50-60 degrees to core axis with silver-black graphite filling.
- A few hairlike calcite stringers.
- 0.5% Coarse pyrite along stringers/fractures with a few tiny sub-rounded blebs.
- Lower contact at 65 degrees to core axis.
- 151.70 152.50 0.5% pyrite.

152.50° 152.90° MASSIVE PYRITE ZONE
- Dark yellow brown, fine and coarse grained, massive.
- Pyrite zone, 65-70% pyrite with quartz, calcite and graphite healing, 80% RQD.
- Lower contact at 55 degrees to core axis.
- 152.50 152.90 60-65% massive pyrite.

152.90° 159.30° GRAPHITIC ARGILLITE
- Dark black, fine grained, moderately hard, non-graphitic.
- Magnetic, slight conductivity.
- Weakly calcite and weakly to moderately graphite altered.
- Good RQD of 80% with minor fracturing at 70 degrees to core axis. Minor silver-black graphite on pyrite, mostly composed of a few locally clustered dirty yellow brown coarse pyrite blebs/blobs.
- Bedding/foliation at 50 and 60 degrees to core axis.
- 1% White quartz-calcite stringers either along bedding planes or irregular in nature.
- 152.90 154.80 10% pyrite, mostly composed of a few locally clustered dirty yellow brown coarse pyrite blebs/blobs. The blebs/blobs tend to be elongated along calcite-quartz stringers and range in size from 2mmx2mm and 50x4cm.
- 154.80 159.30 1-2% dull yellow-brown coarse pyrite as up to 1cm blebs. The blebs are either rounded or sub angular and are generally stretched along bedding and stringers.
- 153.80 11cm section of broken core with 1-2cm graphitic fault gouge.
- 155.90 20cm section of broken core with series of fractures and 4cm graphitic fault gouge.
- 157.90 5cm graphitic fault gouge.
Gradual lower contact.

152.90 153.80 4-5% pyrite.
153.80 154.80 8-10% pyrite.
154.80 155.70 1-1.5% pyrite, 0.5% quartz-calcite.
155.70 156.60 0.5% pyrite.
156.60 157.50 Trace-0.5% pyrite.
157.50 158.40 0.5% pyrite.
158.40 159.30 0.5-1% pyrite.

159.30 191.70 GREYWACKE

Interbedded sequence of light-medium gradationally 155.70 156.60 0.5% pyrite.
156.60 157.50 Trace-0.5% pyrite.
157.50 158.40 0.5% pyrite.
158.40 159.30 0.5-1% pyrite.

159.30 191.70 GREYWACKE

Interbedded sequence of light-medium gradationally 155.70 156.60 0.5% pyrite.
156.60 157.50 Trace-0.5% pyrite.
157.50 158.40 0.5% pyrite.
158.40 159.30 0.5-1% pyrite.

159.30 191.70 GREYWACKE

Interbedded sequence of light-medium gradationally 155.70 156.60 0.5% pyrite.
156.60 157.50 Trace-0.5% pyrite.
157.50 158.40 0.5% pyrite.
158.40 159.30 0.5-1% pyrite.

159.30 191.70 GREYWACKE

Interbedded sequence of light-medium gradationally 155.70 156.60 0.5% pyrite.
156.60 157.50 Trace-0.5% pyrite.
157.50 158.40 0.5% pyrite.
158.40 159.30 0.5-1% pyrite.

159.30 191.70 GREYWACKE

Interbedded sequence of light-medium gradationally 155.70 156.60 0.5% pyrite.
156.60 157.50 Trace-0.5% pyrite.
157.50 158.40 0.5% pyrite.
158.40 159.30 0.5-1% pyrite.

159.30 191.70 GREYWACKE

Interbedded sequence of light-medium gradationally 155.70 156.60 0.5% pyrite.
156.60 157.50 Trace-0.5% pyrite.
157.50 158.40 0.5% pyrite.
158.40 159.30 0.5-1% pyrite.
generally trace pyrite. 0.5% pyrite

overall is around 1 cm blebs

associated with stringers. 1-2% black

argillite angular fragments occur

both along and cross cutting bedding

(4mm-3cm sized).

171.00 172.60 1-2% quartz stringers, 3-4% mudstone

beds with around 1% yellow brown

pyrite disseminations and blabbing.

172.60 181.30 Nil to trace yellow brown pyrite

associated with stringers, bedding

and mudstone.

177.20 177.50 30 cm deep grey-purple diabase dyke,

very hard, silicified, non magnetic,

2% irregular green-yellow plagioclase

phenocrysts.

181.30 184.80 More moderately bedded and foliated

section with 3-4% around 1 cm wide

mudstone beds at 50 degrees to core

axis.

Local soft sediment

deformation, nil to trace pyrite.

189.90 191.70 Same as 181.3-184.8m, 50 degrees to

core axis bedding, soft sediment

deformation present.

Fairly distinctive lower contact at 45 degrees to

core axis.

160.10 160.70 0.5-1% pyrite.

160.70 Blank.

160.70 161.40 5% pyrite.

161.40 162.00 3-4% pyrite.

162.00 162.70 0.5% pyrite.

162.70 163.70 0.5-1% pyrite.

163.70 164.70 0.5% pyrite.

164.70 165.70 0.5% pyrite.

170.00 171.00 Trace pyrite, bracket sample.

171.00 171.80 1-2% quartz and pyrite.

171.80 172.60 0.5% pyrite.

172.60 173.60 Trace pyrite, bracket sample.

191.70° 228.80° GREYWACKE

Locally interbedded and massive sequences of fine

to medium grained pale grey, weakly sericite

altered wackes with small and large sections of

quartz-feldspar rich monolithic conglomerates. Unit

generally moderately hard to hard, non magnetic

and non conductive.

Weak to no reaction to HCl, patchy to pervasive

pale yellow sericite alteration. Sericite

alteration is strongest in fragments.

Good RQD of 90% with minor local sections of broken

core. Minor fracturing at 40, 50 and 60 degrees to
core axis. Locally parallel to bedding with some
graphite and calcite fracture filling (1-2mm).
1-2% Generally lower angles calcite stringers cross
cutting bedding, at least 2 generations, 2-5mm wide.
Nil to trace yellow brown pyrite associated with
stringers, bedding and mudstone bedding.
191.70 202.90 Monolithic quartz-feldspar rich
(2-4mm sized) conglomerate. 20% +/-
pale white-yellow sericite altered,
rounded, sub rounded and sub angular
clasts from 2mm to 11cm in sized. The
matrix is weakly foliated at 50-60°
degrees to core axis. Locally
pervasively sericite altered with
wispy yellow-orange sericite.
Occasional dark black graphitic
argillite fragments (3-4 in total),
no visible sulphides.
209.90 210.50 Same as 191.7-202.9m, 5% mostly
rounded to sub rounded clasts grading
to more angular and smaller angular
clasts.
212.10 212.40 Argillite bedded section with 2-3%
irregular quartz-calcite stringers,
silicified, trace pyrite.
222.10 228.80 Same as 191.7-202.9m, foliated 60°
degrees to core axis, 15% pale yellow
sub rounded to rounded clasts. Clasts
are slightly more orange-yellow
sericite altered than previous units,
generally trace pyrite.
226.70 227.50 4-5% disseminated pyrite, minor
graphite, sericite and
silicification, 12cm graphitic
argillite at end of unit.
Gradual lower contact.
211.60 212.10 Trace pyrite.
212.10 212.40 Trace pyrite, 2-3% quartz.
212.40 213.00 Trace pyrite.
226.20 226.70 Trace pyrite.
226.70 227.50 4-5% pyrite.
227.50 228.00 Trace pyrite.
228.80° 326.00° DEBRIS FLOW
Polymict debris flow, green-grey color,\(^{1115717}\) 317.00° 318.00°1.00° <5° <5° <5° <2° 41° 43° 59° 8° 17°
quartz-feldspar rich matrix, medium to coarse\(^{1115718}\) 318.00° 318.50° .50° <5° <5° <5° <2° 627° 38° 69° 8° 17°
grained, porphyritic, hard, non magnetic.
Alternating sequences of medium lapilli with
block/bombs and coarser lapilli with more intense
deposition (basically no block/ bombs occur in
these sections).
<table>
<thead>
<tr>
<th>From</th>
<th>To</th>
<th>Geology</th>
<th>Sample</th>
</tr>
</thead>
<tbody>
<tr>
<td>L</td>
<td>Au</td>
<td>Pt</td>
<td>Pd</td>
</tr>
<tr>
<td>Ag</td>
<td>Cu</td>
<td>Ni</td>
<td>Zn</td>
</tr>
<tr>
<td>Pb</td>
<td>Co</td>
<td>Cu(%)</td>
<td>Ni(%)</td>
</tr>
</tbody>
</table>

- Dark green chlorite alteration is dominant, nil to very weak reaction to HCl, local silicification.
- There are at least 3 types of fragments within the debris flow. 5-10% dacite (?), beige brown, porphyritic, 5mm to 8cm, sub rounded to subangular.
- 10-15% +/-, rhyo-dacite (?), white-grey, porphyritic, 3-5mm to 5cm, subrounded to rounded. 3-5% dark green (mafic) fragments, 2-5mm-4cm, sub angular to angular and sub rounded.
- RQD of 85-90% with local minor broken core.
- Minor 50-70 degrees core axis fracturing with calcite and chlorite filling.
- 2-3 Generations of white low angle and 50 degrees to core axis calcite stringers, 1-2% or less.
- Trace amounts of locally disseminated pyrite.
- 233.20 241.80 Pinkish-red potassic altered section of dacite and rhyo-dacite fragments and a few calcite stringers but alteration is most common with fragments. Altered fragments range from a few mm to 12cm.
- 253.00 Increased occurrence of calcite stringers up to 3-5%.
- 261.10 5cm wide quartz vein, contacts at 50 degrees to core axis.
- 261.70 Pink-red potassic alteration occurs again with dominant alteration occurring around dacite-rhyo-dacite fragments but some calcite stringers and the matrix is also altered locally.
- 286.90 278.70 Pinkish-white quartz with lesser calcite vein, no sulphides, sharp contacts at 35 and 20 degrees to core axis.
- 286.90 303.00 1-2% generally low angle quartz-calcite veining with 4-5% calcite stringers, rare to trace pyrite.
- 294.50 15cm wide faulted section, 2% gouge, 60% RQD, contacts at 40 and 75 degrees to core axis.
- 318.00 318.50 0.5% bright yellow chalcopyrite associated with calcite stringers and calcite filled fractures.
- 318.00 318.00 Trace pyrite.
- 318.50 319.50 Trace pyrite, 0.5% chalcopyrite.
- 326.00 326.00 0.5% pyrite.

END OF HOLE
<table>
<thead>
<tr>
<th>Depth (m)</th>
<th>Azimuth (°)</th>
<th>Dip (°)</th>
<th>Sample Geology</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.00</td>
<td></td>
<td></td>
<td>Overburden</td>
</tr>
<tr>
<td>32.00</td>
<td>33m</td>
<td></td>
<td>Basalt Pillowed</td>
</tr>
<tr>
<td>68.70</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Geology: From top to bottom:
- **Overburden**: Green to dark green, fine grained, hard, non-magnetic, average 1 pillow selvage every 1-3m, waxy texture, abundant calcite-quartz +/- hematite filled amygdules concentrated around selvages. Generally weakly altered by one or two of the following calcite, epidote, chlorite and silica. Unit is cut by several localized mafic dykes and dykelets throughout. Good RQD of 80% with a few sections of broken core. Weakly to moderately fractured core at 30, 50 and 60 degrees to core axis with thin calcite +/- chlorite filling. 1-2% Thin white calcite stringers at various angles with a few 5mm wide calcite-quartz veins at 70 degrees to core axis. Trace yellow brown coarse pyrite specks associated with stringers/fractures. 32.00-33.60 Broken core, 0% r.q.d. 33.60-35.70 Mafic dyke swarm, dark grey to grey, fine grained, massive, hard to very hard, non magnetic, sharp contacts at...
<table>
<thead>
<tr>
<th>Sample</th>
<th>From °</th>
<th>To °</th>
<th>L °</th>
<th>Au °</th>
<th>Pt °</th>
<th>Pd °</th>
<th>Ag °</th>
<th>Cu °</th>
<th>Ni °</th>
<th>Zn °</th>
<th>Pb °</th>
<th>Co °</th>
<th>Cu °/Ni °</th>
<th>ppb °</th>
<th>ppb °/ppm °</th>
<th>ppm °</th>
<th>ppm °/ppm °</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

- 60-70 degrees to core axis.
- 36.80 38.30 Mafic dyke, 60% RQD, no sulphides, contacts at 70 and 80 degrees to core axis.
- 38.40 26cm mafic dyke, contacts at 40 and 70 degrees to core axis.
- 38.70 39.90 Broken core, 0% rqd.
- 39.90 15cm mafic dyke, contacts at 80 and 70 degrees to core axis.
- 56.00 58.90 Possible mafic dyke, pale grey, fine grained, massive, non magnetic, hard, trace pyrite 1-2% calcite stringers +/− epidote.
- Gradual lower contact.

- 68.70° 85.60° MASSIVE BASALT
- Dark green-grayish, medium grained, massive, homogeneous, hard, non to locally moderate magnetism (i.e. 70-72m).
- Alteration consists of weak local calcite with yellow-green epidote being the dominant alteration.
- Excellent RQD of 95% with fracturing at 35, 40 and 50 degrees to core axis. Minor local calcite and chlorite fracture filling.
- 2-3% Generally higher angle calcite +/- epidote stringers from hairlike to 1cm.
- Trace to at best 0.5% pyrite in local clusters. The pyrite occurs as 2-3mm-lcm oval deep brown-yellow specks to blebs along stringers/fractures.
- 72.70° 23cm section of pervasive yellow-green epidote alteration.
- Gradual lower contact.

- 85.60° 232.10° BASALT PILLOWED
- Pale green to green, fine grained, amygdaloidal, "115720" 95.40° 96.40°/1.00° 175° <5° <5° <2° 150° 132° 101° 20° 46° hard, non magnetic, 1-2 selvages per 1-2m. "115721" 96.40° 96.90°/0.50° 115° <5° <5° <2° 82° 86° 56° 17° 33° Pervasive weak epidote alteration causing pale "115722" 96.90° 97.90°/1.00° 65° <5° <5° <2° 155° 90° 97° 18° 44° green coloration. "115723" 201.70° 202.60°/0.90° 18° <5° <5° <2° 150° 173° 98° 22° 50° 1-2% Calcite-quartz-hematite filled amygdules "115724" 202.60° 203.00°/0.40° 62° <5° <5° <2° 65° 80° 17° 13° 22° around 2-4mm in sized concentrated around pillow "115725" 203.00° 203.00°/0.00 254° <5° <5° <8° 63° 22° 59° 15° 81° selvages. "115726" 203.00° 204.00°/1.00° 56° 7° <5° <2° 98° 628° 64° 16° 51° Good RQD of 90% with minor fracturing at 30, 50 and "115727" 204.00° 204.40°/0.40° 35° <5° <5° <2° 155° 155° 31° 20° 31° 70 degrees to core axis. Minor local "115728" 204.40° 205.40°/1.00° 32° <5° <5° <2° 159° 152° 96° 16° 42° calcite-chlorite fracture filling. "115729" 228.70° 228.70°/1.00° 19° <5° <5° <2° 137° 108° 159° 20° 50° 1% Irregular black-green chlorite stringers. 1-3% "115730" 229.70° 230.30°/0.60° 27° 6° <5° <2° 275° 72° 49° 13° 33° white-reddish calcite-quartz and hematite stringers "115731" 230.30° 231.20°/0.90° 17° <5° <5° <2° 187° 116° 161° 17° 55° at various angles. "115732" 231.20° 232.10°/0.90° 15° <5° <5° <2° 88° 75° 89° 15° 39° A few local calcite-hematite and/or quartz veins from 8-50cm.
- 93.70° 8cm reddish-purple humanized calcite.
vein with 1% 2mm hematite specks, contacts at 50 degrees to core axis.

96.40 96.90 White quartz vein with sections of grey-white calcite +/- hematite, 35% quartz, chloritic fractures, trace pyrite, contacts at 20 and 30 degrees to core axis.

107.00 119.80 Similar to 68.7-85.6m but with occasional selvage, massive, medium to fine grained, local chill margins.

130.40 40cm quartz-calcite vein with local hematite, nil sulphides, contacts at 15 and 20 degrees to core axis.

133.50 20cm barren quartz-calcite vein with minor hematite, contacts at 20 degrees to core axis.

136.30 20cm barren quartz-calcite vein with minor hematite, contacts at 10 and 20 degrees to core axis.

175.50 210.50 Unit becomes much darker grey-green with sections of the flow resembling the rest of the unit, 1 selvage per 2-3m, local amygdules, gradual contacts.

194.80 0.5% pyrite rimming pillow selvage for 3-4cm.

202.60 203.00 Grey-white-purplish siliceous quartz vein with hematite staining, trace pyrite, 60% quartz, contacts at 20 degrees to core axis.

204.00 204.40 Discontinuous quartz veinings, same as 202.6-203m, trace pyrite, contacts at 20 and 70 degrees to core axis.

212.90 10cm quartz vein with some pale green epidote alteration, no sulphides, contacts at 40 degrees to core axis.

222.80 223.90 100cm long, 1cm wide calcite stringer at 0-5 degrees to core axis, calcite stringer cut a few hematitic calcite veinlets, trace pyrite and specular hematite.

225.70 36cmx1cm wide half moon shaped calcite stringer.

226.20 227.60 130cmx1-2cm wide quartz-calcite +/- epidote vein at 0-10 degrees to core axis, trace pyrite.

229.70 230.30 Slightly altered section with 15-20% calcite and 2-3% angular mafic fragments with associated 0.5% specular hematite and trace amounts of pyrite.
230.30 232.10 Darker green silicified and
epidote-sericite bleached sections
with 2% calcite-quartz +/- epidote
stringers, trace 0.5% specular
hematite and trace pyrite.

231.90 8cm feldspar porphyry dykelet with 30º
and 70 degrees to core axis contacts.
Undulating lower contact at 45 degrees to core axis.
95.40 96.40 Trace pyrite.
96.40 96.90 Trace pyrite with 35% quartz.
96.90 97.90 Trace pyrite.
201.70 202.60 Trace pyrite, a few orange potassic
quartz-calcite veinlets.
202.60 203.00 Trace pyrite, 60% quartz.
203.00 Standard pm 402.
203.00 204.00 Trace pyrite.
204.00 204.40 Trace pyrite, 20% quartz.
204.40 205.40 Trace pyrite.
228.70 229.70 Trace pyrite.
229.70 230.30 Trace pyrite, specular hematite,
quartz.
230.30 231.20 Trace pyrite, trace specular hematite.
231.20 232.10 Trace pyrite.

232.10 239.40 FELDSPAR PORPHYRY
Pale grey, medium grained, massive, homogenous,
hard, non magnetic.
4-5% Sub rounded to sub angular white plagioclase
phenocrysts from 2-5mm.
Good RQD of 90% with minor high angle fracturing.
1-2% White calcite +/- weak pink potassic
alteration.
No visible sulphides.
Curved lower contact at 30 degrees to core axis.
232.10 233.10 No visible sulphides.
238.90 239.40 Trace pyrite.

239.40 243.80 BASALT PILLOWED
Dark green altered pillowed basalt, not typical,
fine grained, very hard, non magnetic. Local
amygdules and selvages.
No reaction to hcl. Silicified (chilled) from unit
above. Local epidote-chlorite.
Good RQD of 90% with minor localized broken core.
Minor 40-60 degrees to core axis fracturing with
minor chlorite and rare dark red hematite staining.
1-2% White-yellow hairlike calcite-epidote
stringers at a few different angles, 20, 40 and 60º
degrees to core axis.
Trace dark yellow pyrite along stringers/ fractures.
Gradual lower contact.

243.80
250.40
 BASALT PILLOWED

Bleached pillowed basalt, pale brown, fine grained, 1.00
5° <5° <5° <2° 149° 91° 94° 18° 45°

hard, non magnetic, locally pillowed and
amygdaloidal.

Silicified and sericite-ankerite bleached.

Good RQD of 90% minor fracturing filled with dark green chlorite and white calcite, 2-4mm thick.

45° 2-3mm Tension fractures filled with quartz-calcite stringers at 40-70 degrees to core.

A few local quartz-calcite stringers around 1-4cm wide at 50 degrees to core axis.

Trace dull yellow coarse pyrite.

247.90
248.80
45° milky white quartz-carbonate veining in 40 degrees to core axis.

sheared dark chlorite and bleached brown matrix with local sericite and fuchsite stringer alteration, trace pyrite.

Lower contact at 50 degrees to core axis.

245.90
246.90
Trace pyrite, bleached.

246.90
247.90
Trace pyrite, bleached.

247.90
248.80
Trace-0.5% pyrite, 5%
quartz-carbonate, fuchsite-sericite-ankerite.

248.80
249.60
Trace pyrite, 0.5% quartz.

249.60
250.40
Trace pyrite.

250.40
263.60
 FELDSPAR PORPHYRY

Pale grey-greenish, medium to coarse grained, 1.00
8° <5° <5° <2° 44° 25° 56° 11° 20°

massive, homogeneous, hard, non magnetic.

Minor local silicification with local reddish-pink potassic alteration.

5-8% Sub rounded, white-yellow plagioclase phenocrysts.

Decent RQD of 75-85% with large localized section of broken core. Fracturing at 30-50 degrees to core axis with minor chlorite-calcite filling.

2-3% White to pinkish calcite stringers at 60-70 degrees to core axis.

Rare to trace dull yellow-brown pyrite specks.

250.40
251.30
Dark brown-grey moderate-strong silicified section with very faint quartz-feldspar phenocrysts, a few calcite stringers, rare pyrite.

260.60
262.50
Moderately broken core, 25-30% rag.

Vuggy 0 degrees to core axis calcite stringers to

Page 5 of 7
lower contact. Sharp, planar lower contact at 40º
degrees to core axis.
250.40 251.40 Silicified, trace-0.5% pyrite.
251.40 252.40 Trace pyrite.

263.60º 306.30º BASALT PILLOWED
Dark green, fine grained, hard, non magnetic, 2-5%
calcite-quartz filled amygdules, fairly poorly
developed pillow selvages occur every 1-3m.
Local calcite, chlorite and very weak
silicification.
Excellent RQD of 95% with fracturing at 35, 40 and
50 degrees to core axis. Minor local calcite and
chlorite fracture filling.
2-3% Hairlike calcite +/- epidote and/or hematite
with occasional 1-3cm wide stringers.
Trace-0.5% locally yellow-dull yellow coarse pyrite
associated stringers/ fractures.
267.00 268.10 Feldspar porphyry, as above
250.4-260.6m, 25-3% feldspar phenocrysts, nil sulphides, a few
hairlike calcite stringers. Sharp
contacts at 20 degrees to core axis.
276.40 Almost semi massive pyrite stringer
along pillow selvage.
296.80 302.60 2-3% white quartz veins/ veinlets
rimmed with yellow-green epidote.
2-5cm wide and 5-12cm long, 20-30º
degrees to core axis.
303.10 More massive, fine to medium grained,
massive portion of flow.
Gradual lower contact. Contact determined with
magnetism.

306.30º 329.20º PERIDOTITE
Dark black, fine grained, massive, homogeneous
weakly magnetic, hard.
Weakly serpentinized. No reaction to hcl.
Decent RQD of 65-70% with local broken core and
weak to moderate fracturing. Fracturing at 20 and
40 degrees to core axis with 2-3mm of dark green
serpentine- calcite- carbonate filling.
1-2% Dark green-black serpentine stringers from
40-70 degrees to core axis with 0.5% white low
angle calcite stringers scattered throughout unit.
Rapid to trace localized pyrite along stringers/
fractures.
326.70 327.80 Silicified sections with 3-4%
grey-white-purple veins and vein
chucks, trace-0.5% pyrite.
Sharp lower contact at 45 degrees to core axis.
326.00 326.70 Trace pyrite. quartz-calcite.

327.80 328.30 Trace pyrite.

329.20° 350.00° MAFIC INTRUSIVE (UNDIFFERENTIATED)

Dark grey-green, medium grained, massive, homogenous, hard, weakly-modestly magnetic. No reaction to HCl, local very minor silicification marked by finer grained texture. Excellent RQD of 95% with fracturing at 20, 55 and 70 degrees to core axis. Minor local calcite and chlorite fracture filling. 1-2% White calcite stringers +/- yellow-green epidote at various angles. Trace locally disseminated dull yellow-brown pyrite specks around 2-4mm in size.

350.00° END OF HOLE
Date: 13 Oct, 2009

GOLDEN CHALICE RESOURCES INC

Northing: 5394939.00
Easting: 565984.00
Elevation: 290.00
Collar Azi.: 50.0
Collar Dip: -50.0
Hole length: 350.00
Units: Metric 2009
Core size: NQ
Grid: Metric 2009
Materials left: Casing
Collar survey: Handheld GPS
DH Survey method: Reflex
Comments: N/A
Logged by: G. Sparling
Date(s) logged: September 4, 2009
Purpose: N/A
Core storage: Hastings Facility Timmins

Geology

- **From m**
- **To m**
- **Sample**
 - **From m**
 - **To m**
 - **L**
 - **Au**
 - **Pt**
 - **Pd**
 - **Ag**
 - **Cu**
 - **Ni**
 - **Zn**
 - **Pb**
 - **Co/Cu**
 - **Ni (%)**

28.40

- **28.40° OVERBURDEN**
 - 30m Of nw casing.

28.40° 130.00° MAFFIC INTRUSIVE (UNDIFFERENTIATED)

- Dark green, medium grained with finer and coarser grained sections, massive, homogeneous, hard, non-magnetic, abundant feldspars and chlorite in matrix, massive basaltic flow (?) mafic intrusive.
- Weak calcite and chlorite alteration with random green-yellow epidote stringer alteration.
- Good RQD of 95% with minor sections of broken core.
- Minor fracturing at 20, 50 and 60 degrees to core axis with dark green chlorite and calcite fracture filling.
- 1-3% White and green yellow calcite and epidote stringers, 2 generations at 10-20 and 50-60 degrees to core axis.
- A few white quartz veinlets/ veins from 2-6cm wide, high angles, 60-70 degrees to core axis.
- Trace dull yellow pyrite specs in matrix.
- 35.20 36.00 Broken core, 0% rgd.
- 67.60 1-2cm wide fault gouge (slip) at 20° degrees to core axis.
- 70.60 Dark black mafic dyklet, no sulphides.
contacts at 60 and 50 degrees to core.

- 77.30 78.30 Grayish altered section with local magnetic, hard, locally porphyritic (oval, 2-4mm sized, i.e. 136.4m), a few pillowed sections (?), mafic intrusive (?).
- Weak calcite and silicification.
- Gradual lower contact.

- Dark grey-black, massive, fine grained, locally magnetic, hard, locally porphyritic (oval, 2-4mm sized, i.e. 136.4m), a few pillowed sections (?), mafic intrusive (?).
- Weak calcite and silicification.
- Gradual lower contact.

- 130.00° 143.30° MASSIVE BASALT
 - 137.00 139.50 Poorly developed pillow selvage, 2-3% calcite-quartz filled fractures.
 - 142.80 143.30 Altered pillowed section with calcite-epidote rehealing.
 - Bleached, fine-medium grained, local poorly bleached, calcite-filled, epidote bleached.
 - Calcite-ankerite and sericite bleached.
 - Calcite-chlorite filled fractures.
 - Rare dull yellow pyrite.

- 143.30° 147.30° BASALT PILLOWED
 - 144.90 145.50 3% quartz, trace pyrite, bleached.
146.40 Marble blank.
146.40-147.30 Bracket sample, trace pyrite.

147.30°-158.50° MASSIVE BASALT
- Same as 28.4-130m.
- Dark green, medium grained, massive, hard, nonmagnetic, mafic intrusive (?).
- Weakly chlorite and calcite altered.
- Good RQD of 90% with minor 60 degrees to core axis
- Fracturing filled with calcite and chlorite.
- 1-2% White and yellow-green calcite-epidote
- Stringers at 20 and 50 degrees to core axis.
- Rare dull yellow pyrite.
- 150.70 30cm quartz-calcite-epidote vein at 30 degrees to core axis.

158.50°-166.10° BLEACHED BASALT
- Basalt, bleached, pale brown, fine grained, orange-brown oxidation on or closely associated to fractures.
- Pervasive ankerite-calcite-sericite alteration/calcrete-chlorite filling. Orange-brown limonite oxidation on or closely associated to fractures.
- Rare to nil dull yellow pyrite specks.
- 158.50 159.50 Bleached, trace pyrite.
- 159.50 160.40 Bleached, trace pyrite.
- 160.40 161.30 Bleached, trace pyrite.
- 161.30 162.20 Bleached, trace pyrite.
- 162.20 163.10 Bleached, trace pyrite.
- 163.10 164.00 Bleached, trace pyrite.

From To	**Geology**
146.40 | Marble blank.
146.40-147.30 Bracket sample, trace pyrite.

Sample	**From To**	**L° Au° Pt° Pd° Ag° Cu° Ni° Zn° Pb° Co° Cu(S)° Ni(S)°**
--- | --- | ---
--- | --- | ---
--- | --- | ---
--- | --- | ---
164.40 165.10 Bleached, breccia, 1% pyrite.
165.10 166.10 Bleached, trace pyrite.
166.10 171.30 BASALT PILLOWED
166.10 167.10 Faint bleaching, trace pyrite.
169.70 170.50 Weakly bleached, trace pyrite.
170.50 171.30 Weakly bleached, trace pyrite.
171.30 177.20 QUARTZ FELDSPAR PORPHYRY
172.80 173.10 Quartz veining, 90% quartz, chlorite, healed, local pink-orange potassic
173.10 174.30 Bleached pale brown-grey, pillowed, amygdaloidal section with local calcite
stringers and trace pyrite, contacts at 60 and 70 degrees to core axis.
171.30 172.00 Silicified, local sericite, trace.
173.10 173.70 Weakly bleached, trace pyrite.

173.70 174.30 Weakly bleached, trace pyrite.

174.30 175.20 Trace pyrite, silicified.

175.20 176.20 Trace pyrite, silicified.

176.20 177.20 Trace pyrite, silicified.

177.20° 188.50° BASALT PILLOWED

Dark green pillow, amygdaloidal, massive, and pyroclastic brecciated fine-coarse lapilli/ block. Fine grained, hard, non magnetic. Locally silicified, chlorite and sericite bleaching. 60% of unit is brecciated with sub angular to or chlorite filling. 2-3% calcite +/- quartz stringers, multiple generations, 40-70 degrees to core axis. Trace-0.5% dull yellow pyrite associated with strings/ fractures and healed brecciation. 24cm mafic dyke, ultramafic (?), fine grained, moderate hardness, a few quartz-calcite stringers, trace pyrite, contacts at 20 and 45 degrees to core axis. Unit becomes more bleached brown-grey and green to lower contact. Lower contact at 40 degrees to core axis. 177.20 Standard pm 417.

183.10 24cm mafic dyke, ultra mafic (?), fine grained, moderate hardness, a few quartz-calcite stringers, trace pyrite, contacts at 20 and 45 degrees to core axis. 184.50 Unit becomes more bleached brown-grey and green to lower contact. 188.50 189.50 Weakly bleached, trace pyrite.

188.50° 191.50° BLEACHED BASALT

Grayish-brown, bleached, medium grained, massive, sericite-ankerite bleached with more intense yellow. Sericite halo's around a few fractures and quartz stringers/ veins. Good QRD of 90% with minor fracturing filled locally with chlorite and/ or calcite. 1-3% Calcite and/ or quartz stringers/ veins from hairlike to 4cm wide. Rare dull yellow pyrite. Lower contact less distinctive than upper contact but still at roughly 40-45 degrees to core axis. 188.50 189.50 Weakly bleached, trace pyrite.
189.50 190.50 Weakly bleached, trace pyrite.

190.50 191.50 Weakly bleached, trace pyrite.

191.50° 218.80° BASALT PILLOWED

- Dark green with local grey-green sections, massive,
- homogenous, local minor pyroclastic brecciation,
- amygdules and poorly developed pillow selvages,
- hard, local weak to moderate magnetism associated
- with grayish sections,
- Weakly calcite and chlorite altered with local
- reddish-purple hematization.
- Good RQD of 85% with minor broken core and chlorite
- and calcite filled fracturing.
- Several generations of calcite +/- quartz
- stringers, maybe 1-2%, 40-70 degrees to core axis.
- Nil to trace dull yellow pyrite specks locally.
- 191.50 192.70 Fine-medium angular to sub angular
- lapilli in weak pyroclastic breccia.
- 201.50 Medium angular to sub angular lapilli
- in weak pyroclastic breccia.
- 203.00 205.70 Weak to moderate patchy hematization,
- a few calcite stringers with yellow
- sericite halo's, rare pyrite.
- 211.70 Mafic dykelet, 7cm, grey-black,
- contacts at 60 degrees to core axis.
- 213.70 Mafic dykelet, 6cm, grey-black,
- contacts at 60 degrees to core axis.
- 214.00 Mafic dykelet, 6cm, grey-black,
- contacts at 60 degrees to core axis.
- Lower contact at 35-40 degrees to core axis.

218.80° 252.50° PERIDOTITE

- Dark black to dark grey due to alteration, fine*
- very weak remnant magnetism.
- Grained, massive, homogeneous, moderately hard*
- Pervasive weak to moderate carbonization*
- (calcite-ankerite) with minor, weak localized talc*
- and/or sericite alteration.
- Good RQD of 85-90% with a few minor sections of*
- broken core.
- Generally minor fracturing at medium to high angle*
- +/- calcite, talc or quartz.
- Multiple generations of calcite +/- quartz and/or
- greenish-blueish talc, 2-3 generations, both low
- and high angles.
- Rare dull yellow pyrite associated with stringers/
- fractures.
- 246.50 20cm quartz-carbonate vein, barren,
- contacts at 55 and 10 degrees to core axis.
246.50 248.00 5% quartz-carbonate veins/ veinlets.

248.50 251.80 Weak yellow-green sericite alteration grading to a more moderate alteration with depth, 1% calcite-talc stringers, rare pyrite.

Lower contact at 50 degrees to core axis.

244.50 245.50 Carbonate altered, rare to trace pyrite.

245.50 246.50 Carbonate altered, rare to trace pyrite.

246.50 246.80 Barren quartz-carbonate vein.

246.80 247.60 Carbonate altered, rare to trace pyrite, 1% quartz-calcite-talc stringers.

247.60 248.50 Carbonate altered, trace-0.5 pyrite, 3% quartz-calcite-talc stringers.

248.50 249.30 Carbonate-sericite altered, rare to trace pyrite.

249.30 250.10 Carbonate-sericite altered, rare to trace pyrite.

250.10 250.90 Carbonate-sericite altered, rare to trace pyrite.

250.90 251.80 Carbonate-sericite altered, rare to trace pyrite, 2-3% calcite-talc +/- quartz.

251.80 252.50 Very weak chlorite-carbonate alteration, rare pyrite.

252.50 264.40 QUARTZ FELDSPAR PORPHYRY

Pale grey, fine grained, massive, 115793 252.50 253.50 1.00 7° <5° <5° <2° 34° 32° 65° 12° 21°

porphyritic, hard to very hard, non magnetic.

Dominantly silicified with local weak red-purple 115795 254.50 255.50 1.00 13° 5° <5° <2° 27° 29° 64° 10° 22°

hematite staining, orange-yellow potassic and more 115796 255.50 256.50 1.00 5° <5° <2° 27° 31° 55° 10° 19°

weak to moderate yellow-green sericite.

Good RQD of 95% with rare broken core.

Weak to moderate low to medium angle fracturing 115799 257.50 258.50 1.00 <5° <5° <2° 29° 32° 55° 11° 19°

filled with dark green-black chlorite and white 115800 259.40 259.40 <5° <5° <2° 86° 8° 18° 29° 17°

calcite and/or quartz.

115801 259.40 259.70 0.30 31° 5° <5° <2° 73° 18° 32° 24° 22°

Unit is cut by around 1-2% low to medium angle fractures 115802 259.70 260.40 <7° <5° <5° <2° 44° 29° 40° 10° 19°

calcite +/- minor amounts of quartz and a few 115803 260.40 261.10 <7° <5° <5° <2° 29° 24° 56° 10° 19°

quartz-carbonate-calcite veins from 7-34cm long.

115804 261.10 261.80 <7° 5° <5° <2° 33° 24° 49° 10° 18°

Trace-0.5%, maybe 1% locally pyrite associated with 115805 261.80 262.10 <30° 9° <5° <2° 67° 20° 45° 15° 19°

chlorite fractures/ micro fractures.

115806 262.10 262.60 <50° 5° <5° <2° 30° 25° 52° 9° 17°

259.30 263.00 Weak to moderate yellow-green 115807 262.60 262.90 <30° 5° <5° <2° 58° 17° 43° 18° 20°

sericitization.

115808 262.90 263.65 75° 8° <5° <2° 46° 22° 64° 12° 20°

259.40 259.70 Quartz vein, dark green chlorite 115809 263.65 264.40 75° 7° <5° <5° <2° 54° 69° 96° 14° 24°

fractures with 0.5% pyrite, a few specks of chalcopyrite, contacts at 30 and 40 degrees to core axis.

251.90 261.90 20cm quartz-calcite vein, chloritic fractures, 0.5% pyrite, contacts at...
30 degrees to core axis.

262.80 14cm quartz vein, contacts at 30°

degrees to core axis.

Sharp chloritized lower contact for 20cm, 25°
degrees to core axis.

252.50 253.50 Silicified, trace pyrite.

253.50 254.50 Silicified, trace pyrite, 0.5% quartz.

254.50 255.50 Silicified, hematite, 0.5% pyrite.

255.50 256.50 Silicified, hematite-potassic, 0.5% pyrite.

256.50 257.50 Silicified, sericite, trace pyrite.

257.50 258.50 Silicified, hematite, trace pyrite.

258.50 259.40 Silicified, trace pyrite.

259.40 Blank.

259.40 259.70 95% quartz, trace pyrite-chalcopyrite.

259.70 260.40 Ankerite-sericite, 0.5% pyrite.

260.40 261.10 Silicified, 0.5% pyrite.

261.10 261.80 Ankerite-sericite, 0.5% pyrite.

261.80 262.10 20cm quartz vein, 30% quartz,
silicified, sericite, trace-0.5% pyrite.

262.10 262.60 Trace pyrite, silicified, sericite altered.

262.60 262.90 20cm quartz vein, 20% quartz,
silicified, sericite, trace pyrite.

262.90 263.65 Silicified, trace pyrite.

263.65 264.40 Silicified, trace pyrite.

264.40° 289.70° PERIDOTITE

Grey-black, fine grained, moderately hard, non-dimen.

magnetic.

Pervasive moderate-weak carbonatization and silicification.

(ankerite-calcite) with local talc, hematite and silicification.

Weak to moderate yellowish sericite and alteration.

Good RQD of 95% with rare broken core and generally high angle fracturing.

Carbonate.

Calcite-quartz-carbonate or talc stringers.

Multiple generations, stringers at 35, 50, 60°

degrees to core axis. A few scattered 3-5cm wide quartz-carbonate veinlets.

Trace-0.5% specular hematite associated with stringers.

Dark grey-black, fine grained, moderately hard, non-dimen.

Contact at 80 and 70 degrees to core axis.

10cm barren white quartz vein, contacts at 50 and 45 degrees to core axis.

115810 264.40° 265.40° 1.00° 7° ≤≤ 5° ≤≤ 2° 106° 64° 18° 19° 48°

6° ≤≤ 5° ≤≤ 2° 76° 60° 16° 19° 52°

<5° ≤≤ 5° ≤≤ 2° 76° 479° 18° 18° 50°

<5° ≤≤ 5° ≤≤ 2° 76° 414° 17° 18° 46°

<5° ≤≤ 5° ≤≤ 2° 63° 460° 13° 17° 46°

<5° ≤≤ 5° ≤≤ 2° 70° 365° 24° 14° 39°

<5° ≤≤ 5° ≤≤ 2° 94° 385° 17° 19° 43°

<5° ≤≤ 5° ≤≤ 2° 54° 409° 14° 17° 44°

<5° ≤≤ 5° ≤≤ 2° 63° 440° 21° 18° 44°

<5° ≤≤ 5° ≤≤ 2° 66° 355° 17° 17° 36°

<5° ≤≤ 5° ≤≤ 2° 53° 337° 17° 19° 38°

<5° ≤≤ 5° ≤≤ 2° 65° 306° 14° 21° 36°

<5° ≤≤ 5° ≤≤ 2° 50° 316° 13° 17° 35°

<5° ≤≤ 5° ≤≤ 2° 52° 270° 12° 14° 31°

<5° ≤≤ 5° ≤≤ 2° 60° 337° 13° 15° 35°

<5° ≤≤ 5° ≤≤ 2° 91° 312° 9° 13° 35°

<5° ≤≤ 5° ≤≤ 2° 65° 300° 13° 19° 39°

<5° ≤≤ 5° ≤≤ 2° 64° 368° 16° 15° 38°

<5° ≤≤ 5° ≤≤ 2° 54° 414° 15° 15° 38°

<5° ≤≤ 5° ≤≤ 2° 71° 344° 14° 16° 35°

<5° ≤≤ 5° ≤≤ 2° 53° 301° 17° 14° 32°

<5° ≤≤ 5° ≤≤ 2° 87° 389° 17° 18° 38°
Sample Location

275.50 20cm quartz-carbonate stringer at 115832° 285.40° 286.40° 1.00° 5° <5° <5° <.2° 76° 358° 14° 17° 35°
0° 0°

276.30 286.40° 287.30° .90° 9° <5° <5° <.2° 71° 352° 17° 19° 38°
8cm siliceous quartz vein/ stringers,115834° 287.30° 288.10° .80° 7° <5° <5° <.2° 73° 335° 14° 18° 36°
contacts at 60 degrees to core axis. 115835° 288.10° 288.90° .80° <5° <5° <5° <.2° 70° 368° 17° 17° 36°

Sharp lower contact at 30 degrees to core axis. 115836° 288.90° 289.70° .80° 5° <5° <5° <5° 153° 689° 18° 20° 45°

264.40 265.40 Carbonate, 1% quartz-calcite, weak sericite, rare hematite associated with stringers, trace pyrite.
265.40 266.40 0.5% quartz-calcite, trace pyrite, weak carbonate, sericite.
266.40 267.40 Trace pyrite, weak carbonate, sericite.
267.40 268.40 Trace pyrite, weak carbonate, sericite.
268.40 269.40 Trace pyrite, weak carbonate, sericite.
269.40 270.40 Trace pyrite, weak carbonate, sericite.
270.40 271.40 Trace pyrite, weak carbonate, sericite, 3% quartz-carbonate.
271.40 272.40 Trace pyrite, 0.5% specular hematite, weak carbonate, sericite.
272.40 273.40 Trace pyrite, 0.5% specular hematite, weak carbonate, sericite.
273.40 274.40 Trace pyrite, trace specular hematite, weak carbonate, sericite.
274.40 275.40 Trace pyrite, weak carbonate, sericite, 5-7% quartz-carbonate.
275.40 276.40 Trace pyrite, weak carbonate, sericite, 5% quartz-carbonate.
276.40 277.40 Trace pyrite, weak carbonate, sericite, 1-2% quartz-calcite-talc.
277.40 278.40 Trace pyrite, weak carbonate, sericite, 1-2% quartz-calcite-talc.
278.40 279.40 Trace pyrite, weak carbonate, sericite, hematite, 1% quartz-calcite stringers.
279.40 Standard pm 922.
279.40 280.40 Trace pyrite, weak carbonate, sericite, hematite, 1% quartz-calcite stringers.
280.40 281.40 Trace pyrite, weak carbonate, sericite, hematite, 1% quartz-calcite stringers.
281.40 282.40 Trace pyrite, weak carbonate, sericite, hematite, 1% quartz-calcite stringers.
282.40 283.40 Trace pyrite, weak carbonate, sericite, hematite, 1% quartz-calcite stringers.
283.40 284.40 Trace pyrite, weak carbonate, sericite, hematite, 1% quartz-calcite stringers.
<table>
<thead>
<tr>
<th>Sample</th>
<th>From</th>
<th>To</th>
<th>L</th>
<th>Au</th>
<th>Pt</th>
<th>Pd</th>
<th>Ag</th>
<th>Cu</th>
<th>Ni</th>
<th>Zn</th>
<th>Pb</th>
<th>Co</th>
<th>Cu (%)</th>
<th>Ni (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(m)</td>
<td>(m)</td>
<td></td>
</tr>
</tbody>
</table>

- **284.40 285.40**
 - Trace pyrite, weak carbonate
 - sericite, hematite, 1-2% quartz-calcite stringers.

- **285.40 286.40**
 - Trace pyrite, weak carbonate
 - sericite, hematite, 1-2% quartz-calcite stringers.

- **286.40 287.30**
 - Trace pyrite, weak carbonate
 - sericite, hematite, 1-2% quartz-calcite stringers.

- **288.10 288.90**
 - Trace pyrite, weak carbonate
 - sericite, hematite, 1-2% quartz-calcite stringers.

- **288.90 289.70**
 - Trace pyrite, weak carbonate
 - sericite, hematite, 2-3% quartz-calcite stringers.

289.70° 291.40°

MAFIC INTRUSIVE (UNDIFFERENTIATED)

- Dark green, fine grained, massive, 1% 2-3mm
 - chlorite specks in matrix, massive
 - Moderate chloritization, weak ankerite.
 - Good RQD of 90% with minor fracturing filled with:
 - chlorite and minor amounts of hematite staining.
 - Unit is cut by 0.5% white to clear white
 - quartz-calcite stringers at low angles.
 - Rare dull yellow pyrite.
 - Lower contact at 20 degrees to core axis.
 - 289.70 290.50 Chloritic, trace pyrite.
 - 290.50 291.40 Chloritic, trace pyrite.

291.40° 294.90°

FELSIC INTRUSIVE (UNDIFFERENTIATED)

- Grey to dark grey-green, fine grained, massive
 - hard to very hard, non magnetic
 - felsic-intermediate.
 - Pervasive pale red hematization
 - silicification, patchy sericite.
 - Good RQD of 90% with minor 60-70 degrees to core
 - axis fracturing filled with chlorite-calcite.
 - Unit is cut 3-4% quartz-carbonate stringers at
 - 50-70 degrees to core axis with a few 5-9cm quartz veins.
 - Rare to trace dull yellow pyrite specks.
 - 291.40 12cm quartz vein at 20 degrees to
 - core axis.
 - 293.60 7cm quartz-carbonate vein at 50 degrees to core axis.
 - Sharp, undulating lower contact at 45 degrees to

Geology
292.0 293.10 Silicified, hematite, 2% quartz, trace pyrite.

293.10 294.00 Silicified, hematite, 0.5% quartz, trace pyrite.

294.00 294.90 Hematite-sericite, 2-3% quartz, trace pyrite.

294.90 295.70 MAFIC INTRUSIVE (UNDIFFERENTIATED)

295.70 296.60 Dark grey-black, fine grained, moderately silicified, locally dominant hematite, patchy hematite altered, 1% quartz-calcite stringers, rare pyrite, series of 30º generations, random orientations from irregular to green carbonate), weak, patchy sericite alteration, 3-4% quartz-carbonate stringers, multiple generations, high angles.

296.60 297.50 .90º .50º 6º 5º <5º <5º <.2º 62º 787º 16º 21º 41º 20º 50 and 60 degrees to core axis.

297.50 298.40 Dark grey-black, fine grained, moderately silicified, locally dominant hematite, patchy hematite altered, 1% quartz-calcite stringers, rare pyrite, series of 30º generations, random orientations from irregular to green carbonate), weak, patchy sericite alteration, 3-4% quartz-carbonate stringers, multiple generations, high angles.

298.40 299.30 .90º .50º 6º 5º <5º <5º <.2º 62º 787º 16º 21º 41º 20º 50 and 60 degrees to core axis.

299.30 300.10 .80º .50º 6º 5º <5º <5º <.2º 62º 787º 16º 21º 41º 20º 50 and 60 degrees to core axis.

300.10 300.90 .80º .50º 6º 5º <5º <5º <.2º 62º 787º 16º 21º 41º 20º 50 and 60 degrees to core axis.

300.90 300.90 .00º <5º <5º <5º <.2º 62º 787º 16º 21º 41º 20º 50 and 60 degrees to core axis.

300.90 301.75 .85º 6º 5º <5º <5º <.2º 223º 816º 20º 24º 74º 20º 50 and 60 degrees to core axis.

301.75 302.60 .85º 6º 5º <5º <5º <.2º 223º 816º 20º 24º 74º 20º 50 and 60 degrees to core axis.

302.60 303.35 .75º 6º 5º <5º <5º <.2º 79º 769º 11º 21º 48º 20º 50 and 60 degrees to core axis.

303.35 304.10 .75º 6º 5º <5º <5º <.2º 79º 769º 11º 21º 48º 20º 50 and 60 degrees to core axis.
304.10 304.60 Weakly to moderately fuchsite-sericite altered, 2% quartz stringers, trace pyrite.

304.70-305.60 Patchy sericite, 1-2% quartz-carbonate.

296.60 297.50 Very weak to weak patchy sericite, 3-4% quartz, trace pyrite.

297.50 298.40 1-2% quartz, hematite-sericite, trace pyrite.

298.40 299.30 Hematite-carbonate, trace pyrite, 0.5-1% quartz.

299.30 300.10 Hematite-carbonate, trace pyrite, 1% quartz.

300.10 300.90 Hematite-carbonate, trace pyrite, 1-2% quartz.

300.90 301.75 Fuchsite-sericite, trace pyrite, 5% quartz.

301.75 302.60 Fuchsite-sericite, trace pyrite, 2-3% quartz.

302.60 303.35 Hematite, silicification, sericite, trace pyrite.

303.35 304.10 Hematite, silicification, sericite, trace pyrite.

304.10 304.60 Fuchsite-sericite, trace pyrite, 2% quartz.

304.60 320.60 MAFIC INTRUSIVE (UNDIFFERENTIATED)

315.80 316.80 Bracket sample, trace pyrite.

316.80 317.70 Quartz-calcite vein, barren.
317.70 318.50 Trace pyrite.
318.50 319.30 Trace pyrite.
319.30 319.70 Quartz-calcite vein, barren.
319.70 320.60 Trace pyrite.

320.60° 333.00° PERIDOTITE

Dark black, fine grained, brecciated, massive, 115863° 320.60° 321.60° 1.00° 20° ≤5° ≤5° ≤2° 98° 129° 19° 32° 37°
hard, weakly magnetic.
Weak calcite alteration.

RQD of 75-80% with local broken core.

Weak fracturing at 30, 40 and 50 degrees to core.

Unit is cut by 1-2% white calcite +/- quartz and/or talc, irregular and 30-40 degrees to core axis.

There are a few calcite-quartz veins from 13-33cm wide.

Rare dull yellow pyrite.

322.30 20cm, barren, white, calcite-quartz vein, contacts at 30 and 70 degrees to core axis.
329.20 12cm, barren, white, calcite-quartz vein, contacts at 20 degrees to core axis.
329.40 13cm, barren, white, calcite-quartz vein, contacts at 30 and 20 degrees to core axis.
332.00 332.60 Broken core, 40% r.q.d.
332.60 333.00 Healed, weathered, fault, contacts at 30 and 20 degrees to core axis.
Lower contact at 30 degrees to core axis.
320.60 321.60 Quartz-calcite vein, barren.
321.60 322.60 Bracket sample, trace pyrite, 15cm quartz vein.
322.60 323.60 Bracket sample, trace pyrite.

333.00° 350.00° MAFIC INTRUSIVE (UNDIFFERENTIATED)

Dark grey- green medium grained with coarse and fine grained sections, massive, hard, non magnetic.
Gabbroic sections.
No reaction to HCl, weak local pale yellow-green epidote alteration.
Gabbroic RQD of 95% with minor 50-70 degrees to core axis filled with occasional very thin dark green-black chlorite.
Unit is cut by 0.5% white to clear white quartz-calcite and 2% yellow-green epidote stringers at high angles, 50-70 degrees to core axis.
Rare dull yellow pyrite associated with stringers/fractures.

343.00 350.00 Unit becomes more coarse grained and gabbroic looking.

350.00 END OF HOLE.
Date: 16 Oct, 2009

Northing: 5395294.00
Easting: 566557.00
Elevation: 290.00

Collar Azi.: 50.0
Collar Dip: -50.0
Hole length: 317.00
Collar survey: Handheld GPS
DH Survey method: Reflex
Date logged: September 14-17, 2009
Purpose: N/A
Core storage: Hastings Facility Timmins

Geology
Sample
From
To
L
Au
Pt
Pd
Ag
Cu
Ni
Zn
Pb
Co
Ni(%)
Cu(%)
ppb
ppb
ppb
ppm
ppm
ppm
%
%

From	To	Geology	Sample	From	To	L	Au	Pt	Cu	Ni	Zn	Pb	Co	CoCu(%)	Ni(%)	Cu(%)	ppm	%	%								
.00	17.00	OVERBURDEN																									
18m	Of	nw casing.																									
17.00	29.40	PERIDOTITE																									
Green-grey-black, altered, non magnetic, moderately altered*115866	17.00	17.90	.90	9.0	9.0	<.2	139	650	56	18	61																
Sericite-ankerite altered with grayish-black*115868	18.80	19.70	.90	29.0	5.0	<.2	93	595	37	19	64																
sections being more carbonate altered.	*115869	19.70	20.60	.90	9.0	5.0	<.2	99	608	40	20	62															
RQD of 75% with minor broken core.	*115870	20.60	21.50	.90	8.0	8.0	<.2	109	656	48	19	72															
Weak to moderate fracturing at 40, 60 and 70°*115871	21.50	22.50	1.00	7.0	7.0	<.2	93	501	58	18	60																
degrees to core axis with minor black chlorite*115872	22.50	23.40	.90	11.0	8.0	<.2	120	543	112	18	61																
fracture filling.	*115873	23.40	24.90	.50	1523	5.0	<.2	277	196	105	21	48															
2 Generations of white to milky white*115874	23.90	24.80	.90	13.0	6.0	<.2	105	579	67	19	66																
quartz-carbonate +/- calcite stringers/ small veins*115875	24.80	24.80	.00	246	5.0	<.2	59	21	55	11	79																
at 30, 40, 50 and 85 degrees to core axis.	*115876	24.80	25.60	.80	15.0	8.0	<.2	90	606	64	19	67															
Rare dull yellow pyrite associated with fractures.	*115877	25.60	25.90	.30	5.0	5.0	<.2	72	60	23	21	27															
22.00	13cm quartz-carbonate vein, contacts at*115878	25.90	26.70	.80	5.0	7.0	<.2	100	567	59	17	66															
50 and 20 degrees to core axis.	*115879	26.70	27.50	.80	5.0	5.0	<.2	104	563	45	19	65															
23.40	Brecciated, sheared 40 degrees to core*115880	27.50	28.30	.80	8.0	5.0	<.2	94	578	46	19	62															
axis, locally siliceous, section cut by*115881	28.30	29.15	.85	5.0	10	7.0	<.2	92	590	84	18	67															
a few sheared quartz veins 3-4cm wide*115882	29.15	29.40	.25	399	5.0	<.2	221	54	64	17	32																
with 1-2% coarse pyrite along shears in*	29.70	23.90	Siliceous smokey quartz vein with a few*	fragmented orange-red jasper bands at*																							
45 degrees to core axis, 2-3% dull yellow coarse pyrite stringers along healed fractures/shears and jasper bands, contacts at 45 and 55 degrees to core axis.

25.60 25.90 Milky white quartz-carbonate vein with a few host rock fragments.

25.90 Sericite alteration becomes very weak and patchy to end of unit.

29.15 29.40 Similar to 23.7-23.9m, smokey grey silicified vein cut by 1% white quartz stringers at 45 degrees to core axis, 4-5% 1-4cm wide 80 degrees to core axis jasper bands, 3% coarse pyrite along chloritic margins around secondary quartz stringers, contacts at 70 and 60 degrees to core axis. Lower contact at 60 degrees to core axis.

17.00 17.90 Sericite-ankerite, 0.5% quartz, rare pyrite.

17.90 18.80 Sericite-ankerite, 0.5% quartz, rare pyrite.

18.80 19.70 Sericite-ankerite, 4% quartz, rare pyrite.

19.70 20.60 Sericite-ankerite, 3% quartz, rare pyrite.

20.60 21.50 Sericite-ankerite, 0.5% quartz, rare pyrite.

21.50 22.50 Sericite-ankerite, 0.5% quartz, rare pyrite.

22.50 23.40 Sericite-ankerite, 5% quartz, rare pyrite.

23.40 23.90 Siliceous, 15% quartz, sheared, jasper, 3-4% pyrite.

23.90 24.80 2-3% quartz stringers, trace pyrite.

24.80 Standard pm402.

24.80 25.60 1% quartz, trace pyrite.

25.60 25.90 Quartz-carbonate vein, rare pyrite.

25.90 26.70 0.5% quartz, rare pyrite.

26.70 27.50 0.5% quartz, rare pyrite.

27.50 28.30 0.5% quartz, rare pyrite.

28.30 29.15 0.5% quartz, rare pyrite.

29.15 29.40 2-3% pyrite, 15-20% quartz, jasper, siliceous.

29.40° 35.10° BASALT PILLOWED

- Pale green brown, not typical, bleached, sheared, susceptible to alteration.
- Brecciated, hard, non magnetic, fine grained.
- Silicified, ankerite bleached.
- Moderately brecciated with angular fragments from...
- 2-3mm up to 4cm, 1% angular black chlorite clots.

fragments from 1-5cm sized, chlorite-quartz healed. 34.00° 35.10° 35.80° 36.60° 37.60°

breccia.

Weakly sheared at 30-40 degrees to core axis throughout unit, increasing intensity with depth.

RQD of 85-90% with 50-60 degrees to core axis.

fracturing filled with dark black chlorite.

Unit is cut by 2-3% white quartz stringers between 30-50 degrees to core axis and a few brecciated quartz veins.

Trace with local concentrations of 0.5% pyrite associated with stringers, fractures and brecellation.

29.70 13cm quartz-carbonate vein with 10% angular fragments, contacts at 50° degrees to core axis.

30.90 20cm white-pink quartz stringer at 0° degrees to core axis.

31.40 32.00 Breciated/fragmented quartz vein with 5% jasperoidal fragments over 20cm, silicified, sheared 30-40 degrees to core axis, 40% quartz, 2-3% pyrite along fractures/shears. A few possible specks of arsenopyrite.

Lower contact at 20 degrees to core axis.

30.00 31.40 5-6% quartz, sheared, trace pyrite.

31.40 32.00 40% quartz, sheared, 2-3% pyrite, jasper.

32.00 33.00 Sheared, 0.5% pyrite, 1-2% quartz.

33.00 34.00 2-3% quartz stringers, trace pyrite.

34.00 35.10 3-4% quartz stringers, trace pyrite.

35.10° 35.80° PERIDOTITE

Emerald green to green-yellow, fine grained, mottled, hard, non magnetic.

Patchy weak to moderate fuchsite and yellow-green sericite, moderate ankerite alteration.

Good RQD of 95% with minor fracturing +/- chlorite.

3-4% Quartz stringers at high angles.

Rare to trace dull yellow pyrite.

Lower contact at 60 degrees to core axis.

35.10 35.80 2-3% quartz, trace pyrite.

35.80° 36.60° QUARTZ VEIN

80% quartz, 20% fuchsite-sericite altered host 80% quartz, 20% fuchsite-sericite altered host.

rock, rare dull yellow pyrite, 25cm sheared section.

to lower contact.

Sharp lower contact at 20 degrees to core axis.

35.80 36.60 80% quartz, trace pyrite.

36.60° 39.50° BASALT PILLOWED

Pale grey-brown, fine grained, bleached.
porphyritic, hard, non magnetic, a few remnant*115892° 37.60° 38.60°1.00° <5° 8° 7° <.2° 145° 78° 89° 16° 51°
poorly developed pillow selvages.
Silicified, sericite-ankerite bleached.
Good RQD of 95% with minor fracturing +/- chlorite.
2-3% Yellow-blackish, sub angular, plagioclase-chlorite phenocrysts.
Local weakly sheared at 50 degrees to core axis.
1-2% White to off-white calcite +/-quartz stringers at 50-60 degrees to core axis.
Local minor dull yellow pyrite associated with chlorite healed fractures/brecciation.
Sharp lower contact at 50 degrees to core axis.
36.60 37.60 Bleached, trace pyrite, 1-2% quartz-calcite.
37.60 38.60 Bleached, trace pyrite, 1-2% quartz-calcite.
38.60 39.50 Bleached, trace-0.5% pyrite, 1-3% quartz-calcite.

39.50° 40.40° PERIDOTITE 39.50° 40.40° .90° 314° <5° <5° <.2° 52° 33° 82° 12° 23°
hard-hard, non magnetic.
Weak to moderately ankerite altered, patchy weak*115896° 41.20° 42.00° .80° 30° 8° <.2° 111° 454° 93° 15° 64°
yellow-green sericite and rare fuchsite alteration. *115897° 42.00° 43.00°1.00° <5° <5° <.2° 97° 526° 65° 16° 60°
Local minor dull yellow pyrite associated with chlorite healed fractures/brecciation.
Good RQD of 95% with minor fracturing +/- chlorite.
Weak to moderate shear-foliation at 40 and 65°*115898° 43.00° 44.00°1.00° <5° <5° <.2° 369° 69° 10° 54°
degrees to core axis.
Unit is cut by 3-4% 30-40 degrees to core axis*115901° 45.00° 45.70° .70° <5° 5° <5° <.2° 29° 458° 36° 19° 50°
white quartz-carbonate stringers, 2-3 generations.
1-2% 4-6cm Wide quartz-carbonate veins at 50°
degrees to core axis.
43.90 8cm wide barren white quartz-carbonate vein.
44.30 15cm reddish-purple, silicified, quartz vein, no visible sulphides.
44.90 10cm, orange-red jasper rich quartz vein, no visible sulphides, contacts at 50 degrees to core axis.
45.20 15cm wide quartz vein, thin chlorite filled fractures, rare pyrite, contacts at 50 degrees to core axis.
45.50 10cm wide quartz vein, trace pyrite, contacts at 50 degrees to core axis.
Gradual lower contact.
40.40 40.40 Pale grey, siliceous, nil sulphides.
41.20 42.00 Black, weak sericite, trace pyrite.
disseminated yellow-orange mineral, rare pyrite.
42.00 43.00 Moderate sericite, 2-3% quartz, rare pyrite.
43.00 44.00 Weakly sericite-ankerite, 0.5% quartz, rare pyrite.

44.00 45.00 Moderate sericite, weak fuchsite, 10% quartz-jasper veins, trace pyrite.

45.00 Blank.

45.00 45.70 15% quartz veining, trace pyrite.

45.70 70.60° PERIDOTITE

Dark black, fine grained, moderately hard, weakly*115902° 45.70° 46.70° 1.00° <5° 8° <5° <.2° 87° 526° 34° 19° 62°

magnetic, massive.

*115903° 46.70° 47.70° 1.00° <5° <5° <5° <.2° 82° 477° 31° 17° 59°

Pervasive weak carbonatization, localized weak*115904° 47.70° 48.70° 1.00° <5° <5° <5° <.2° 89° 467° 33° 16° 57°

sericite alteration.

*115905° 67.00° 68.00° 1.00° <5° <5° <5° <.2° 97° 497° 59° 18° 63°

Good RoD of 80% with sections of broken core.

*115906° 68.00° 69.00° 1.00° <5° 5° <5° <.2° 104° 538° 73° 18° 80°

Weak to moderate fracturing at 20-30 and 50 degrees*

*115907° 69.00° 69.60° 1.00° <5° 5° <5° <.2° 116° 294° 75° 16° 46°

to core axis. Rare very thin carbonate fracture*

*115908° 69.60° 70.20° 1.00° <5° <5° <5° <.2° 96° 433° 119° 16° 63°

filling.

*115909° 70.20° 70.60° 1.00° <5° <5° <5° 1.6° 164° 104° 128° 19° 36°

2-3% Grey-white calcite-carbonate +/- quartz at 30-40 degrees to core axis.

Rare to trace dull yellow pyrite.

59.50 52cm white quartz-calcite vein at 0° degrees to core axis, a few 70 degrees°
to core axis quartz stringers, no°
visible sulphides.

60.00 70.60° Contact metamorphism evident,*
significant increase in hardness, non°
magnetic, Patchy sericite,*
silicification and ankerite, 4-5%°
quartz veins, a few cherty (magnetic)*
iron formation beds from 2-6cm wide.*
1-2% pyrite associated with both quartz°
and magnetite (iron formation).

Lower contact at 55 degrees to core axis.

45.70 46.70° Patchy very weak sericite, trace pyrite.*

46.70 47.70° Patchy very weak sericite, trace pyrite.*

47.70 48.70° Weak carbonate alteration.

67.00 68.00° Weak carbonate alteration.

68.00 69.00° Weak carbonate-ankerite alteration,*

rare pyrite.

69.00 69.60° 10% quartz-iron formation combined,*

2-3% pyrite, siliceous.

69.60 70.20° Slightly silicified, trace pyrite.

70.20 70.60° 10% iron formation, very hard matrix,*
dyke (?), 3% pyrite as bands and°
disseminations.

70.60° 140.90° BASALT PILLOWED

Dominantly pale brown-grey (bleached) with some*115910° 70.60° 71.60° 1.00° <5° 7° 7° <.2° 156° 87° 111° 14° 51°
dark green sections, fine grained, local pillow*115911° 71.60° 72.60° 1.00° <5° 6° 7° <.2° 153° 82° 88° 13° 48°

selvages, locally amygdaloidal, hard, locally*115912° 78.00° 79.00° 1.00° <5° 11° 9° <.2° 170° 59° 83° 12° 48°
magnetic, porphyritic.

*115913° 79.00° 80.00° 1.00° <5° 9° 8° <.2° 171° 66° 88° 13° 50°

Locally chlorite-calcite-epidote altered with*115914° 80.00° 81.00° 1.00° 7° 12° 10° <.2° 158° 67° 86° 14° 47°
ankerite-sericite bleaching being the dominant

alteration set.

Local quartz flooded pillow selvages scattered

throughout.

Good RQD of 90%, minor brecciation and fracturing

healed with calcite-chlorite.

Varially porphyritic, 3 types, sub rounded-sub

angular, 7% plus yellow-green plagioclase-talc,

1-2% yellow-white feldspar and 0.5% dark green

mafic phenocrysts randomly distributed throughout

unit.

1-3% Quartz-carbonate-calcite stringers at various

angles, both low and high.

Trace to at best maybe 2% pyrite locally around a

few stringers/fractures.

72.40 80.00 Dark green, magnetic, 1% plagioclase

phenocrysts. 1% wispy epidote

stringers, trace pyrite.

Unit gradually becomes bleached with

increased porphyritic texture present.

87.70 88.10 Battle ship grey interflow sediments,

1-2cm wide dark grey beds with local

thin argillite beds, trace coarse

pyrite specks, bedding at 60 and 70

degrees to core axis.

65cm long by lcm wide calcite stringer

at 0 degrees to core axis.

91.90 93.30 Light grey-dark grey-black, siliceous

quartz rich inter flow sediments, 50-60

degrees to core axis beds/ shearing

dark black argillite along planes of

weakness throughout unit, roughly 10%,

stringers associated with argillite.

105.70 106.50 Quartz-carbonate vein, sheared at 40°

degrees to core axis, 1-2% dark green

carbonate along shears/ fractures, a

few specks of pyrite, maybe a few

specks of chloropyrite.

113.80 9cm milky white quartz-carbonate

vein, weakly fractured with some

quartz-chlorite healing, a few specks

of pyrite.

115.00 116.30 Dark green, slightly chlorite

altered, 1-2% white-yellow, sub

rounded, feldspar phenocrysts.

120.60 122.40 Series of 50-55 degrees to core axis

shears filled with chlorite, weak to

...
<table>
<thead>
<tr>
<th>Sample</th>
<th>From</th>
<th>To</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>72.60</td>
<td>72.90</td>
<td>Weakly bleached, trace pyrite.</td>
</tr>
<tr>
<td></td>
<td>79.00</td>
<td>80.00</td>
<td>Bracket sample, trace pyrite.</td>
</tr>
<tr>
<td></td>
<td>81.00</td>
<td>82.00</td>
<td>Bleached, trace pyrite, locally siliceous, 1% quartz.</td>
</tr>
<tr>
<td></td>
<td>85.00</td>
<td>86.00</td>
<td>Bleached, trace pyrite.</td>
</tr>
<tr>
<td></td>
<td>87.00</td>
<td>87.10</td>
<td>Trace pyrite.</td>
</tr>
<tr>
<td></td>
<td>89.10</td>
<td>90.10</td>
<td>Bleached, trace pyrite.</td>
</tr>
<tr>
<td></td>
<td>90.10</td>
<td>91.00</td>
<td>Bleached, trace pyrite.</td>
</tr>
<tr>
<td></td>
<td>91.90</td>
<td>92.60</td>
<td>Highly silicified, 4-5% pyrite.</td>
</tr>
<tr>
<td></td>
<td>93.30</td>
<td>93.90</td>
<td>Highly silicified, 3-4% pyrite.</td>
</tr>
<tr>
<td></td>
<td>94.30</td>
<td>95.30</td>
<td>Bleached, trace pyrite.</td>
</tr>
<tr>
<td></td>
<td>102.60</td>
<td>103.60</td>
<td>Bleached, trace pyrite, locally siliceous pillow selvage.</td>
</tr>
<tr>
<td></td>
<td>104.60</td>
<td>105.60</td>
<td>Bleached, trace pyrite.</td>
</tr>
<tr>
<td></td>
<td>106.50</td>
<td>107.50</td>
<td>Bleached, trace pyrite.</td>
</tr>
<tr>
<td></td>
<td>108.50</td>
<td>109.50</td>
<td>Bleached, trace pyrite.</td>
</tr>
<tr>
<td></td>
<td>119.60</td>
<td>120.60</td>
<td>Bleached, trace pyrite.</td>
</tr>
<tr>
<td></td>
<td>121.50</td>
<td>122.50</td>
<td>Bleached, sheared, 0.5% quartz-calcite.</td>
</tr>
<tr>
<td></td>
<td>122.40</td>
<td>123.40</td>
<td>Bleached, trace pyrite.</td>
</tr>
<tr>
<td></td>
<td>137.90</td>
<td>138.90</td>
<td>Bleached, trace pyrite, a few quartz stringers.</td>
</tr>
<tr>
<td></td>
<td>138.90</td>
<td>139.90</td>
<td>Bleached, trace pyrite, 2% irregular quartz stringers.</td>
</tr>
<tr>
<td></td>
<td>139.90</td>
<td>140.90</td>
<td>Bleached, grayish, trace pyrite, a few quartz stringers.</td>
</tr>
</tbody>
</table>
140.0°-144.0° MASSIVE BASALT

- Pale brown-grey, bleached, massive flow, local
- Cherty interflow sediments, non magnetic, hard
- Very hard, fine-medium grained, equigranular
- Weakly porphyritic
- Pervasive sericite-ankerite bleaching
- Weakly porphyritic with fairly average sized 2-4mm plagioclase phenocrysts
- Good RQD of 90% with minor fracturing at 25 and 50 degrees to core axis, occasional 30 degrees to core axis cross fracturing, rare 1-3mm calcite filling
- Rare 50 degrees to core axis hairlike calcite stringers
- 1-2% Coarse sub rounded and cubic pyrite disseminations
- 141.80-142.10 Fragmented chert sediments, very fine grained, fractured bedding, possible tops down hole (?), contacts at 45 and 40 degrees to core axis
- 143.60 11cm quartz-carbonate vein, slightly siliceous, contacts at 25 and 60 degrees to core axis
- Lower contact at 30 degrees to core axis
- 140.90 141.80 Massive, bleached, 1-2% pyrite
- 141.80 142.10 Chert, silicified, rare pyrite
- 142.10 143.00 Massive, bleached, 1-2% pyrite
- 143.00 144.00 Massive, bleached, 1-2% pyrite, local quartz vein

144.0°-145.8° SEDIMENT

- Pale brown-grey bleached cherty sediments, fine
- Grained, bedded, hard-very hard, non magnetic
- Weak to moderate sericite-ankerite bleaching
- Silicified
- Upper contact brecciated and strongly sericite altered
- Weak to moderately bedded/laminated at 50 degrees to core axis, thin argillite
- Decent RQD of 75-80% with sections of broken core
- Moderately fracturing, generally along bedding planes, 50-60 degrees to core axis, minor calcite filling
- A few 50 degrees to core axis quartz-calcite stringers
- Trace fine pyrite along fractures and bedding planes
- 144.00 144.90 Chert, silicified, rare pyrite, broken core
- 144.90 Blank
- 144.90 145.80 Chert, silicified, rare pyrite, broken core
145.80° 149.90° BASALT MASSIVE PORPHYRITIC FLOW

- Same as 140.9-144m but more altered and slightly115952.
- More porphyritic, highlighted by 2-4mm and115953.
- Occasional 1cm plagioclase phenocrysts.
- Pale brown to grayish and green sections,115954.
- Fine-medium grained, porphyritic, bleached,115955.
- Locally leucocratic, hard, non-magnetic.
- Good RDQ of 90% with minor 30, 40 and 50 degrees to core axis.
- Core axis fracturing filled with calcite-chlorite.
- 1-2% calcite-chlorite stringers fragmented by fracturing, roughly 40-50 degrees to core axis.
- 0.5% Pyrite along stringers/ fractures.
- Lower contact at 35 degrees to core axis.
- 145.80 146.90 Bleached, trace pyrite.
- 146.90 147.90 Bleached, trace pyrite, 15cm quartz vein.
- 147.90 148.90 Bleached, trace pyrite.
- 148.90 149.90 Bleached, trace pyrite.

149.90° 150.40° QUARTZ VEIN

- 95% White to milky white quartz vein cut by several115956.
- Thin irregular chlorite stringers, trace sericite and pyrite.
- Lower contact sharp 35 degrees to core axis.
- 149.90 150.40 Quartz vein, trace pyrite.

150.40° 152.30° SEDIMENT

- Pale grey-brown cherty sediments, fine grained,115957.
- Hard to very hard, non-magnetic, bedded.
- Moderately sericite-ankerite altered, silicified.
- Good RDQ of 95%.
- Abundant fracturing-micro fracturing and brecciated115958.
- With quartz-chlorite and calcite healing.
- A few low angle calcite-quartz stringers.
- Trace fine pyrite along fractures.
- 151.70 20cm section with several beds at 50-60 degrees to core axis.
- Fairly distinctive lower contact at 50 degrees to core axis.
- 150.40 151.40 Chert, silicified, trace pyrite.
- 151.40 152.30 Chert, silicified, trace pyrite.

152.30° 154.90° BLEACHED BASALT

- Same as 11.8-149.9m.115959.
- Pale brown to grayish and green sections,115960.
- Fine-medium grained, rare porphyritic texture,115961.
- Bleached, leucocratic, hard, non-magnetic.
- Good RDQ of 95% with minor 30-40 degrees to core.
- Axis. Fracturing filled with calcite-chlorite.
- 1-2% white 5mm-1cm wide calcite +/- quartz.
154.90° 164.50° MASSIVE BASALT
- Dark green, medium grained, massive, hard, possible selvage (?), non magnetic a few white feldspar.
- Bleached, trace pyrite.
- 152.30 153.10 Bleached, trace pyrite.
- 153.10 154.00 Bleached, trace pyrite.
- 154.00 154.90 Bleached, trace pyrite.
- 154.90° 164.50° Bleached, trace pyrite.
- 163.50 164.50 Bracket, trace pyrite.

164.50° 165.80° MAFIC INTRUSIVE (UNDIFFERENTIATED)
- Grey to dark grey, fine grained, massive, homogeneous, hard-very hard, non magnetic, flat bedding.
- Intermediate to mafic composition.
- Weakly silicified with slight reaction to HCl.
- Weak chlorite, no reaction to HCl, local yellow-green epidote stringer alteration.
- 1-2% Hairlike calcite +/- weak epidote, multiple generations cross cut by fracturing.
- Lower contact, stepped and very low angle, 15-20° degrees to core axis.
- 164.50 165.15 Silicified, trace-0.5% pyrite.
- 165.15 165.80 Silicified, trace-0.5% pyrite.
Abundant white-yellow feldspar and chlorite in a matrix giving unit a gabbric appearance locally. Weak chlorite, no reaction to HCl, locally yellow-green epidote stringer alteration. 4-5% white to yellow-white plagioclase/talc phenocrysts, sub rounded, 2mm-1.5cm in size. Good RQD of 95% with minor chlorite-calcite filled fractures. 2-3% White calcite-quartz stringers +/- chlorite and/or epidote. A few 5-10cm wide quartz-calcite veins with 40-60 degrees to core axis contacts. Trace-0.5% yellow-brown pyrite along stringers/fractures. Gradational contact.

Gradational contact. 165.80 166.80 Bracket, trace pyrite. 213.10 213.60 Mafic intrusive, dark grey-grey, fine grained, massive, weak calcite alteration, trace fine pyrite, sharp contacts at 70- and 30 degrees to core axis. 213.80 215.20 Mafic intrusive, dark grey-grey, fine grained, massive, weak calcite alteration, 1% thin low angle calcite stringers, trace-0.5% fine pyrite, sharp contacts at 20 degrees to core axis.

Dark green to green, coarse flow, massive, 115969° 212.10 213.10*1.00° 13° <5° <5° <.2° 144° 81° 80° 13° 38°. Homogeneous, hard, non magnetic, rare leucoxene. 115970° 213.80° 214.60° .70° 6° <5° <2° 114° 98° 79° 11° 31°. No reaction to HCl, weakly silicified and chlorite-calcite stringers, trace-fine pyrite, sharp contacts at 70- and 30 degrees to core axis. 115971° 213.80° 215.20° .70° 5° <5° <2° 80° 114° 204° 10° 24°. Good RQD of 90% with minor 40-60 degrees to core axis contacts. 115972° 216.10° 216.80° .60° 5° <5° <.2° 138° 97° 84° 13° 50°. 1/9° 216.10° 216.10° .50° 11° <5° <5° <.2° 143° 73° 75° 10° 40°. 1-2° 213.80° 214.60° .50° 5° <5° <5° <.2° 138° 120° 77° 11° 43°. Trace-0.5% dull yellow-brown coarse pyrite along stringers/fractures.
233.20° – 255.50° BASALT PILLOWED
- Dark green-grey, fine grained, pillowed, non-altered sections.
- Magnetic, hard, locally amygdaloidal, some more massive sections.
- No reaction, weak chlorite altered sections.
- 1-2 Pillow selvages per meter with surrounding 2-mm calcite-quartz amygdaloidal and locally unfilled with quartz-calcite-chlorite, trace amounts of pyrite.
- A few localized plagioclase phenocrysts.
- Good RQD of 90% with minor chlorite-calcite filled fractoring.
- Trace-0.5% pyrite along stringers/fractures and pillow selvages.
- Gradual lower contact.
- 255.00 255.50 Bracket, trace pyrite.

255.50° – 261.70° BASALT PILLOWED
- Pale brown to grey, bleached, rare pillow selvages.
- Fine grained, hard, non magnetic, locally sheared. Weak to moderate sericite-ankerite bleaching.
- Good RQD of 90% with minor fracturing +/- calcite
- and/or chlorite, multiple generations, cross-cutting.
- Fracturing noted.
- 1-2 Low angle, irregular calcite +/- quartz
- stringers.
- Trace-0.5% pyrite as oval spots throughout, 2-3-mm sized.
- Sharp lower contact at 30 degrees to core axis.
- 261.10 261.70 Moderately sheared foliated section at 40 degrees to core axis.
- 255.50 256.50 Bleached, trace pyrite.
- 256.50 257.40 Bleached, trace pyrite.
- 257.40 258.30 Bleached, trace pyrite.
- 258.30 259.20 Bleached, trace pyrite.
- 259.20 260.10 Bleached, trace pyrite.
- 260.10 261.10 Bleached, trace pyrite.
<table>
<thead>
<tr>
<th>Sample</th>
<th>From (m)</th>
<th>To (m)</th>
<th>L</th>
<th>Au</th>
<th>Pt</th>
<th>Pd</th>
<th>Ag</th>
<th>Cu</th>
<th>Ni</th>
<th>Zn</th>
<th>Pb</th>
<th>Co</th>
<th>Cu (%)</th>
<th>Ni (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>261.10</td>
<td>261.70</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Bleached, sheared, trace pyrite.</td>
<td></td>
</tr>
</tbody>
</table>

Sediment

- Locally quartz flooded wackes and mudstones with 115987° 261.70°-262.50°.
- Cherty and argillite bedding.
- Dark grey to grey, fine grained, massive, non-magnetic, non-conductive.
- Weak reaction to HCl locally, locally silicified.
- RQD of 85% with minor fracturing unfilled with argillite.
- Bedding at 40-50 degrees to core axis, 2mm-2cm wide.
- 1% White quartz stringers around 1cm wide at 30° degrees to core axis.
- 0.5% Fine yellow pyrite disseminations.
- Lower contact at 50 degrees to core axis.
- 261.70 262.50 Silicified, 0.5% pyrite, abundant quartz.
- 262.50 263.00 Trace pyrite.

Basalt Pillowed

- Same as 255.5-261.7m.
- Pale brown to grey, bleached, rare pillow selvages, 115990° 263.00°-264.00°, 1.00°.
- Fine grained, hard, non-magnetic, rare locally 115991° 263.00°-264.00°, 1.00°, 11°,
- Sheared, 115992° 264.00°-267.00°, 1.00°, 31°, 5°.
- Weak to moderate sericite-ankerite bleaching.
- 115993° 267.00°-268.00°, 1.00°, 6°, 5°.
- Good RQD of 95% with minor chlorite-calcite filled fractures.
- 1-2% White to milky white quartz-calcite stringers.
- Rare pyrite along stringers/
- Gradual lower contact.
- 263.00 264.00 Bleached, trace pyrite.
- 264.00 265.00 Bleached, trace pyrite.
- 265.00 266.00 Bleached, trace pyrite.
- 266.00 267.00 Bleached, trace pyrite.
- 267.00 268.00 Bleached, trace pyrite.

Basalt Pillowed

- Dark green fine grained with medium to coarse 115994° 268.00°-269.00°, 1.00°, 10°, 5°, 5°.
- Grained sections, hard, massive, rare poorly developed pillow selvages (every 4-5m), abundant variolitic.
- Dominant weak chlorite alteration, local weak calcite and sericite ankerite bleaching.
- Good RQD of 85% with fracturing at 40 and 50° degrees to core axis with thin calcite-chlorite +/- epidote.
- 1-2% Irregular calcite +/- quartz and/or epidote.
- Trace pyrite along stringers/
- 277.30 280.70 Bleached section, very weak sericite-ankerite, a few stringers,
- Rare pyrite, gradual upper and lower.

Geology

- 261.10 261.70 Bleached, sheared, trace pyrite.
<table>
<thead>
<tr>
<th>From (m)</th>
<th>To (m)</th>
<th>Geology</th>
<th>Sample</th>
<th>From (m)</th>
<th>To (m)</th>
<th>L Au ppm</th>
<th>Pt ppm</th>
<th>Pd ppm</th>
<th>Ag ppm</th>
<th>Cu ppm</th>
<th>Ni ppm</th>
<th>Zn ppm</th>
<th>Pb ppm</th>
<th>Co ppm</th>
<th>Cu (%)</th>
<th>Ni (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>268.00</td>
<td>269.00</td>
<td>Bracket, trace pyrite.</td>
<td></td>
</tr>
<tr>
<td>317.00</td>
<td></td>
<td>END OF HOLE</td>
<td></td>
</tr>
</tbody>
</table>
DRILL HOLE RECORD

Depth	**Az.**	**Dip**
41 | 50.2 | -49.2
92 | 46.5 | -48.9
143 | 47.8 | -49.0
194 | 49.3 | -49.4

Geology

- **0.00° - 30.20° OVERBURDEN**
 - Green, white speckled, homogenous, magnetic, moderately hard, massive gabbro.
 - It consists of 40-50% white plagioclase laths surrounded by chloritic altered amphiboles.
 - Alteration: moderate pervasive calcite alteration and minor chlorite alteration.
 - Structure: weak fracturing at 30 to 45 to core axis, fractures often filled with calcite and quartz.
 - RQD of 75% with minor broken core.
 - Mineralization: rare silvery fine grained magnetite disseminations throughout.
 - Sharp lower contact at 50 to ca.

- **30.20° - 37.15° GABBRO**
 - Green, white speckled, homogenous, magnetic, moderately hard, massive gabbro.
 - It consists of 40-50% white plagioclase laths surrounded by chloritic altered amphiboles.
 - Alteration: moderate pervasive calcite alteration and minor chlorite alteration.
 - Structure: weak fracturing at 30 to 45 to core axis, fractures often filled with calcite and quartz.
 - RQD of 75% with minor broken core.
 - Mineralization: rare silvery fine grained magnetite disseminations throughout.
 - Sharp lower contact at 50 to ca.

- **37.15° - 58.80° FELDSPAR PORPHYRY**
 - Grey, moderately hard, non magnetic, massive feldspar porphyry.
 - It consists of 25-30% white feldspar phenocrysts (2-5 mm diameter) and 10% dark green chloritic.

Analyses:

- PM 30g FA, BM AA
- Sample series: 115995-116000, 108401-423
- Lab: Expert
- Lab report: 25230

GPS Easting: 566697

Date Started: Sept 11, 2009

Date Completed: Sept 14, 2009

Drilled by: Crites Drilling

Sample Type: Cut Core

Analyses: PM 30g FA, BM AA

Sample Series: 115995-116000, 108401-423

Lab Report: 25230

Project: Abitibi East (East) Extension

Property: Milligan Township

Claim: 4214737

Northing: 5395039

Easting: 566697

Date Started: Sept 11, 2009

Date Completed: Sept 14, 2009

Drilled by: Crites Drilling

Sample Type: Cut Core

Analyses: PM 30g FA, BM AA

Sample Series: 115995-116000, 108401-423

Lab Report: 25230

Core Size: NQ

Collar Azi.: 45.0

Collar Dip: -50.0

Hole Length: 251.00

Units: Metric

Core Survey: Handheld GPS

DH Survey Method: Reflex
Amphiboles in a brown aphanitic felsic matrix. Structure: moderately fractured (random) resulting in RQD of 65-70%. Alteration: the feldspar phenocrysts and matrix are weakly sericitized. 2-3% Calcite-quartz stringers/veinlets at 40 to 60º to ca. Mineralization: nil. 37.15 39.00 Upper chill margin of FELDSPAR PORPHYRY intrusive. Pinkish (possibly hematite alteration), weakly porphyritic (3%) content of 15-18% dark green chloritic amphiboles. 53.10 54.50 Green to dark green, mottled, massive non-magnetic, moderately soft, mafic volcanic selvage. Contacts are some what diffuse. Quartz-carbonate vein (3 cm), 50 to core axis, at 53.3 m. 55.50 56.10 Mafic volcanic selvage (same as above). Strongly quartz-carbonate veined (40%) and calcite altered. Upper contact 70º to core axis and lower contact 85 to ca. 56.10 58.80 Lower chill margin of FELDSPAR PORPHYRY intrusive. Same as upper margin but only pinkish hematite altered at last 0.5 metre near contact. Sharp lower contact at 50 to ca. 58.80 76.90° BASALT PILLOWED Green, mottled, non magnetic, moderately soft, 61.50 62.00° .50° <5° 9° 8° < .2° 73° 390° 93° 17° 64° fine-grained pillow basalts. 62.00 62.13° .13° 12° <5° <5° < .2° 142° 109° 38° 20° 39° The upper particularly of the unit 58.8 to 65.4°115997° 62.13° 62.60° .47° 5° 8° 9° < .2° Chilled margin of FELDSPAR PORPHYRY intrusive. Same as upper margin but only pinkish hematite altered at last 0.5 metre near contact. Sharp lower contact at 50 to ca. Structure: massive non foliated. RQD of 85-90% with fracturing randomly oriented. Unit is cut by 1% white ragged quartz-calcite stringers to veinlets randomly oriented. The upper particularly of the unit is more intensely veined 3%. Alteration: weak pervasive calcite. Mineralization: minor sulphides in flow selvages. Trace chalcopyrite disseminations at 71.8 m. 62.00 62.13 Grayish to white silica-calcite flooded flow selvage section with 0.5% fine
62.13 62.60 Bracket sample, trace pyrite.

76.90° 94.90° FELDSPAR PORPHYRY
Everything same as 37.15 to 58.8 m.
69.90 78.00 Upper chill margin of FELDSPAR PORPHYRY®
intrusive. Pinkish (possibly hematite alteration), weakly porphyritic (3% feldspar phenocrysts) and higher mafic content of 15-18% dark green chloritic amphiboles.
78.50 79.00 A few vuggy yellowish white calcite-epidote veinlets and vuggy white calcite veinlets, 45-60 to ca.
81.10 82.30 Green to dark green, mottled, massive non-magnetic, moderately soft, mafic volcanic selvage.
Minor quartz-carbonate veinlets (5%) and calcite altered. Red hematite patch at 82.2 m. Upper contact 35 to core axis and lower contact 40 to ca.
90.20 90.50 Alteration to moderate pervasive k-spar alteration.
Wavy sharp lower contact 20 to ca.

94.90° 190.30° BASALT PILLOWED
Green, non magnetic, moderately soft, very fine to fine-grained pillowowed basalts.
The flow selvages are poorly developed and are marked by wispy ragged black aphanitic chlorite filled fractures. Some have crackle brecciated wall rock margins.
Unit is cut by occasional white ragged quartz-calcite stringers to veinlets randomly oriented. Locally yellow epidote in the veinlets.
The upper particularly of the unit (94.9-99 m) is cut by 1-2% fine veinlets to filled fractures.
Structure: massive non foliated locally crackle brecciated. RQD of 85-90% with fracturing randomly oriented.
Alteration: weak pervasive calcite.
Mineralization: trace sulphides in flow selvages.
170.55 170.75 White quartz vein with calcite. Upper contact 15 to core axis and lower contact 30 to ca.
184.35 184.45 Vuggy white calcite vein (3 cm), 15° to ca. Very minor quartz.
184.90 185.15 White calcite-quartz vein 10 to ca.
185.75 185.80 Greenish white carbonate vein (2.5° to filled fractures.)
<table>
<thead>
<tr>
<th>Sample</th>
<th>From</th>
<th>To</th>
<th>L</th>
<th>Au</th>
<th>Pt</th>
<th>Pd</th>
<th>Ag</th>
<th>Cu</th>
<th>Ni</th>
<th>Zn</th>
<th>Pb</th>
<th>Co</th>
<th>Cu (%)</th>
<th>Ni (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

190.30° 202.80° **MASSIVE BASALT**

- Dark green, fine grained, soft, non-magnetic 119599° 194.00° 195.00° 1.00° 5° 8° 7° <.2° 103° 393° 82° 20° 59°
- Strongly cut by random white carbonate veining 119599° 195.00° 196.70° .70° 89° 7° 6° <.2° 126° 482° 75° 20° 62°
- Throughout. This is very intense (60-65%) from 108401° 197.00° 194.00° .70° 35° 5° 5° <.2° 44° 345° 58° 20° 49°
- 195.5 to 200 m. 108402° 196.40° 197.00° .80° 19° <5° <5° <.2° 50° 261° 50° 19° 42°
- Structure: the upper particularly (to 193 m) is 108403° 197.20° 198.00° .80° 15° <5° <5° <.2° 49° 225° 41° 20° 40°
- Non-foliated. Below 193 metre, weak to moderate 108404° 198.00° 199.00° 1.00° 6° <5° <5° <.2° 39° 353° 67° 19° 54°
- Mineralization: overall trace to 0.5% disseminated 108406° 200.00° 201.00° .80° 7° 8° <.2° 108° 323° 60° 19° 54°
- Pyrite. 108407° 201.00° 202.00° 1.00° 23° 14° 8° <.2° 94° 353° 71° 19° 59°
- Lower contact of unit sharp to core axis, change 108408° 202.00° 202.80° .80° 5° 10° <.2° 106° 391° 80° 20° 59°
- In coloration as same rock type below.
- 194.00 195.00 Bracket sample, trace pyrite.
- 195.70 Blank.

**202.80° 204.90° **MASSIVE BASALT

- Yellowish green, fine-grained, soft, non-magnetic 108409° 202.80° 203.70° .90° 19° 12° <.2° 89° 470° 85° 20° 63°
- Sericitized basalt. 108410° 203.70° 204.50° .10° 12° 9° <.2° 129° 101° 165° 19° 48°
- The unit is cut by 1% white calcite irregular wisps 108411° 204.50° 204.90° 1.60° 22° 9° <.2° 193 38° 77° 30° 59°
- Foliation but random orientation. Rqd-90-95%. 108412° 199.00° 200.00° .80° 5° 5° <.2° 67° 388° 77° 30° 59°
- Mineralization: overall trace to 0.5% disseminated 108414° 200.00° 201.00° .80° 5° 7° <.2° 108° 323° 60° 19° 54°
- Pyrite. 108415° 201.00° 202.00° 1.00° 23° 14° 8° <.2° 94° 353° 71° 19° 59°
- Lower contact of unit sharp to core axis, change 108416° 202.00° 202.80° .80° 5° 10° <.2° 106° 391° 80° 20° 59°
- In coloration as same rock type below.
- 203.50 204.90 Bracket sample, trace pyrite.
- 195.70 Blank.

**204.90° 238.00° **BASALT MASSIVE PORPHYRITIC FLOW

- Pale green to green, mottled (differential) 108412° 204.90° 206.00° 1.10° 21° 12° 10° <.2° 142° 67° 132° 16° 45°
- Alteration: very fine-grained to aphanitic 108413° 206.00° 206.75° .75° 65° 12° 9° <.2° 125° 67° 115° 17° 49°
- Porphyritic textured basaltic flows. 108414° 206.75° 207.35° .60° 121° 5° <.2° 45° 33° 94° 15° 24°
- The basaltic flow porphyritic texture is 108415° 207.35° 208.00° .65° 355° 15° 11° <.2° 223° 71° 122° 16° 48°
- Characterized by 2-3% scattered clots filled with 108416° 224.50° 225.60° 1.10° 18° 13° 9° <.2° 114° 204° 75° 15° 53°
- Either green to black soft aphanitic serpentine or 108417° 225.60° 226.50° .90° 260° 9° <5° <.2° 79° 152° 39° 13° 30°
- White plagioclase. The clots range from 1-2 mm to 108418° 226.50° 227.30° .80° 11° 9° <5° <.2° 117° 62° 91° 14° 46°
- 1x2.5 cm size. 108419° 235.00° 236.00° 1.00° 10° 9° <5° <.2° 113° 70° 88° 15° 49°
- The unit is cut by 1-2% white calcite stringers 108420° 236.00° 236.70° .70° 244° 12° 9° <.2° 120° 69° 138° 16° 46°
veinlets and very minor quartz ones.
Structure: massive non foliated. RQD of 80% with 108421° 236.70° 237.50° .80° 1845° <5° <.2°
fracturing randomly oriented.
Pillow selvages evident locally e.g. 210.1, 210.4, 225.5 m.
Alteration to intense to moderate pervasive.
calcite. Bleaching likely due to moderate.
Pervasive sericite-ankerite.
204.90 214.65 Pale green bleached serpentine
porphyritic basalt.
206.65 207.35 Grey silica flooded zone (flow selvage?) with 0.5-1% very finely
disseminated brassy pyrite.
212.45 212.70 White quartz filled fracture flooded section.
214.65 222.50 Green plagioclase porphyritic basalt.
219.00 Flow contact 70 to ca.
222.50 227.30 Pale green bleached serpentine
porphyritic basalt.
223.10 Grey chert layer (2.5 cm), 30 to ca.
225.60 226.50 Grey silica flooded zone (flow selvage?) with 1.5-2% very finely
disseminated brassy pyrite.
227.30 231.70 Green plagioclase porphyritic basalt.
231.70 238.00 Pale green bleached serpentine
porphyritic basalt.
236.00 236.75 Weakly foliated 40 to core axis, 5% quartz veinlets to gashes mix:0.5%
brassy fine grained pyrite

disseminations.
236.75 238.00 Grey sulphidic silica flooded zone (flow selvage?).
Min: brassy to brown very fine grained to fine grained
pyrite stringers to bands (1.5 cm).
15% from 236.75 to 237.5 and 5% from
237.5 to 238 m. Red: jasperoid fragments present locally. Upper contact to 30 ca.
Lower contact of unit and grey silica flooded zone
sharp and wavy, about 15 to ca.
207.35 208.00 Bracket sample, trace pyrite.
224.50 225.60 Bracket sample, trace pyrite.
226.50 227.30 Bracket sample, trace pyrite.
235.00 236.00 Bracket sample, trace pyrite.
238.00° 246.10° FELSIC INTRUSIVE (UNDIFFERENTIATED)
Grey, moderately soft, non magnetic, altered 108423° 238.00° 239.00° 1.00° 19° <5° <5° <.2°
massive feldspar porphyry.
It consists of 15% dark green chloritic amphiboles
in a brown carbonatized aphanitic felsic matrix.
Rare remnant white plagioclase phenocrysts.
Alteration to intense to moderate pervasive calcite and carbonatization.
- Structure: moderately fractured (random) resulting in RQD of 65-70%.
- The unit is cut by 1% fine (<1 mm) calcite stringers and fractures./veinlets at 35 to 60 to ca.omal.
- Mineralization: trace.
- Ragged sharp lower contact at 25 to ca.
- 238.00 239.00 Bracket sample, trace pyrite.

246.10° 246.85° BASALT MASSIVE PORPHYRIC FLOW
- Pale green, very fine-grained to aphanitic, porphyritic textured, basaltic flow (maybe a selvage in the felsic intrusive).
- The basaltic flow porphyritic texture is characterized by 2-3% scattered clots filled with green to black soft aphanitic serpentine. The clots range from 1-2 mm to 1 cm size.
- Structure: massive non foliated. RQD of 80% with fracturing randomly oriented.
- Alteration to intense to moderate pervasive calcite. Flow selvage at 246.6 m.
- Ragged sharp lower contact 25 to ca.

246.85° 250.10° FELDSPAR PORPHYRY
- Grey, moderately hard, non magnetic, massive feldspar porphyry.
- It consists of 25-30% white feldspar phenocrysts (1-2 mm diameter) and 10% dark green chloritic.
- Amphiboles in a brown aphanitic felsic matrix.
- Alteration: none.
- Structure: moderately fractured (random) resulting in RQD of 65-70%.
- The unit is cut by 1% fine (<1 mm) calcite stringers and fractures./veinlets at 35 to 60 to ca.
- Mineralization: nil.

250.10° 251.00° BASALT MASSIVE PORPHYRITIC FLOW
- Green, very fine-grained porphyritic textured, basaltic flows.
- The basaltic flow porphyritic texture is characterized by 2-3% scattered clots filled with white plagioclase. The clots range from 1-2 mm to 1x2.5 cm size.
- The unit is cut by 0.5% white calcite stringers/fractures.
- Structure: massive non foliated. RQD of 95%.
- 250.60 Black chlorite flow selvage (3 cm) at 60 to ca.
- Mineralization: nil.
<table>
<thead>
<tr>
<th>From (m)</th>
<th>To (m)</th>
<th>Pb (ppb)</th>
<th>Co (ppb)</th>
<th>Cu (%)</th>
<th>Ni (%)</th>
<th>Au (ppm)</th>
<th>Pt (ppm)</th>
<th>Pd (ppm)</th>
<th>Ag (ppm)</th>
<th>Cu (ppm)</th>
<th>Ni (ppm)</th>
<th>Zn (ppm)</th>
<th>Pb (ppm)</th>
<th>Co (ppm)</th>
<th>Cu (%)</th>
<th>Ni (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>251.00</td>
<td>END OF HOLE</td>
<td></td>
</tr>
</tbody>
</table>
Drill Hole Record

- **Drill Hole:** GA67-09
- **Project:** Abitibi East
- **Property:** East Extension
- **Claim:** 4214736
- **Northing:** N/A
- **Easting:** N/A
- **GPS Northing:** 5395655
- **GPS Easting:** 565291
- **Date Started:** September 16, 2009
- **Date Completed:** September 18, 2009
- **Drilled By:** Crites Drilling
- **Sample Type:** Cut Core
- **Analyses:** PM 30g FA, BM AA
- **Lab:** Expert
- **Sample Series:** No sample taken
- **Lab Report:** N/A

Core Description

<table>
<thead>
<tr>
<th>From (m)</th>
<th>To (m)</th>
<th>Geology Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.00</td>
<td>45.00</td>
<td>Overburden</td>
</tr>
<tr>
<td></td>
<td></td>
<td>45m Of nw casing, 1.5m of boulders in box #1.</td>
</tr>
<tr>
<td>45.00</td>
<td>57.60</td>
<td>Massive Basalt</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Dark green, fine grained, hard, weakly to moderately magnetic, massive.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Strongly calcite altered with red hematite staining as dots to pervasive alteration.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>RQD of 80%, moderate fracturing, 20, 40 and 60% degrees to core axis, chlorite with minor calcite fracture filling.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2-3% calcite-quartz +/- hematite stringers, multiple generations, a few tiny quartz veins.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Rare dull yellow-brown pyrite associated with stringers/ fractures.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>47.80 10cm, pink-white calcite-quartz vein at 30 degrees to core axis.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>47.90 25cm section of orange-brown limonite oxidized core, 0% RQD.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>57.60 26cm quartz +/- calcite and hematite, 0% degrees to core axis.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Lower contact at 70 degrees to core axis.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Basalt Pillowed</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Green-brown-grey, weakly bleached fine grained,</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sample From ° To °</th>
<th>L °</th>
<th>Au °</th>
<th>Pt °</th>
<th>Pd °</th>
<th>Ag °</th>
<th>Cu °</th>
<th>Ni °</th>
<th>Zn °</th>
<th>Pb °</th>
<th>Co °Cu (°)</th>
<th>Ni (°)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(m)</td>
<td>(m)</td>
<td>(m)</td>
<td>(m)</td>
<td>ppb °</td>
<td>ppb °</td>
<td>ppm °</td>
<td>ppm °</td>
<td>ppm °</td>
<td>ppm °</td>
<td>ppm °ppm °</td>
<td>ppm °</td>
</tr>
</tbody>
</table>

- Amygdaloidal (4-5%, white and clear quartz filled).
- 1 pillow selvage per 2-3m, hard, non magnetic.
- Sporadically altered with weak ankerite-sericite alteration and non to strongly calcite altered sections, some minor silicification.
- Good RQD of 85%, weak to moderately fractured core at various angles, 40-60 degrees to core axis.
- Chlorite and calcite filling locally.
- 2-3% Thin to irregular primarily calcite with some quartz and lesser chlorite stringers.
- Rare dull yellow-brown pyrite associated with stringers/ fractures.
- 57.90 32cm sheared, epidote altered section, possible ultra mafic (?), contacts at 60 degrees to core axis.
- 92.00 105.90 Weak to moderately ankerite-sericite bleached.
- 105.10 14cm sericite-ankerite-talc altered peridotite, contacts at 40 and 70 degrees to core axis.
- Lower contact at 80 degrees to core axis.

105.90° - 107.60° PERIDOTITE
- Green-yellow grey, moderately hard, non magnetic, massive.
- Weak sericite-talc and ankerite alteration.
- Good RQD of 85% with minor 60-70 degrees to core axis fracturing +/- chlorite-calcite.
- Rare dull yellow-brown pyrite associated with stringers/ fractures.
- 106.40 14cm bleached pillowed basalt from above unit, contacts at 30 and 60 degrees to core axis.
- Lower contact 65 degrees to core axis.

107.60° - 109.30° MAFIC INTRUSIVE (UNDIFFERENTIATED)
- Dark grey, very hard, pitted texture, non magnetic, fine grained, massive, possible volcanic.
- No reaction to hcl.
- Good RQD of 90% with 30-40 degrees to core axis fracturing +/- chlorite filling.
- No visible mineralization.
- 108.20 2x3cm sub rounded, bleached fragment.
- Lower contact at roughly 50 degrees to core axis, next unit has faulted upper contact.

109.30° - 113.20° PERIDOTITE
- Dark grey-blackish, fine grained, moderately hard, non magnetic with some local very weak remnant magnetism.
- Pervasively carbonate altered.
Fracturing at 30-50 degrees to core axis +/- 1-3% Irregular low angle calcite stringers.

109.30 Minor fault zone, faulted contact, 0% RQD, 15cm fault gouge material.

110.70 33cm milky white calcite veining at 0-10tca.

Gradual lower contact.

113.20 218.00° PERIDOTITE

Dark black, fine grained, pitted texture with remnant serpentine, hard, moderately magnetic.

Pervasive moderate green-yellow serpentinization, locally patchy, some weak sections.

Decent RQD of 65-70% with numerous sections of broken core.

Moderately fractured at various angles at 30, 40, and 45 degrees to core axis. Fractures are filled with 3-6mm wide yellow-green serpentine +/- calcite and red hematite specks.

Local weak to moderate calcite-serpentine healed brecciation.

1-2% Thin almost hairlike calcite +/- white serpentine (slightly fibrous) stringers at various angles, multiple generations.

No visible sulphide mineralization.

118.00 122.00 Moderately fractured, serpentinized, 5-10% serpentine filled fractures/ stringers, 0% rgd.

133.90 Possible fault marked by mushy core, 10cm or so.

148.40 151.70 Minor broken core, 70% rgd.

166.30 1cm wide gouge filled slip at.

165.00 Fractures remain abundantly filled by yellow-green serpentine but bluish talc mineral is becoming more prevalent in association with serpentine.

178.50 179.00 Broken core, 20% rgd.

188.00 193.00 Moderately broken core, 40% rgd.

193.00 193.60 Fault gouge, mushy core, 0% RQD, non-conductive.

209.00 210.00 Broken core, 80% rgd.

217.00 218.00 Broken core, 80% rgd.

218.00° END OF HOLE
Certificate of analysis

Date: 2009/09/15

Client: Intrinsic

Address: Kevin Montgomery

Folder: 25143

Your order number: RICKARD

Project: RICKARD

Total number of samples: 47

<table>
<thead>
<tr>
<th>Designation</th>
<th>Au DCP-1 ppb 5</th>
<th>Au-Dup DCP-1 ppb 5</th>
<th>Pt DCP-1 ppb 5</th>
<th>Pt-Dup DCP-1 ppb 5</th>
<th>Pd DCP-1 ppb 5</th>
<th>Pd-Dup DCP-1 ppb 5</th>
<th>Ag AAT-7 ppm 0.2</th>
<th>Ag-Dup AAT-7 ppm 0.2</th>
</tr>
</thead>
<tbody>
<tr>
<td>115559</td>
<td>7</td>
<td>6</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><0.2</td>
<td><0.2</td>
</tr>
<tr>
<td>115560</td>
<td>9</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><0.2</td>
<td><0.2</td>
</tr>
<tr>
<td>115561</td>
<td>6</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><0.2</td>
<td><0.2</td>
</tr>
<tr>
<td>115562</td>
<td>14</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><0.2</td>
<td><0.2</td>
</tr>
<tr>
<td>115563</td>
<td>6</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><0.2</td>
<td><0.2</td>
</tr>
<tr>
<td>115564</td>
<td>6</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><0.2</td>
<td><0.2</td>
</tr>
<tr>
<td>115565</td>
<td>5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><0.2</td>
<td><0.2</td>
</tr>
<tr>
<td>115566</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><0.2</td>
<td><0.2</td>
</tr>
<tr>
<td>115567</td>
<td>20</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><0.2</td>
<td><0.2</td>
</tr>
<tr>
<td>115568</td>
<td>9</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><0.2</td>
<td><0.2</td>
</tr>
<tr>
<td>115569</td>
<td>6</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><0.2</td>
<td><0.2</td>
</tr>
<tr>
<td>115570</td>
<td>5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><0.2</td>
<td><0.2</td>
</tr>
<tr>
<td>115571</td>
<td>8</td>
<td>6</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><0.2</td>
<td><0.2</td>
</tr>
<tr>
<td>115572</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><0.2</td>
<td><0.2</td>
</tr>
<tr>
<td>115573</td>
<td>6</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><0.2</td>
<td><0.2</td>
</tr>
<tr>
<td>115574</td>
<td>12</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><0.2</td>
<td><0.2</td>
</tr>
<tr>
<td>115575</td>
<td>14</td>
<td>78</td>
<td>81</td>
<td>0.9</td>
<td>0.9</td>
<td>0.9</td>
<td>0.9</td>
<td>0.9</td>
</tr>
<tr>
<td>115576</td>
<td>26</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><0.2</td>
<td><0.2</td>
</tr>
<tr>
<td>115577</td>
<td>11</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><0.2</td>
<td><0.2</td>
</tr>
<tr>
<td>115578</td>
<td>11</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><0.2</td>
<td><0.2</td>
</tr>
</tbody>
</table>

Joe Landers, Manager
Certificate of analysis

Client: Intrinsic
Addressee: Kevin Montgomery
Folder number: 25143

Your order number: RICKARD

Total number of samples: 47

<table>
<thead>
<tr>
<th>Designation</th>
<th>Au DCP-1 ppb</th>
<th>Au-Dup DCP-1 ppb</th>
<th>Pt DCP-1 ppb</th>
<th>Pt-Dup DCP-1 ppb</th>
<th>Pd DCP-1 ppb</th>
<th>Pd-Dup DCP-1 ppb</th>
<th>Ag AAT-7 ppm</th>
<th>Ag-Dup AAT-7 ppm</th>
</tr>
</thead>
<tbody>
<tr>
<td>115579</td>
<td>12</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><0.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>115580</td>
<td>15</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><0.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>115581</td>
<td>6</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><0.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>115582</td>
<td>21</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><0.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>115583</td>
<td>8</td>
<td>7</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><0.2</td>
<td><0.2</td>
</tr>
<tr>
<td>115584</td>
<td>12</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><0.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>115585</td>
<td>11</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><0.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>115586</td>
<td>9</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><0.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>115587</td>
<td>13</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><0.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>115588</td>
<td>24</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><0.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>115589</td>
<td>9</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><0.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>115590</td>
<td>11</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><0.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>115591</td>
<td>13</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><0.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>115592</td>
<td>7</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><0.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>115593</td>
<td>5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><0.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>115594</td>
<td>17</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><0.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>115595</td>
<td>8</td>
<td>5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><0.2</td>
<td><0.2</td>
</tr>
<tr>
<td>115596</td>
<td>59</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><0.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>115597</td>
<td>11</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><0.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>115598</td>
<td>15</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><0.2</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
*** Certificate of analysis ***

Client: Intrinsic
Addressee: Kevin Montgomery
Folder: 25143
Your order number: RICKARD
Project: RICKARD
Total number of samples: 47

<table>
<thead>
<tr>
<th>Designation</th>
<th>Au DCP-1 ppb</th>
<th>Au-Dup DCP-1 ppb</th>
<th>Pt DCP-1 ppb</th>
<th>Pt-Dup DCP-1 ppb</th>
<th>Pd DCP-1 ppb</th>
<th>Pd-Dup DCP-1 ppb</th>
<th>Ag AAT-7 ppm</th>
<th>Ag-Dup AAT-7 ppm</th>
</tr>
</thead>
<tbody>
<tr>
<td>115599</td>
<td>10</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><0.2</td>
<td><0.2</td>
</tr>
<tr>
<td>115600</td>
<td>6</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><0.2</td>
<td><0.2</td>
</tr>
<tr>
<td>115651</td>
<td>8</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><0.2</td>
<td><0.2</td>
</tr>
<tr>
<td>115652</td>
<td>7</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><0.2</td>
<td><0.2</td>
</tr>
<tr>
<td>115653</td>
<td>10</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><0.2</td>
<td><0.2</td>
</tr>
<tr>
<td>115654</td>
<td>8</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><0.2</td>
<td><0.2</td>
</tr>
<tr>
<td>115655</td>
<td>16</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><0.2</td>
<td><0.2</td>
</tr>
</tbody>
</table>
Certificate of analysis

Laboratoire Expert Inc.
127, Boulevard Industriel
Rouyn-Noranda, Québec
Canada, J9X 6P2
Telephone : (819) 762-7100, Fax : (819) 762-7510

Client: Intrinsic
Addressee: Kevin Montgomery

Folder: 25143
Your order number:
Project: RICKARD
Total number of samples: 47

<table>
<thead>
<tr>
<th>Designation</th>
<th>Cu AAT-7 ppm</th>
<th>Cu-Dup AAT-7 ppm</th>
<th>Ni AAT-7 ppm</th>
<th>Ni-Dup AAT-7 ppm</th>
<th>Zn AAT-7 ppm</th>
<th>Zn-Dup AAT-7 ppm</th>
<th>Pb AAT-7 ppm</th>
<th>Pb-Dup AAT-7 ppm</th>
</tr>
</thead>
<tbody>
<tr>
<td>115559</td>
<td>99</td>
<td>94</td>
<td>35</td>
<td>33</td>
<td>35</td>
<td>34</td>
<td>11</td>
<td>11</td>
</tr>
<tr>
<td>115560</td>
<td>165</td>
<td>39</td>
<td>35</td>
<td>31</td>
<td>12</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>115561</td>
<td>219</td>
<td>40</td>
<td>35</td>
<td>13</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>115562</td>
<td>198</td>
<td>41</td>
<td>30</td>
<td>12</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>115563</td>
<td>138</td>
<td>35</td>
<td>58</td>
<td>16</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>115564</td>
<td>136</td>
<td>49</td>
<td>81</td>
<td>24</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>115565</td>
<td>144</td>
<td>51</td>
<td>448</td>
<td>22</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>115566</td>
<td>131</td>
<td>49</td>
<td>107</td>
<td>24</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>115567</td>
<td>178</td>
<td>44</td>
<td>74</td>
<td>19</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>115568</td>
<td>107</td>
<td>40</td>
<td>97</td>
<td>15</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>115569</td>
<td>53</td>
<td>28</td>
<td>55</td>
<td>12</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>115570</td>
<td>94</td>
<td>27</td>
<td>54</td>
<td>12</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>115571</td>
<td>148</td>
<td>146</td>
<td>36</td>
<td>43</td>
<td>12</td>
<td>12</td>
<td></td>
<td></td>
</tr>
<tr>
<td>115572</td>
<td>78</td>
<td>30</td>
<td>37</td>
<td>11</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>115573</td>
<td>74</td>
<td>34</td>
<td>32</td>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>115574</td>
<td>250</td>
<td>44</td>
<td>43</td>
<td>13</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>115575</td>
<td>1760</td>
<td>>DL</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>92</td>
<td>58</td>
</tr>
<tr>
<td>115576</td>
<td>84</td>
<td>75</td>
<td>30</td>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>115577</td>
<td>125</td>
<td>33</td>
<td>33</td>
<td>11</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>115578</td>
<td>90</td>
<td>34</td>
<td>27</td>
<td>9</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

>DL: Value greater than detection limit
<table>
<thead>
<tr>
<th>Designation</th>
<th>Cu AAT-7 ppm 2</th>
<th>Cu-Dup AAT-7 ppm 2</th>
<th>Ni AAT-7 ppm 2</th>
<th>Ni-Dup AAT-7 ppm 2</th>
<th>Zn AAT-7 ppm 2</th>
<th>Zn-Dup AAT-7 ppm 2</th>
<th>Pb AAT-7 ppm 2</th>
<th>Pb-Dup AAT-7 ppm 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>115579</td>
<td>74</td>
<td></td>
<td>35</td>
<td></td>
<td>29</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>115580</td>
<td>80</td>
<td></td>
<td>33</td>
<td></td>
<td>26</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>115581</td>
<td>76</td>
<td></td>
<td>34</td>
<td></td>
<td>36</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>115582</td>
<td>32</td>
<td></td>
<td>23</td>
<td></td>
<td>26</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>115583</td>
<td>50</td>
<td>49</td>
<td>34</td>
<td>34</td>
<td>35</td>
<td></td>
<td>35</td>
<td></td>
</tr>
<tr>
<td>115584</td>
<td>52</td>
<td></td>
<td>35</td>
<td></td>
<td>73</td>
<td></td>
<td></td>
<td>11</td>
</tr>
<tr>
<td>115585</td>
<td>35</td>
<td></td>
<td>32</td>
<td></td>
<td>76</td>
<td></td>
<td></td>
<td>11</td>
</tr>
<tr>
<td>115586</td>
<td>57</td>
<td></td>
<td>31</td>
<td></td>
<td>34</td>
<td></td>
<td></td>
<td>11</td>
</tr>
<tr>
<td>115587</td>
<td>74</td>
<td></td>
<td>34</td>
<td></td>
<td>44</td>
<td></td>
<td></td>
<td>12</td>
</tr>
<tr>
<td>115588</td>
<td>62</td>
<td></td>
<td>38</td>
<td></td>
<td>38</td>
<td></td>
<td></td>
<td>12</td>
</tr>
<tr>
<td>115589</td>
<td>60</td>
<td></td>
<td>39</td>
<td></td>
<td>36</td>
<td></td>
<td></td>
<td>12</td>
</tr>
<tr>
<td>115590</td>
<td>134</td>
<td></td>
<td>37</td>
<td></td>
<td>31</td>
<td></td>
<td></td>
<td>14</td>
</tr>
<tr>
<td>115591</td>
<td>61</td>
<td></td>
<td>35</td>
<td></td>
<td>43</td>
<td></td>
<td></td>
<td>16</td>
</tr>
<tr>
<td>115592</td>
<td>185</td>
<td></td>
<td>47</td>
<td></td>
<td>56</td>
<td></td>
<td></td>
<td>23</td>
</tr>
<tr>
<td>115593</td>
<td>203</td>
<td></td>
<td>52</td>
<td></td>
<td>186</td>
<td></td>
<td></td>
<td>28</td>
</tr>
<tr>
<td>115594</td>
<td>194</td>
<td></td>
<td>50</td>
<td></td>
<td>2776</td>
<td></td>
<td></td>
<td>34</td>
</tr>
<tr>
<td>115595</td>
<td>117</td>
<td>118</td>
<td>51</td>
<td>51</td>
<td>426</td>
<td></td>
<td>461</td>
<td>32</td>
</tr>
<tr>
<td>115596</td>
<td>132</td>
<td></td>
<td>52</td>
<td></td>
<td>162</td>
<td></td>
<td></td>
<td>35</td>
</tr>
<tr>
<td>115597</td>
<td>121</td>
<td></td>
<td>46</td>
<td></td>
<td>64</td>
<td></td>
<td></td>
<td>38</td>
</tr>
<tr>
<td>115598</td>
<td>125</td>
<td></td>
<td>49</td>
<td></td>
<td>38</td>
<td></td>
<td></td>
<td>37</td>
</tr>
</tbody>
</table>
Client: Intrinsic

Addressee: Kevin Montgomery

Folder: 25143

Project: RICKARD

Total number of samples: 47

<table>
<thead>
<tr>
<th>Designation</th>
<th>Cu AAT-7 ppm 2</th>
<th>Cu-Dup AAT-7 ppm 2</th>
<th>Ni AAT-7 ppm 2</th>
<th>Ni-Dup AAT-7 ppm 2</th>
<th>Zn AAT-7 ppm 2</th>
<th>Zn-Dup AAT-7 ppm 2</th>
<th>Pb AAT-7 ppm 2</th>
<th>Pb-Dup AAT-7 ppm 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>115599</td>
<td>138</td>
<td></td>
<td>56</td>
<td></td>
<td>48</td>
<td></td>
<td>50</td>
<td></td>
</tr>
<tr>
<td>115600</td>
<td>64</td>
<td></td>
<td>30</td>
<td></td>
<td>19</td>
<td></td>
<td>24</td>
<td></td>
</tr>
<tr>
<td>115651</td>
<td>96</td>
<td></td>
<td>44</td>
<td></td>
<td>71</td>
<td></td>
<td>21</td>
<td></td>
</tr>
<tr>
<td>115652</td>
<td>234</td>
<td></td>
<td>113</td>
<td></td>
<td>856</td>
<td></td>
<td>28</td>
<td></td>
</tr>
<tr>
<td>115653</td>
<td>41</td>
<td></td>
<td>27</td>
<td></td>
<td>240</td>
<td></td>
<td>13</td>
<td></td>
</tr>
<tr>
<td>115654</td>
<td>69</td>
<td></td>
<td>15</td>
<td></td>
<td>181</td>
<td></td>
<td>11</td>
<td></td>
</tr>
<tr>
<td>115655</td>
<td>77</td>
<td></td>
<td>25</td>
<td></td>
<td>429</td>
<td></td>
<td>11</td>
<td></td>
</tr>
</tbody>
</table>
Certificate of analysis

Date: 2009/09/15

Client: Intrinsic
Addressee: Kevin Montgomery
Folder: 25143
Your order number:
Project: RICKARD
Total number of samples: 47

<table>
<thead>
<tr>
<th>Designation</th>
<th>Co AAT-7 ppm</th>
<th>Co-Dup AAT-7 ppm</th>
<th>Ni AAT-8 ppm</th>
</tr>
</thead>
<tbody>
<tr>
<td>115559</td>
<td>29</td>
<td></td>
<td>28</td>
</tr>
<tr>
<td>115560</td>
<td>34</td>
<td></td>
<td></td>
</tr>
<tr>
<td>115561</td>
<td>37</td>
<td></td>
<td></td>
</tr>
<tr>
<td>115562</td>
<td>46</td>
<td></td>
<td></td>
</tr>
<tr>
<td>115563</td>
<td>38</td>
<td></td>
<td></td>
</tr>
<tr>
<td>115564</td>
<td>44</td>
<td></td>
<td></td>
</tr>
<tr>
<td>115565</td>
<td>34</td>
<td></td>
<td></td>
</tr>
<tr>
<td>115566</td>
<td>52</td>
<td></td>
<td></td>
</tr>
<tr>
<td>115567</td>
<td>51</td>
<td></td>
<td></td>
</tr>
<tr>
<td>115568</td>
<td>42</td>
<td></td>
<td></td>
</tr>
<tr>
<td>115569</td>
<td>28</td>
<td></td>
<td></td>
</tr>
<tr>
<td>115570</td>
<td>26</td>
<td></td>
<td></td>
</tr>
<tr>
<td>115571</td>
<td>30</td>
<td></td>
<td>28</td>
</tr>
<tr>
<td>115572</td>
<td>28</td>
<td></td>
<td></td>
</tr>
<tr>
<td>115573</td>
<td>24</td>
<td></td>
<td></td>
</tr>
<tr>
<td>115574</td>
<td>43</td>
<td></td>
<td></td>
</tr>
<tr>
<td>115575</td>
<td>394</td>
<td>1.980</td>
<td></td>
</tr>
<tr>
<td>115576</td>
<td>26</td>
<td></td>
<td></td>
</tr>
<tr>
<td>115577</td>
<td>30</td>
<td></td>
<td></td>
</tr>
<tr>
<td>115578</td>
<td>32</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Certificate of analysis

Laboratoire Expert Inc.

127, Boulevard Industriel
Rouyn-Noranda, Québec
Canada, J9X 6P2

Telephone : (819) 762-7100, Fax : (819) 762-7510

Client : Intrinsic

Addressee : Kevin Montgomery

Folder : 25143

Your order number :

Project : RICKARD

Total number of samples : 47

<table>
<thead>
<tr>
<th>Designation</th>
<th>Co AAT-7 ppm</th>
<th>Co-Dup AAT-7 ppm</th>
<th>Ni AAT-8 ppm</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2</td>
<td>2</td>
<td>0.010</td>
</tr>
<tr>
<td>115579</td>
<td>32</td>
<td></td>
<td></td>
</tr>
<tr>
<td>115580</td>
<td>30</td>
<td></td>
<td></td>
</tr>
<tr>
<td>115581</td>
<td>34</td>
<td></td>
<td></td>
</tr>
<tr>
<td>115582</td>
<td>19</td>
<td></td>
<td></td>
</tr>
<tr>
<td>115583</td>
<td>26</td>
<td>25</td>
<td></td>
</tr>
<tr>
<td>115584</td>
<td>23</td>
<td></td>
<td></td>
</tr>
<tr>
<td>115585</td>
<td>25</td>
<td></td>
<td></td>
</tr>
<tr>
<td>115586</td>
<td>27</td>
<td></td>
<td></td>
</tr>
<tr>
<td>115587</td>
<td>33</td>
<td></td>
<td></td>
</tr>
<tr>
<td>115588</td>
<td>33</td>
<td></td>
<td></td>
</tr>
<tr>
<td>115589</td>
<td>33</td>
<td></td>
<td></td>
</tr>
<tr>
<td>115590</td>
<td>45</td>
<td></td>
<td></td>
</tr>
<tr>
<td>115591</td>
<td>33</td>
<td></td>
<td></td>
</tr>
<tr>
<td>115592</td>
<td>53</td>
<td></td>
<td></td>
</tr>
<tr>
<td>115593</td>
<td>57</td>
<td></td>
<td></td>
</tr>
<tr>
<td>115594</td>
<td>64</td>
<td></td>
<td></td>
</tr>
<tr>
<td>115595</td>
<td>58</td>
<td>57</td>
<td></td>
</tr>
<tr>
<td>115596</td>
<td>51</td>
<td></td>
<td></td>
</tr>
<tr>
<td>115597</td>
<td>51</td>
<td></td>
<td></td>
</tr>
<tr>
<td>115598</td>
<td>53</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Client: **Intrinsic**

Addressee: **Kevin Montgomery**

Folder: **25143**
Your order number: **RICKARD**
Project: **RICKARD**
Total number of samples: **47**

<table>
<thead>
<tr>
<th>Designation</th>
<th>Co AAT-7 ppm</th>
<th>Co-Dup AAT-7 ppm</th>
<th>Ni AAT-8 %</th>
</tr>
</thead>
<tbody>
<tr>
<td>115599</td>
<td></td>
<td>60</td>
<td></td>
</tr>
<tr>
<td>115600</td>
<td>24</td>
<td></td>
<td></td>
</tr>
<tr>
<td>115651</td>
<td>32</td>
<td></td>
<td></td>
</tr>
<tr>
<td>115652</td>
<td>55</td>
<td></td>
<td></td>
</tr>
<tr>
<td>115653</td>
<td>14</td>
<td></td>
<td></td>
</tr>
<tr>
<td>115654</td>
<td>11</td>
<td></td>
<td></td>
</tr>
<tr>
<td>115655</td>
<td>12</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Certificate of analysis

Laboratoire Expert Inc.
127, Boulevard Industriel
Rouyn-Noranda, Québec
Canada, J9X 6P2
Telephone : (819) 762-7100, Fax : (819) 762-7510

Client : Intrinsic
Addressee : Darlene Wojtczak
Folder : 25201
Your order number :
Project : ABITIBI EAST
Total number of samples : 27

<table>
<thead>
<tr>
<th>Designation</th>
<th>Au DCP-1 (ppb)</th>
<th>Au-Dap DCP-1 (ppb)</th>
<th>Pt DCP-1 (ppb)</th>
<th>Pt-Dap DCP-1 (ppb)</th>
<th>Pd DCP-1 (ppb)</th>
<th>Pd-Dap DCP-1 (ppb)</th>
<th>Ag AAT-7 (ppm)</th>
<th>Ag-Dap AAT-7 (ppm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>115720</td>
<td>170</td>
<td>180</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><0.2</td>
<td><0.2</td>
</tr>
<tr>
<td>115721</td>
<td>115</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><0.2</td>
<td><0.2</td>
</tr>
<tr>
<td>115722</td>
<td>65</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><0.2</td>
<td><0.2</td>
</tr>
<tr>
<td>115723</td>
<td>18</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><0.2</td>
<td><0.2</td>
</tr>
<tr>
<td>115724</td>
<td>62</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><0.2</td>
<td><0.2</td>
</tr>
<tr>
<td>115725</td>
<td>254</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><0.2</td>
<td>0.8</td>
</tr>
<tr>
<td>115726</td>
<td>56</td>
<td>7</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td><0.2</td>
<td><0.2</td>
</tr>
<tr>
<td>115727</td>
<td>35</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><0.2</td>
<td><0.2</td>
</tr>
<tr>
<td>115728</td>
<td>32</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><0.2</td>
<td><0.2</td>
</tr>
<tr>
<td>115729</td>
<td>19</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><0.2</td>
<td><0.2</td>
</tr>
<tr>
<td>115730</td>
<td>27</td>
<td>6</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><0.2</td>
<td><0.2</td>
</tr>
<tr>
<td>115731</td>
<td>17</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><0.2</td>
<td><0.2</td>
</tr>
<tr>
<td>115732</td>
<td>14</td>
<td>16</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><0.2</td>
<td><0.2</td>
</tr>
<tr>
<td>115733</td>
<td>20</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><0.2</td>
<td><0.2</td>
</tr>
<tr>
<td>115734</td>
<td>11</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><0.2</td>
<td><0.2</td>
</tr>
<tr>
<td>115735</td>
<td>13</td>
<td>5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><0.2</td>
<td><0.2</td>
</tr>
<tr>
<td>115736</td>
<td>7</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><0.2</td>
<td><0.2</td>
</tr>
<tr>
<td>115737</td>
<td>5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><0.2</td>
<td><0.2</td>
</tr>
<tr>
<td>115738</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><0.2</td>
<td><0.2</td>
</tr>
<tr>
<td>115739</td>
<td>6</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><0.2</td>
<td><0.2</td>
</tr>
</tbody>
</table>

Joe Landers, Manager
Certificate of analysis

Date: 2009/09/22
Page: 2 of 6

Client: Intrinsic
Addressee: Darlene Wojtczak

Folder: 25201
Your order number:
Project: ABITIBI EAST

Total number of samples: 27

<table>
<thead>
<tr>
<th>Designation</th>
<th>Au DCP-1 ppb</th>
<th>Au-Dup DCP-1 ppb</th>
<th>Pt DCP-1 ppb</th>
<th>Pt-Dup DCP-1 ppb</th>
<th>Pd DCP-1 ppb</th>
<th>Pd-Dup DCP-1 ppb</th>
<th>Ag AAT-7 ppm</th>
<th>Ag-Dup AAT-7 ppm</th>
</tr>
</thead>
<tbody>
<tr>
<td>115740</td>
<td>6</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><0.2</td>
<td></td>
</tr>
<tr>
<td>115741</td>
<td>5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><0.2</td>
<td></td>
</tr>
<tr>
<td>115742</td>
<td>8</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><0.2</td>
<td></td>
</tr>
<tr>
<td>115743</td>
<td>16</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><0.2</td>
<td></td>
</tr>
<tr>
<td>115744</td>
<td>12</td>
<td>11</td>
<td>9</td>
<td>7</td>
<td>5</td>
<td>6</td>
<td><0.2</td>
<td><0.2</td>
</tr>
<tr>
<td>115745</td>
<td>5</td>
<td>7</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><0.2</td>
<td></td>
</tr>
<tr>
<td>115746</td>
<td>19</td>
<td>11</td>
<td>7</td>
<td>7</td>
<td>7</td>
<td></td>
<td><0.2</td>
<td></td>
</tr>
</tbody>
</table>
Certificate of analysis

Date: 2009/09/22

Client: Intrinsic

Addressee: Darlene Wojtczak

Folder: 25201

Your order number: 3 of 6

Project: ABITIBI EAST

Total number of samples: 27

<table>
<thead>
<tr>
<th>Designation</th>
<th>Cu AAT-7 ppm 2</th>
<th>Cu-Dup AAT-7 ppm 2</th>
<th>Ni AAT-7 ppm 2</th>
<th>Ni-Dup AAT-7 ppm 2</th>
<th>Zn AAT-7 ppm 2</th>
<th>Zn-Dup AAT-7 ppm 2</th>
<th>Pb AAT-7 ppm 2</th>
<th>Pb-Dup AAT-7 ppm 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>115720</td>
<td>151</td>
<td>148</td>
<td>130</td>
<td>132</td>
<td>102</td>
<td>100</td>
<td>20</td>
<td>19</td>
</tr>
<tr>
<td>115721</td>
<td>82</td>
<td>86</td>
<td>90</td>
<td>97</td>
<td>17</td>
<td>17</td>
<td>17</td>
<td>17</td>
</tr>
<tr>
<td>115722</td>
<td>155</td>
<td>150</td>
<td>173</td>
<td>98</td>
<td>13</td>
<td>22</td>
<td>13</td>
<td>13</td>
</tr>
<tr>
<td>115724</td>
<td>65</td>
<td>80</td>
<td>17</td>
<td>17</td>
<td>15</td>
<td>13</td>
<td>16</td>
<td>16</td>
</tr>
<tr>
<td>115725</td>
<td>63</td>
<td>22</td>
<td>64</td>
<td>64</td>
<td>15</td>
<td>16</td>
<td>16</td>
<td>16</td>
</tr>
<tr>
<td>115726</td>
<td>98</td>
<td>628</td>
<td>59</td>
<td>59</td>
<td>15</td>
<td>16</td>
<td>16</td>
<td>16</td>
</tr>
<tr>
<td>115727</td>
<td>155</td>
<td>155</td>
<td>96</td>
<td>96</td>
<td>13</td>
<td>13</td>
<td>20</td>
<td>20</td>
</tr>
<tr>
<td>115728</td>
<td>159</td>
<td>152</td>
<td>159</td>
<td>159</td>
<td>13</td>
<td>13</td>
<td>15</td>
<td>15</td>
</tr>
<tr>
<td>115729</td>
<td>137</td>
<td>108</td>
<td>49</td>
<td>49</td>
<td>13</td>
<td>13</td>
<td>20</td>
<td>20</td>
</tr>
<tr>
<td>115731</td>
<td>275</td>
<td>72</td>
<td>161</td>
<td>161</td>
<td>13</td>
<td>13</td>
<td>17</td>
<td>17</td>
</tr>
<tr>
<td>115732</td>
<td>187</td>
<td>116</td>
<td>14</td>
<td>14</td>
<td>15</td>
<td>15</td>
<td>15</td>
<td>15</td>
</tr>
<tr>
<td>115733</td>
<td>87</td>
<td>88</td>
<td>88</td>
<td>88</td>
<td>13</td>
<td>13</td>
<td>13</td>
<td>13</td>
</tr>
<tr>
<td>115734</td>
<td>38</td>
<td>65</td>
<td>49</td>
<td>49</td>
<td>15</td>
<td>15</td>
<td>15</td>
<td>15</td>
</tr>
<tr>
<td>115735</td>
<td>317</td>
<td>272</td>
<td>75</td>
<td>75</td>
<td>15</td>
<td>15</td>
<td>20</td>
<td>20</td>
</tr>
<tr>
<td>115736</td>
<td>168</td>
<td>83</td>
<td>75</td>
<td>75</td>
<td>15</td>
<td>15</td>
<td>16</td>
<td>16</td>
</tr>
<tr>
<td>115737</td>
<td>149</td>
<td>91</td>
<td>94</td>
<td>94</td>
<td>15</td>
<td>15</td>
<td>16</td>
<td>16</td>
</tr>
<tr>
<td>115738</td>
<td>153</td>
<td>73</td>
<td>100</td>
<td>100</td>
<td>15</td>
<td>15</td>
<td>17</td>
<td>17</td>
</tr>
<tr>
<td>115739</td>
<td>110</td>
<td>78</td>
<td>88</td>
<td>88</td>
<td>15</td>
<td>15</td>
<td>16</td>
<td>16</td>
</tr>
</tbody>
</table>
Client : **Intrinsic**

Addressee : Darlene Wojtczak

Date : 2009/09/22

Folder : 25201

Your order number : ABITIBI EAST

Project : ABITIBI EAST

Total number of samples : 27

<table>
<thead>
<tr>
<th>Designation</th>
<th>Cu AAT-7 ppm</th>
<th>Cu-Dop AAT-7 ppm</th>
<th>Ni AAT-7 ppm</th>
<th>Ni-Dop AAT-7 ppm</th>
<th>Zn AAT-7 ppm</th>
<th>Zn-Dop AAT-7 ppm</th>
<th>Pb AAT-7 ppm</th>
<th>Pb-Dop AAT-7 ppm</th>
</tr>
</thead>
<tbody>
<tr>
<td>115740</td>
<td>136</td>
<td>82</td>
<td>106</td>
<td>16</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>115741</td>
<td>135</td>
<td>77</td>
<td>124</td>
<td>18</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>115742</td>
<td>44</td>
<td>25</td>
<td>56</td>
<td>11</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>115743</td>
<td>41</td>
<td>25</td>
<td>60</td>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>115744</td>
<td>97</td>
<td>100</td>
<td>360</td>
<td>129</td>
<td>127</td>
<td>15</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>115745</td>
<td>127</td>
<td>264</td>
<td>94</td>
<td>16</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>115746</td>
<td>130</td>
<td>505</td>
<td>66</td>
<td>16</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Client : Intrinsic

Addressee : Darlene Wojtczak

Folder : 25201

Your order number :

Project : ABITIBI EAST

Total number of samples : 27

<table>
<thead>
<tr>
<th>Designation</th>
<th>Co AAT-7 ppm</th>
<th>Co-Dop AAT-7 ppm</th>
</tr>
</thead>
<tbody>
<tr>
<td>115720</td>
<td>45</td>
<td>47</td>
</tr>
<tr>
<td>115721</td>
<td>33</td>
<td></td>
</tr>
<tr>
<td>115722</td>
<td>44</td>
<td></td>
</tr>
<tr>
<td>115723</td>
<td>50</td>
<td></td>
</tr>
<tr>
<td>115724</td>
<td>22</td>
<td></td>
</tr>
<tr>
<td>115725</td>
<td>81</td>
<td></td>
</tr>
<tr>
<td>115726</td>
<td>51</td>
<td></td>
</tr>
<tr>
<td>115727</td>
<td>31</td>
<td></td>
</tr>
<tr>
<td>115728</td>
<td>42</td>
<td></td>
</tr>
<tr>
<td>115729</td>
<td>50</td>
<td></td>
</tr>
<tr>
<td>115730</td>
<td>31</td>
<td></td>
</tr>
<tr>
<td>115731</td>
<td>55</td>
<td></td>
</tr>
<tr>
<td>115732</td>
<td>39</td>
<td>39</td>
</tr>
<tr>
<td>115733</td>
<td>23</td>
<td></td>
</tr>
<tr>
<td>115734</td>
<td>22</td>
<td></td>
</tr>
<tr>
<td>115735</td>
<td>51</td>
<td></td>
</tr>
<tr>
<td>115736</td>
<td>45</td>
<td></td>
</tr>
<tr>
<td>115737</td>
<td>45</td>
<td></td>
</tr>
<tr>
<td>115738</td>
<td>43</td>
<td></td>
</tr>
<tr>
<td>115739</td>
<td>44</td>
<td></td>
</tr>
</tbody>
</table>
Laboratoire Expert Inc.
127, Boulevard Industriel
Rouyn-Noranda, Québec
Canada, J9X 6P2
Telephone : (819) 762-7100, Fax : (819) 762-7510

Certificate of analysis

Date : 2009/09/22

Client : Intrinsic

Addressee : Darlene Wojtczak

Folder : 25201

Your order number :

Project : ABITIBI EAST

Total number of samples : 27

<table>
<thead>
<tr>
<th>Designation</th>
<th>Co AAT-7 ppm 2</th>
<th>Co-Dop AAT-7 ppm 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>115740</td>
<td>45</td>
<td></td>
</tr>
<tr>
<td>115741</td>
<td>46</td>
<td></td>
</tr>
<tr>
<td>115742</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>115743</td>
<td>19</td>
<td></td>
</tr>
<tr>
<td>115744</td>
<td>43</td>
<td>43</td>
</tr>
<tr>
<td>115745</td>
<td>36</td>
<td></td>
</tr>
<tr>
<td>115746</td>
<td>53</td>
<td></td>
</tr>
</tbody>
</table>
Certificate of analysis

Date: 2009/09/22
Page: 1 of 12

Client: Intrinsic

Addressee: Darlene Wojtczak

Folder: 25202
Your order number:
Project: RICKARD
Total number of samples: 64

<table>
<thead>
<tr>
<th>Designation</th>
<th>Au FA-GRAV (g/t)</th>
<th>Au DCP-1 (ppb)</th>
<th>Au-DAP DCP-1 (ppb)</th>
<th>Pt DCP-1 (ppb)</th>
<th>Pt-DAP DCP-1 (ppb)</th>
<th>Pd DCP-1 (ppb)</th>
<th>Pd-DAP DCP-1 (ppb)</th>
<th>Ag AAT-7 (ppm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>115656</td>
<td>8</td>
<td>10</td>
<td>6</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><0.2</td>
</tr>
<tr>
<td>115657</td>
<td>5</td>
<td><5</td>
<td>7</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><0.2</td>
</tr>
<tr>
<td>115658</td>
<td>7</td>
<td>7</td>
<td>7</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><0.2</td>
</tr>
<tr>
<td>115659</td>
<td>8</td>
<td>8</td>
<td>7</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><0.2</td>
</tr>
<tr>
<td>115660</td>
<td>9</td>
<td>6</td>
<td>6</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><0.2</td>
</tr>
<tr>
<td>115661</td>
<td>6</td>
<td>6</td>
<td>5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><0.2</td>
</tr>
<tr>
<td>115662</td>
<td>8</td>
<td><5</td>
<td>5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><0.2</td>
</tr>
<tr>
<td>115663</td>
<td>5</td>
<td><5</td>
<td>6</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><0.2</td>
</tr>
<tr>
<td>115664</td>
<td>6</td>
<td><5</td>
<td>5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><0.2</td>
</tr>
<tr>
<td>115665</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><0.2</td>
</tr>
<tr>
<td>115666</td>
<td>17</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><0.2</td>
</tr>
<tr>
<td>115667</td>
<td>9</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><0.2</td>
</tr>
<tr>
<td>115668</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><0.2</td>
</tr>
<tr>
<td>115669</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><0.2</td>
</tr>
<tr>
<td>115670</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><0.2</td>
</tr>
<tr>
<td>115671</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><0.2</td>
</tr>
<tr>
<td>115672</td>
<td>29</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><0.2</td>
</tr>
<tr>
<td>115673</td>
<td>5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><0.2</td>
</tr>
<tr>
<td>115674</td>
<td>26</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><0.2</td>
</tr>
<tr>
<td>115675</td>
<td>2.09</td>
<td>1972</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td>0.8</td>
</tr>
</tbody>
</table>

Joe Landers, Manager
Certificate of analysis

Laboratoire Expert Inc.
127, Boulevard Industriel
Rouyn-Noranda, Québec
Canada, J9X 6P2
Telephone : (819) 762-7100, Fax : (819) 762-7510

- **Client**: Intrinsic
- **Addressee**: Darlene Wojtczak
- **Folder**: 25202
- **Your order number**: RICKARD
- **Project**: RICKARD
- **Total number of samples**: 64

<table>
<thead>
<tr>
<th>Designation</th>
<th>Au FA-GRAV g/l 0.03</th>
<th>Au DCP-1 ppb 5</th>
<th>Au-Dap DCP-1 ppb 5</th>
<th>Pt DCP-1 ppb 5</th>
<th>Pt-Dap DCP-1 ppb 5</th>
<th>Pd DCP-1 ppb 5</th>
<th>Pd-Dap DCP-1 ppb 5</th>
<th>Ag AAT-7 ppm 0.2</th>
</tr>
</thead>
<tbody>
<tr>
<td>115676</td>
<td></td>
<td>12</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td>9</td>
<td><0.2</td>
</tr>
<tr>
<td>115677</td>
<td></td>
<td>6</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td>12</td>
<td><0.2</td>
</tr>
<tr>
<td>115678</td>
<td></td>
<td>7</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td>12</td>
<td><0.2</td>
</tr>
<tr>
<td>115679</td>
<td></td>
<td>11</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td>6</td>
<td><0.2</td>
</tr>
<tr>
<td>115680</td>
<td></td>
<td>14</td>
<td>14</td>
<td>8</td>
<td>10</td>
<td>9</td>
<td>10</td>
<td><0.2</td>
</tr>
<tr>
<td>115681</td>
<td></td>
<td>7</td>
<td>13</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>12</td>
<td><0.2</td>
</tr>
<tr>
<td>115682</td>
<td></td>
<td>26</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td>5</td>
<td><0.2</td>
</tr>
<tr>
<td>115683</td>
<td></td>
<td>24</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td>5</td>
<td><0.2</td>
</tr>
<tr>
<td>115684</td>
<td></td>
<td>5</td>
<td><5</td>
<td>6</td>
<td><5</td>
<td>7</td>
<td><5</td>
<td><0.2</td>
</tr>
<tr>
<td>115685</td>
<td></td>
<td>5</td>
<td><5</td>
<td>5</td>
<td><5</td>
<td>5</td>
<td>7</td>
<td><0.2</td>
</tr>
<tr>
<td>115686</td>
<td></td>
<td>6</td>
<td><5</td>
<td>7</td>
<td><5</td>
<td>7</td>
<td><5</td>
<td><0.2</td>
</tr>
<tr>
<td>115687</td>
<td></td>
<td>7</td>
<td><5</td>
<td>5</td>
<td><5</td>
<td>5</td>
<td><5</td>
<td><0.2</td>
</tr>
<tr>
<td>115688</td>
<td></td>
<td>9</td>
<td>13</td>
<td>5</td>
<td><5</td>
<td>8</td>
<td><5</td>
<td><0.2</td>
</tr>
<tr>
<td>115689</td>
<td></td>
<td>7</td>
<td><5</td>
<td><5</td>
<td>7</td>
<td><5</td>
<td>8</td>
<td><0.2</td>
</tr>
<tr>
<td>115690</td>
<td></td>
<td>33</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td>1.8</td>
<td></td>
</tr>
<tr>
<td>115691</td>
<td></td>
<td>7</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><0.2</td>
</tr>
<tr>
<td>115692</td>
<td></td>
<td>13</td>
<td>11</td>
<td><5</td>
<td><5</td>
<td>5</td>
<td><5</td>
<td><0.2</td>
</tr>
<tr>
<td>115693</td>
<td></td>
<td>33</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><0.2</td>
</tr>
<tr>
<td>115694</td>
<td></td>
<td>9</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><0.2</td>
</tr>
<tr>
<td>115695</td>
<td></td>
<td>11</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><0.2</td>
</tr>
</tbody>
</table>
Certificate of analysis

Laboratoire Expert Inc.
127, Boulevard Industriel
Rouyn-Noranda, Québec
Canada, J9X 6P2
Telephone : (819) 762-7100, Fax : (819) 762-7510

Client : Intrinsic
Addressee : Darlene Wojtczak

Folder : 25202
Your order number :
Project : RICKARD

Total number of samples : 64

<table>
<thead>
<tr>
<th>Designation</th>
<th>Au</th>
<th>Au-Dap</th>
<th>Pt</th>
<th>Pt-Dap</th>
<th>Pd</th>
<th>Pd-Dap</th>
<th>Ag</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>FA-GRAV</td>
<td>DCP-1</td>
<td>DCP-1</td>
<td>DCP-1</td>
<td>DCP-1</td>
<td>DCP-1</td>
<td>ppm</td>
</tr>
<tr>
<td>------------</td>
<td>--------</td>
<td>--------</td>
<td>--------</td>
<td>--------</td>
<td>--------</td>
<td>--------</td>
<td>-----</td>
</tr>
<tr>
<td>115696</td>
<td>16</td>
<td>6</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><0.2</td>
</tr>
<tr>
<td>115697</td>
<td>14</td>
<td>6</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><0.2</td>
</tr>
<tr>
<td>115698</td>
<td>16</td>
<td>6</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><0.2</td>
</tr>
<tr>
<td>115699</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><0.2</td>
</tr>
<tr>
<td>115700</td>
<td>11</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><0.2</td>
</tr>
<tr>
<td>115701</td>
<td>7</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><0.2</td>
</tr>
<tr>
<td>115702</td>
<td>9</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><0.2</td>
</tr>
<tr>
<td>115703</td>
<td>8</td>
<td>10</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><0.2</td>
</tr>
<tr>
<td>115704</td>
<td>9</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><0.2</td>
</tr>
<tr>
<td>115705</td>
<td>5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><0.2</td>
</tr>
<tr>
<td>115706</td>
<td>8</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><0.2</td>
</tr>
<tr>
<td>115707</td>
<td>17</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><0.2</td>
</tr>
<tr>
<td>115708</td>
<td>27</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><0.2</td>
</tr>
<tr>
<td>115709</td>
<td>8</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><0.2</td>
</tr>
<tr>
<td>115710</td>
<td>8</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><0.2</td>
</tr>
<tr>
<td>115711</td>
<td>6</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><0.2</td>
</tr>
<tr>
<td>115712</td>
<td>5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><0.2</td>
</tr>
<tr>
<td>115713</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><0.2</td>
</tr>
<tr>
<td>115714</td>
<td>5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><0.2</td>
</tr>
<tr>
<td>115715</td>
<td>5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><0.2</td>
</tr>
</tbody>
</table>
Certificate of analysis

Client: Intrinsic

Addressee: Darlene Wojtczak

Folder: 25202

Your order number: RICKARD

Project: RICKARD

Total number of samples: 64

<table>
<thead>
<tr>
<th>Designation</th>
<th>Au FA-GRAV g/l</th>
<th>Au DCP-1 ppb</th>
<th>Au-Dap DCP-1 ppb</th>
<th>Pt DCP-1 ppb</th>
<th>Pt-Dap DCP-1 ppb</th>
<th>Pd DCP-1 ppb</th>
<th>Pd-Dap DCP-1 ppb</th>
<th>Ag AAT-7 ppm</th>
</tr>
</thead>
<tbody>
<tr>
<td>115716</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><0.2</td>
</tr>
<tr>
<td>115717</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><0.2</td>
</tr>
<tr>
<td>115718</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><0.2</td>
</tr>
<tr>
<td>115719</td>
<td>6</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><0.2</td>
</tr>
</tbody>
</table>
Certificate of analysis

Date: 2009/09/22
Page: 5 of 12

Client: Intrinsic
Addressee: Darlene Wojtczak
Folder: 25202
Your order number: RICKARD
Project:
Total number of samples: 64

<table>
<thead>
<tr>
<th>Designation</th>
<th>Ag-Dup AAT-7 ppm</th>
<th>Cu AAT-7 ppm</th>
<th>Cu-Dup AAT-7 ppm</th>
<th>Ni AAT-7 ppm</th>
<th>Ni-Dup AAT-7 ppm</th>
<th>Zn AAT-7 ppm</th>
<th>Zn-Dup AAT-7 ppm</th>
<th>Pb AAT-7 ppm</th>
</tr>
</thead>
<tbody>
<tr>
<td>115656</td>
<td><0.2</td>
<td>91</td>
<td>90</td>
<td>1095</td>
<td>1074</td>
<td>66</td>
<td>61</td>
<td>22</td>
</tr>
<tr>
<td>115657</td>
<td>82</td>
<td>1098</td>
<td>13</td>
<td>69</td>
<td>37</td>
<td>353</td>
<td>19</td>
<td>46</td>
</tr>
<tr>
<td>115658</td>
<td>86</td>
<td>937</td>
<td>91</td>
<td>135</td>
<td>37</td>
<td>141</td>
<td>21</td>
<td>51</td>
</tr>
<tr>
<td>115659</td>
<td>83</td>
<td>885</td>
<td>81</td>
<td>104</td>
<td>10</td>
<td>8</td>
<td>256</td>
<td>20</td>
</tr>
<tr>
<td>115660</td>
<td>81</td>
<td>991</td>
<td>86</td>
<td>151</td>
<td>37</td>
<td>135</td>
<td>19</td>
<td>46</td>
</tr>
<tr>
<td>115661</td>
<td>96</td>
<td>1098</td>
<td>83</td>
<td>135</td>
<td>37</td>
<td>141</td>
<td>21</td>
<td>51</td>
</tr>
<tr>
<td>115662</td>
<td>91</td>
<td>937</td>
<td>91</td>
<td>135</td>
<td>37</td>
<td>141</td>
<td>21</td>
<td>51</td>
</tr>
<tr>
<td>115663</td>
<td>134</td>
<td>937</td>
<td>134</td>
<td>104</td>
<td>10</td>
<td>8</td>
<td>256</td>
<td>20</td>
</tr>
<tr>
<td>115664</td>
<td>131</td>
<td>885</td>
<td>146</td>
<td>100</td>
<td>10</td>
<td>8</td>
<td>256</td>
<td>20</td>
</tr>
<tr>
<td>115665</td>
<td>134</td>
<td>1098</td>
<td>152</td>
<td>195</td>
<td>135</td>
<td>10</td>
<td>118</td>
<td>18</td>
</tr>
<tr>
<td>115666</td>
<td>146</td>
<td>991</td>
<td>162</td>
<td>120</td>
<td>10</td>
<td>8</td>
<td>256</td>
<td>20</td>
</tr>
<tr>
<td>115667</td>
<td>160</td>
<td>1098</td>
<td>162</td>
<td>118</td>
<td>10</td>
<td>8</td>
<td>256</td>
<td>20</td>
</tr>
<tr>
<td>115668</td>
<td><0.2</td>
<td>96</td>
<td>96</td>
<td>141</td>
<td>10</td>
<td>8</td>
<td>256</td>
<td>20</td>
</tr>
<tr>
<td>115669</td>
<td>161</td>
<td>105</td>
<td>174</td>
<td>110</td>
<td>96</td>
<td>8</td>
<td>256</td>
<td>20</td>
</tr>
<tr>
<td>115670</td>
<td>167</td>
<td>105</td>
<td>174</td>
<td>110</td>
<td>96</td>
<td>8</td>
<td>256</td>
<td>20</td>
</tr>
<tr>
<td>115671</td>
<td>174</td>
<td>105</td>
<td>174</td>
<td>110</td>
<td>96</td>
<td>8</td>
<td>256</td>
<td>20</td>
</tr>
<tr>
<td>115672</td>
<td>170</td>
<td>99</td>
<td>170</td>
<td>162</td>
<td>8</td>
<td>2</td>
<td>256</td>
<td>20</td>
</tr>
<tr>
<td>115673</td>
<td>158</td>
<td>52</td>
<td>158</td>
<td>214</td>
<td>8</td>
<td>2</td>
<td>256</td>
<td>20</td>
</tr>
<tr>
<td>115674</td>
<td>161</td>
<td>63</td>
<td>161</td>
<td>141</td>
<td>8</td>
<td>2</td>
<td>256</td>
<td>20</td>
</tr>
<tr>
<td>115675</td>
<td>477</td>
<td>78</td>
<td>477</td>
<td>100</td>
<td>8</td>
<td>2</td>
<td>256</td>
<td>20</td>
</tr>
<tr>
<td>Designation</td>
<td>Ag-Dup AAT-7 ppm</td>
<td>Cu-Dup AAT-7 ppm</td>
<td>Cu-Dup AAT-7 ppm</td>
<td>Ni-Dup AAT-7 ppm</td>
<td>Ni-Dup AAT-7 ppm</td>
<td>Zn-Dup AAT-7 ppm</td>
<td>Zn-Dup AAT-7 ppm</td>
<td>Pb AAT-7 ppm</td>
</tr>
<tr>
<td>-------------</td>
<td>------------------</td>
<td>------------------</td>
<td>------------------</td>
<td>------------------</td>
<td>------------------</td>
<td>-----------------</td>
<td>-----------------</td>
<td>-------------</td>
</tr>
<tr>
<td></td>
<td>ppm</td>
<td>ppm</td>
<td>ppm</td>
<td>ppm</td>
<td>ppm</td>
<td>ppm</td>
<td>ppm</td>
<td>ppm</td>
</tr>
<tr>
<td>115676</td>
<td>78</td>
<td>33</td>
<td>105</td>
<td>180</td>
<td>180</td>
<td>12</td>
<td></td>
<td></td>
</tr>
<tr>
<td>115677</td>
<td>119</td>
<td>90</td>
<td>102</td>
<td>98</td>
<td>13</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>115678</td>
<td>116</td>
<td>67</td>
<td>107</td>
<td>44</td>
<td>16</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>115679</td>
<td>96</td>
<td>107</td>
<td>140</td>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>115680</td>
<td><0.2</td>
<td>203</td>
<td>201</td>
<td>105</td>
<td>102</td>
<td>180</td>
<td>180</td>
<td>24</td>
</tr>
<tr>
<td>115681</td>
<td>247</td>
<td>134</td>
<td>1216</td>
<td>16</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>115682</td>
<td>118</td>
<td>410</td>
<td>1216</td>
<td>16</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>115683</td>
<td>106</td>
<td>443</td>
<td>44</td>
<td>16</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>115684</td>
<td>110</td>
<td>117</td>
<td>85</td>
<td>18</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>115685</td>
<td>121</td>
<td>123</td>
<td>166</td>
<td>17</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>115686</td>
<td>123</td>
<td>121</td>
<td>138</td>
<td>18</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>115687</td>
<td>121</td>
<td>125</td>
<td>138</td>
<td>18</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>115688</td>
<td>150</td>
<td>148</td>
<td>148</td>
<td>18</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>115689</td>
<td>150</td>
<td>148</td>
<td>148</td>
<td>18</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>115690</td>
<td>240</td>
<td>116</td>
<td>124</td>
<td>49</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>115691</td>
<td>74</td>
<td>88</td>
<td>88</td>
<td>21</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>115692</td>
<td><0.2</td>
<td>103</td>
<td>104</td>
<td>96</td>
<td>94</td>
<td>130</td>
<td>128</td>
<td>31</td>
</tr>
<tr>
<td>115693</td>
<td>187</td>
<td>155</td>
<td>155</td>
<td>28</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>115694</td>
<td>146</td>
<td>139</td>
<td>139</td>
<td>28</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>115695</td>
<td>93</td>
<td>95</td>
<td>95</td>
<td>29</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Certificate of analysis

Laboratoire Expert Inc.
127, Boulevard Industriel
Rouyn-Noranda, Québec
Canada, J9X 6P2
Telephone : (819) 762-7100, Fax : (819) 762-7510

Client : *Intrinsic*

Addressee : *Darlene Wojtczak*

Folder : 25202
Your order number :
Project : RICKARD

Total number of samples : 64

<table>
<thead>
<tr>
<th>Designation</th>
<th>Ag-Dup AAT-7 ppm</th>
<th>Cu-Dup AAT-7 ppm</th>
<th>Cu-Dup AAT-7 ppm</th>
<th>Ni AAT-7 ppm</th>
<th>Ni-Dup AAT-7 ppm</th>
<th>Zn AAT-7 ppm</th>
<th>Zn-Dup AAT-7 ppm</th>
<th>Pb AAT-7 ppm</th>
</tr>
</thead>
<tbody>
<tr>
<td>115696</td>
<td>178</td>
<td>156</td>
<td>426</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>36</td>
</tr>
<tr>
<td>115697</td>
<td>116</td>
<td>95</td>
<td>351</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>25</td>
</tr>
<tr>
<td>115698</td>
<td>108</td>
<td>100</td>
<td>251</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>33</td>
</tr>
<tr>
<td>115699</td>
<td>227</td>
<td>193</td>
<td>693</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>45</td>
</tr>
<tr>
<td>115700</td>
<td>82</td>
<td>9</td>
<td>17</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>27</td>
</tr>
<tr>
<td>115701</td>
<td>117</td>
<td>83</td>
<td>188</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>24</td>
</tr>
<tr>
<td>115702</td>
<td>95</td>
<td>65</td>
<td>173</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>17</td>
</tr>
<tr>
<td>115703</td>
<td>91</td>
<td>92</td>
<td>448</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>13</td>
</tr>
<tr>
<td>115704</td>
<td><0.2</td>
<td>70</td>
<td>90</td>
<td>319</td>
<td></td>
<td>320</td>
<td></td>
<td>11</td>
</tr>
<tr>
<td>115705</td>
<td>113</td>
<td>63</td>
<td>219</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>13</td>
</tr>
<tr>
<td>115706</td>
<td>85</td>
<td>72</td>
<td>111</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>14</td>
</tr>
<tr>
<td>115707</td>
<td>100</td>
<td>92</td>
<td>113</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>121</td>
</tr>
<tr>
<td>115708</td>
<td>71</td>
<td>59</td>
<td>98</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>6</td>
</tr>
<tr>
<td>115709</td>
<td>62</td>
<td>65</td>
<td>104</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>13</td>
</tr>
<tr>
<td>115710</td>
<td>58</td>
<td>49</td>
<td>79</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>10</td>
</tr>
<tr>
<td>115711</td>
<td>64</td>
<td>50</td>
<td>103</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>16</td>
</tr>
<tr>
<td>115712</td>
<td>52</td>
<td>38</td>
<td>56</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>17</td>
</tr>
<tr>
<td>115713</td>
<td>57</td>
<td>32</td>
<td>78</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>11</td>
</tr>
<tr>
<td>115714</td>
<td>48</td>
<td>35</td>
<td>46</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>8</td>
</tr>
<tr>
<td>115715</td>
<td>75</td>
<td>55</td>
<td>73</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>16</td>
</tr>
<tr>
<td>Designation</td>
<td>Ag-Dup AAT-7 ppm</td>
<td>Cu AAT-7 ppm</td>
<td>Cu-Dup AAT-7 ppm</td>
<td>Ni AAT-7 ppm</td>
<td>Ni-Dup AAT-7 ppm</td>
<td>Zn AAT-7 ppm</td>
<td>Zn-Dup AAT-7 ppm</td>
<td>Pb AAT-7 ppm</td>
</tr>
<tr>
<td>-------------</td>
<td>-----------------</td>
<td>-------------</td>
<td>-----------------</td>
<td>--------------</td>
<td>-----------------</td>
<td>-------------</td>
<td>-----------------</td>
<td>-------------</td>
</tr>
<tr>
<td>115716</td>
<td><0.2</td>
<td>64</td>
<td>66</td>
<td>54</td>
<td>54</td>
<td>51</td>
<td>52</td>
<td>19</td>
</tr>
<tr>
<td>115717</td>
<td>41</td>
<td>43</td>
<td>59</td>
<td>8</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>115718</td>
<td>627</td>
<td>38</td>
<td>69</td>
<td>8</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>115719</td>
<td>84</td>
<td>92</td>
<td>130</td>
<td>15</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Certificate of analysis

Client: Intrinsic

Addressee: Darlene Wojtczak

Folder: 25202

Your order number: RICKARD

Project: RICKARD

Total number of samples: 64

<table>
<thead>
<tr>
<th>Designation</th>
<th>Pb-Dup AAT-7 ppm</th>
<th>Cu AAT-7 ppm</th>
<th>Co-Dup AAT-7 ppm</th>
</tr>
</thead>
<tbody>
<tr>
<td>115656</td>
<td>20</td>
<td>78</td>
<td>76</td>
</tr>
<tr>
<td>115657</td>
<td></td>
<td>78</td>
<td></td>
</tr>
<tr>
<td>115658</td>
<td></td>
<td>64</td>
<td></td>
</tr>
<tr>
<td>115659</td>
<td></td>
<td>61</td>
<td></td>
</tr>
<tr>
<td>115660</td>
<td></td>
<td>66</td>
<td></td>
</tr>
<tr>
<td>115661</td>
<td></td>
<td>57</td>
<td></td>
</tr>
<tr>
<td>115662</td>
<td></td>
<td>47</td>
<td></td>
</tr>
<tr>
<td>115663</td>
<td></td>
<td>50</td>
<td></td>
</tr>
<tr>
<td>115664</td>
<td></td>
<td>57</td>
<td></td>
</tr>
<tr>
<td>115665</td>
<td></td>
<td>47</td>
<td></td>
</tr>
<tr>
<td>115666</td>
<td></td>
<td>47</td>
<td></td>
</tr>
<tr>
<td>115667</td>
<td></td>
<td>51</td>
<td></td>
</tr>
<tr>
<td>115668</td>
<td>19</td>
<td>53</td>
<td>54</td>
</tr>
<tr>
<td>115669</td>
<td></td>
<td>54</td>
<td></td>
</tr>
<tr>
<td>115670</td>
<td></td>
<td>56</td>
<td></td>
</tr>
<tr>
<td>115671</td>
<td></td>
<td>56</td>
<td></td>
</tr>
<tr>
<td>115672</td>
<td></td>
<td>58</td>
<td></td>
</tr>
<tr>
<td>115673</td>
<td></td>
<td>54</td>
<td></td>
</tr>
<tr>
<td>115674</td>
<td></td>
<td>54</td>
<td></td>
</tr>
<tr>
<td>115675</td>
<td></td>
<td>385</td>
<td></td>
</tr>
</tbody>
</table>
Certificate of analysis

Client: Intrinsic

Addressee: Darlene Wojtczak

Folder: 25202

Your order number: RICKARD

Project: RICKARD

Total number of samples: 64

<table>
<thead>
<tr>
<th>Designation</th>
<th>Pb-Dup AAT-7 ppm</th>
<th>Cu AAT-7 ppm</th>
<th>Co-Dup AAT-7 ppm</th>
</tr>
</thead>
<tbody>
<tr>
<td>115676</td>
<td>2</td>
<td>27</td>
<td></td>
</tr>
<tr>
<td>115677</td>
<td></td>
<td>50</td>
<td></td>
</tr>
<tr>
<td>115678</td>
<td></td>
<td>50</td>
<td></td>
</tr>
<tr>
<td>115679</td>
<td></td>
<td>48</td>
<td></td>
</tr>
<tr>
<td>115680</td>
<td>24</td>
<td>50</td>
<td>50</td>
</tr>
<tr>
<td>115681</td>
<td></td>
<td>62</td>
<td></td>
</tr>
<tr>
<td>115682</td>
<td></td>
<td>63</td>
<td></td>
</tr>
<tr>
<td>115683</td>
<td></td>
<td>100</td>
<td></td>
</tr>
<tr>
<td>115684</td>
<td></td>
<td>71</td>
<td></td>
</tr>
<tr>
<td>115685</td>
<td></td>
<td>56</td>
<td></td>
</tr>
<tr>
<td>115686</td>
<td></td>
<td>53</td>
<td></td>
</tr>
<tr>
<td>115687</td>
<td></td>
<td>51</td>
<td></td>
</tr>
<tr>
<td>115688</td>
<td></td>
<td>50</td>
<td></td>
</tr>
<tr>
<td>115689</td>
<td></td>
<td>41</td>
<td></td>
</tr>
<tr>
<td>115690</td>
<td></td>
<td>39</td>
<td></td>
</tr>
<tr>
<td>115691</td>
<td></td>
<td>29</td>
<td></td>
</tr>
<tr>
<td>115692</td>
<td>31</td>
<td>32</td>
<td>31</td>
</tr>
<tr>
<td>115693</td>
<td></td>
<td>45</td>
<td></td>
</tr>
<tr>
<td>115694</td>
<td></td>
<td>40</td>
<td></td>
</tr>
<tr>
<td>115695</td>
<td></td>
<td>30</td>
<td></td>
</tr>
</tbody>
</table>
Certificate of analysis

Laboratoire Expert Inc.

127, Boulevard Industriel
Rouyn-Noranda, Québec
Canada, J9X 6P2
Telephone : (819) 762-7100, Fax : (819) 762-7510

Client : Intrinsic

Addressee : Darlene Wojtczak

Folder : 25202
Your order number :
Project : RICKARD
Total number of samples : 64

<table>
<thead>
<tr>
<th>Designation</th>
<th>Pb-Dup AAT-7 ppm</th>
<th>Cu AAT-7 ppm</th>
<th>Co-Dup AAT-7 ppm</th>
</tr>
</thead>
<tbody>
<tr>
<td>115696</td>
<td>2</td>
<td>42</td>
<td></td>
</tr>
<tr>
<td>115697</td>
<td></td>
<td>33</td>
<td></td>
</tr>
<tr>
<td>115698</td>
<td>42</td>
<td></td>
<td></td>
</tr>
<tr>
<td>115699</td>
<td>57</td>
<td></td>
<td></td>
</tr>
<tr>
<td>115700</td>
<td>18</td>
<td>12</td>
<td>50</td>
</tr>
<tr>
<td>115701</td>
<td>50</td>
<td>30</td>
<td>30</td>
</tr>
<tr>
<td>115702</td>
<td>43</td>
<td></td>
<td></td>
</tr>
<tr>
<td>115703</td>
<td>41</td>
<td></td>
<td></td>
</tr>
<tr>
<td>115704</td>
<td>12</td>
<td>30</td>
<td>30</td>
</tr>
<tr>
<td>115705</td>
<td></td>
<td>46</td>
<td></td>
</tr>
<tr>
<td>115706</td>
<td></td>
<td>38</td>
<td></td>
</tr>
<tr>
<td>115707</td>
<td></td>
<td>39</td>
<td></td>
</tr>
<tr>
<td>115708</td>
<td></td>
<td>26</td>
<td></td>
</tr>
<tr>
<td>115709</td>
<td></td>
<td>28</td>
<td></td>
</tr>
<tr>
<td>115710</td>
<td></td>
<td>26</td>
<td></td>
</tr>
<tr>
<td>115711</td>
<td></td>
<td>24</td>
<td></td>
</tr>
<tr>
<td>115712</td>
<td></td>
<td>18</td>
<td></td>
</tr>
<tr>
<td>115713</td>
<td></td>
<td>16</td>
<td></td>
</tr>
<tr>
<td>115714</td>
<td></td>
<td>14</td>
<td></td>
</tr>
<tr>
<td>115715</td>
<td></td>
<td>24</td>
<td></td>
</tr>
</tbody>
</table>
Certificate of analysis

Client: Intrinsic

Addressee: Darlene Wojtczak

Folder: 25202

Your order number:

Project: RICKARD

Total number of samples: 64

<table>
<thead>
<tr>
<th>Designation</th>
<th>Pb-Dup</th>
<th>Cu</th>
<th>Co-Dup</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ppm 2</td>
<td>ppm 2</td>
<td>ppm 2</td>
</tr>
<tr>
<td>115716</td>
<td>18</td>
<td>23</td>
<td>24</td>
</tr>
<tr>
<td>115717</td>
<td></td>
<td>17</td>
<td></td>
</tr>
<tr>
<td>115718</td>
<td></td>
<td>17</td>
<td></td>
</tr>
<tr>
<td>115719</td>
<td></td>
<td>35</td>
<td></td>
</tr>
</tbody>
</table>
Certificate of analysis

Client: Intrinsic

Addressee: Darlene Wojtczak

Folder: 25203
Your order number: ABITIBI EAST

Project: ABITIBI EAST
Total number of samples: 119

<table>
<thead>
<tr>
<th>Designation</th>
<th>Au FA-GRAV g/l 0.03</th>
<th>Au DCP-1 ppb 5</th>
<th>Au-Dap DCP-1 ppb 5</th>
<th>Pt DCP-1 ppb 5</th>
<th>Pt-Dap DCP-1 ppb 5</th>
<th>Pd DCP-1 ppb 5</th>
<th>Pd-Dap DCP-1 ppb 5</th>
<th>Ag AAT-7 ppm 0.2</th>
</tr>
</thead>
<tbody>
<tr>
<td>115747</td>
<td>16</td>
<td>20</td>
<td>11</td>
<td>12</td>
<td>8</td>
<td>11</td>
<td></td>
<td><0.2</td>
</tr>
<tr>
<td>115748</td>
<td>8</td>
<td>9</td>
<td>13</td>
<td>9</td>
<td><5</td>
<td>6</td>
<td></td>
<td><0.2</td>
</tr>
<tr>
<td>115749</td>
<td>9</td>
<td></td>
<td>13</td>
<td>9</td>
<td><5</td>
<td></td>
<td></td>
<td><0.2</td>
</tr>
<tr>
<td>115750</td>
<td><5</td>
<td><5</td>
<td>13</td>
<td>9</td>
<td><5</td>
<td></td>
<td></td>
<td><0.2</td>
</tr>
<tr>
<td>115751</td>
<td><5</td>
<td></td>
<td>13</td>
<td>9</td>
<td></td>
<td></td>
<td></td>
<td><0.2</td>
</tr>
<tr>
<td>115752</td>
<td>7</td>
<td></td>
<td>16</td>
<td>9</td>
<td></td>
<td></td>
<td></td>
<td><0.2</td>
</tr>
<tr>
<td>115753</td>
<td>6</td>
<td></td>
<td>13</td>
<td>8</td>
<td></td>
<td></td>
<td></td>
<td><0.2</td>
</tr>
<tr>
<td>115754</td>
<td>10</td>
<td></td>
<td>10</td>
<td>7</td>
<td></td>
<td></td>
<td></td>
<td><0.2</td>
</tr>
<tr>
<td>115755</td>
<td><5</td>
<td></td>
<td>11</td>
<td>7</td>
<td></td>
<td></td>
<td></td>
<td><0.2</td>
</tr>
<tr>
<td>115756</td>
<td>6</td>
<td></td>
<td>15</td>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td><0.2</td>
</tr>
<tr>
<td>115757</td>
<td><5</td>
<td></td>
<td>11</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td><0.2</td>
</tr>
<tr>
<td>115758</td>
<td>5</td>
<td></td>
<td>9</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td><0.2</td>
</tr>
<tr>
<td>115759</td>
<td>21</td>
<td>23</td>
<td>12</td>
<td>12</td>
<td>7</td>
<td>10</td>
<td></td>
<td><0.2</td>
</tr>
<tr>
<td>115760</td>
<td>7</td>
<td></td>
<td>11</td>
<td>8</td>
<td></td>
<td></td>
<td></td>
<td><0.2</td>
</tr>
<tr>
<td>115761</td>
<td>9</td>
<td></td>
<td>11</td>
<td>11</td>
<td></td>
<td></td>
<td></td>
<td><0.2</td>
</tr>
<tr>
<td>115762</td>
<td>7</td>
<td></td>
<td>10</td>
<td>8</td>
<td></td>
<td></td>
<td></td>
<td><0.2</td>
</tr>
<tr>
<td>115763</td>
<td><5</td>
<td></td>
<td>12</td>
<td>8</td>
<td></td>
<td></td>
<td></td>
<td><0.2</td>
</tr>
<tr>
<td>115764</td>
<td>5</td>
<td></td>
<td>7</td>
<td>8</td>
<td></td>
<td></td>
<td></td>
<td><0.2</td>
</tr>
<tr>
<td>115765</td>
<td>5</td>
<td></td>
<td>9</td>
<td>9</td>
<td></td>
<td></td>
<td></td>
<td><0.2</td>
</tr>
<tr>
<td>115766</td>
<td>10</td>
<td></td>
<td>10</td>
<td>8</td>
<td></td>
<td></td>
<td></td>
<td><0.2</td>
</tr>
</tbody>
</table>

Joe Landers, Manager
Certificate of analysis

Client: Intrinsic
Address: Darlene Wojtczak
Folder: 25203
Your order number:
Project: ABITIBI EAST
Total number of samples: 119

<table>
<thead>
<tr>
<th>Designation</th>
<th>Au FA-GRAV g/l</th>
<th>Au DCP-1 ppb</th>
<th>Au-Dap DCP-1 ppb</th>
<th>Pt DCP-1 ppb</th>
<th>Pt-Dap DCP-1 ppb</th>
<th>Pd DCP-1 ppb</th>
<th>Pd-Dap DCP-1 ppb</th>
<th>Ag AAT-7 ppm</th>
</tr>
</thead>
<tbody>
<tr>
<td>115767</td>
<td>17</td>
<td>5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><0.2</td>
</tr>
<tr>
<td>115768</td>
<td>14</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><0.2</td>
</tr>
<tr>
<td>115769</td>
<td>9</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><0.2</td>
</tr>
<tr>
<td>115770</td>
<td><5</td>
<td>11</td>
<td>8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>115771</td>
<td><5</td>
<td>5</td>
<td>12</td>
<td>10</td>
<td>8</td>
<td>9</td>
<td></td>
<td><0.2</td>
</tr>
<tr>
<td>115772</td>
<td>17</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><0.2</td>
</tr>
<tr>
<td>115773</td>
<td>5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><0.2</td>
</tr>
<tr>
<td>115774</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><0.2</td>
</tr>
<tr>
<td>115775</td>
<td>2.13</td>
<td>2130</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td>0.8</td>
<td></td>
</tr>
<tr>
<td>115776</td>
<td><5</td>
<td>12</td>
<td>7</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><0.2</td>
</tr>
<tr>
<td>115777</td>
<td><5</td>
<td>15</td>
<td>8</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><0.2</td>
</tr>
<tr>
<td>115778</td>
<td>20</td>
<td>14</td>
<td>9</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><0.2</td>
</tr>
<tr>
<td>115779</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><0.2</td>
</tr>
<tr>
<td>115780</td>
<td><5</td>
<td>5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><0.2</td>
</tr>
<tr>
<td>115781</td>
<td>5</td>
<td><5</td>
<td>8</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><0.2</td>
</tr>
<tr>
<td>115782</td>
<td><5</td>
<td>11</td>
<td>8</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><0.2</td>
</tr>
<tr>
<td>115783</td>
<td><5</td>
<td>5</td>
<td><5</td>
<td>5</td>
<td>5</td>
<td><5</td>
<td><5</td>
<td><0.2</td>
</tr>
<tr>
<td>115784</td>
<td><5</td>
<td>7</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><0.2</td>
</tr>
<tr>
<td>115785</td>
<td><5</td>
<td>5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><0.2</td>
</tr>
<tr>
<td>115786</td>
<td>8</td>
<td>6</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td><0.2</td>
</tr>
</tbody>
</table>
Certificate of analysis

Client: Intrinsic
Addressee: Darlene Wojtczak
Folder: 25203
Your order number: ABITIBI EAST
Project: ABITIBI EAST
Total number of samples: 119

<table>
<thead>
<tr>
<th>Designation</th>
<th>Au FA-GRAV g/l 0.03</th>
<th>Au DCP-1 ppb 5</th>
<th>Au-Dap DCP-1 ppb 5</th>
<th>Pt DCP-1 ppb 5</th>
<th>Pt-Dap DCP-1 ppb 5</th>
<th>Pd DCP-1 ppb 5</th>
<th>Pd-Dap DCP-1 ppb 5</th>
<th>Ag AAT-7 ppm 0.2</th>
</tr>
</thead>
<tbody>
<tr>
<td>115787</td>
<td>6</td>
<td>9</td>
<td><5</td>
<td><5</td>
<td><0.2</td>
<td><0.2</td>
<td><0.2</td>
<td></td>
</tr>
<tr>
<td>115788</td>
<td><5</td>
<td>6</td>
<td><5</td>
<td><5</td>
<td><0.2</td>
<td><0.2</td>
<td><0.2</td>
<td></td>
</tr>
<tr>
<td>115789</td>
<td><5</td>
<td>5</td>
<td><5</td>
<td><5</td>
<td><0.2</td>
<td><0.2</td>
<td><0.2</td>
<td></td>
</tr>
<tr>
<td>115790</td>
<td>5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><0.2</td>
<td><0.2</td>
<td><0.2</td>
<td></td>
</tr>
<tr>
<td>115791</td>
<td>6</td>
<td>6</td>
<td><5</td>
<td><5</td>
<td><0.2</td>
<td><0.2</td>
<td><0.2</td>
<td></td>
</tr>
<tr>
<td>115792</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><0.2</td>
<td><0.2</td>
<td><0.2</td>
<td></td>
</tr>
<tr>
<td>115793</td>
<td>7</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><0.2</td>
<td><0.2</td>
<td><0.2</td>
<td></td>
</tr>
<tr>
<td>115794</td>
<td>5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><0.2</td>
<td><0.2</td>
<td><0.2</td>
<td></td>
</tr>
<tr>
<td>115795</td>
<td>13</td>
<td>13</td>
<td>5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><0.2</td>
</tr>
<tr>
<td>115796</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><0.2</td>
<td><0.2</td>
<td><0.2</td>
<td></td>
</tr>
<tr>
<td>115797</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><0.2</td>
<td><0.2</td>
<td><0.2</td>
<td></td>
</tr>
<tr>
<td>115798</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><0.2</td>
<td><0.2</td>
<td><0.2</td>
<td></td>
</tr>
<tr>
<td>115799</td>
<td>12</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><0.2</td>
<td><0.2</td>
<td><0.2</td>
<td></td>
</tr>
<tr>
<td>115800</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><0.2</td>
<td><0.2</td>
<td><0.2</td>
<td></td>
</tr>
<tr>
<td>115801</td>
<td>31</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><0.2</td>
<td><0.2</td>
<td><0.2</td>
<td></td>
</tr>
<tr>
<td>115802</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><0.2</td>
<td><0.2</td>
<td><0.2</td>
<td></td>
</tr>
<tr>
<td>115803</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><0.2</td>
<td><0.2</td>
<td><0.2</td>
<td></td>
</tr>
<tr>
<td>115804</td>
<td>5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><0.2</td>
<td><0.2</td>
<td><0.2</td>
<td></td>
</tr>
<tr>
<td>115805</td>
<td>9</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><0.2</td>
<td><0.2</td>
<td><0.2</td>
<td></td>
</tr>
<tr>
<td>115806</td>
<td>5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><0.2</td>
<td><0.2</td>
<td><0.2</td>
<td></td>
</tr>
</tbody>
</table>
Certificate of analysis

Client: Intrinsic

Address: Darlene Wojtczak

Folder: 25203

Project: ABITIBI EAST

Total number of samples: 119

<table>
<thead>
<tr>
<th>Designation</th>
<th>Au FA-GRAV g/l</th>
<th>Au DCP-1 ppb</th>
<th>Au-DAP DCP-1 ppb</th>
<th>Pt DCP-1 ppb</th>
<th>Pt-DAP DCP-1 ppb</th>
<th>Pd DCP-1 ppb</th>
<th>Pd-DAP DCP-1 ppb</th>
<th>Ag AAT-7 ppm</th>
</tr>
</thead>
<tbody>
<tr>
<td>115807</td>
<td><5</td>
<td>5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><0.2</td>
</tr>
<tr>
<td>115808</td>
<td>8</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><0.2</td>
</tr>
<tr>
<td>115809</td>
<td>7</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><0.2</td>
</tr>
<tr>
<td>115810</td>
<td>7</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td>5</td>
<td><5</td>
<td><5</td>
<td><0.2</td>
</tr>
<tr>
<td>115811</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><0.2</td>
</tr>
<tr>
<td>115812</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><0.2</td>
</tr>
<tr>
<td>115813</td>
<td>7</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><0.2</td>
</tr>
<tr>
<td>115814</td>
<td>8</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><0.2</td>
</tr>
<tr>
<td>115815</td>
<td>7</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><0.2</td>
</tr>
<tr>
<td>115816</td>
<td>6</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><0.2</td>
</tr>
<tr>
<td>115817</td>
<td>7</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><0.2</td>
</tr>
<tr>
<td>115818</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><0.2</td>
</tr>
<tr>
<td>115819</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td>5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><0.2</td>
</tr>
<tr>
<td>115820</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><0.2</td>
</tr>
<tr>
<td>115821</td>
<td>5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><0.2</td>
</tr>
<tr>
<td>115822</td>
<td>24</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><0.2</td>
</tr>
<tr>
<td>115823</td>
<td>5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td>0.8</td>
</tr>
<tr>
<td>115824</td>
<td>8</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><0.2</td>
</tr>
<tr>
<td>115825</td>
<td>6.21</td>
<td>6160</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td>3.6</td>
</tr>
<tr>
<td>115826</td>
<td>6</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><0.2</td>
</tr>
</tbody>
</table>
Certificate of analysis

Date: 2009/09/22

Laboratoire Expert Inc.

127, Boulevard Industriel
Rouyn-Noranda, Québec
Canada, J9X 6P2
Telephone: (819) 762-7100, Fax: (819) 762-7510

Client: Intrinsic

Addressee: Darlene Wojtczak

Folder: 25203

Your order number:

Project: ABITIBI EAST

Total number of samples: 119

<table>
<thead>
<tr>
<th>Designation</th>
<th>Au FA-GRAV (g/t)</th>
<th>Au DCP-1 (ppb)</th>
<th>Au-Dap DCP-1 (ppb)</th>
<th>Pt DCP-1 (ppb)</th>
<th>Pt-Dap DCP-1 (ppb)</th>
<th>Pd DCP-1 (ppb)</th>
<th>Pd-Dap DCP-1 (ppb)</th>
<th>Ag AAT-7 (ppm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>115827</td>
<td>5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><0.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>115828</td>
<td>9</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><0.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>115829</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><0.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>115830</td>
<td>5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><0.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>115831</td>
<td>8</td>
<td>9</td>
<td><5</td>
<td>6</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><0.2</td>
</tr>
<tr>
<td>115832</td>
<td>5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><0.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>115833</td>
<td>9</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><0.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>115834</td>
<td>7</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><0.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>115835</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><0.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>115836</td>
<td>5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><0.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>115837</td>
<td>17</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><0.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>115838</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><0.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>115839</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><0.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>115840</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><0.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>115841</td>
<td>69</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><0.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>115842</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><0.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>115843</td>
<td>5</td>
<td>5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><0.2</td>
</tr>
<tr>
<td>115844</td>
<td>6</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><0.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>115845</td>
<td>5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><0.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>115846</td>
<td>6</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><0.2</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Certificate of analysis

Date: 2009/09/22
Client: Intrinsic
Addressee: Darlene Wojtczak
Folder: 25203
Project: ABITIBI EAST
Total number of samples: 119

<table>
<thead>
<tr>
<th>Designation</th>
<th>Au FA-GRAV g/l 0.03</th>
<th>Au DCP-1 ppb 5</th>
<th>Au-Dap DCP-1 ppb 5</th>
<th>Pt DCP-1 ppb 5</th>
<th>Pt-Dap DCP-1 ppb 5</th>
<th>Pd DCP-1 ppb 5</th>
<th>Pd-Dap DCP-1 ppb 5</th>
<th>Ag AAT-7 ppm 0.2</th>
</tr>
</thead>
<tbody>
<tr>
<td>115847</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><0.2</td>
</tr>
<tr>
<td>115848</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><0.2</td>
</tr>
<tr>
<td>115849</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><0.2</td>
</tr>
<tr>
<td>115850</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><0.2</td>
</tr>
<tr>
<td>115851</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><0.2</td>
</tr>
<tr>
<td>115852</td>
<td>16</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><0.2</td>
</tr>
<tr>
<td>115853</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><0.2</td>
</tr>
<tr>
<td>115854</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><0.2</td>
</tr>
<tr>
<td>115855</td>
<td>5</td>
<td>7</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td><5</td>
</tr>
<tr>
<td>115856</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><0.2</td>
</tr>
<tr>
<td>115857</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><0.2</td>
</tr>
<tr>
<td>115858</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><0.2</td>
</tr>
<tr>
<td>115859</td>
<td>14</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td><5</td>
</tr>
<tr>
<td>115860</td>
<td>6</td>
<td>13</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td><0.2</td>
</tr>
<tr>
<td>115861</td>
<td>8</td>
<td>16</td>
<td>11</td>
<td>11</td>
<td>11</td>
<td>11</td>
<td>11</td>
<td><0.2</td>
</tr>
<tr>
<td>115862</td>
<td>31</td>
<td>13</td>
<td>7</td>
<td>7</td>
<td>7</td>
<td>7</td>
<td>7</td>
<td><0.2</td>
</tr>
<tr>
<td>115863</td>
<td>20</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><0.2</td>
</tr>
<tr>
<td>115864</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td><0.2</td>
</tr>
<tr>
<td>115865</td>
<td>6</td>
<td>7</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><0.2</td>
</tr>
</tbody>
</table>
Laboratoire Expert Inc.

127, Boulevard Industriel
Rouyn-Noranda, Québec
Canada, J9X 6P2
Telephone : (819) 762-7100, Fax : (819) 762-7510

*** Certificate of analysis ***

Date : 2009/09/22
Page : 7 of 18

Client : Intrinsic

Addressee : Darlene Wojtczak

Folder : 25203
Your order number :
Project : ABITIBI EAST

Total number of samples : 119

<table>
<thead>
<tr>
<th>Designation</th>
<th>Ag-Dup AAT-7 ppm</th>
<th>Cu-Dup AAT-7 ppm</th>
<th>Cu-Dup AAT-7 ppm</th>
<th>Ni AAT-7 ppm</th>
<th>Ni-Dup AAT-7 ppm</th>
<th>Zn AAT-7 ppm</th>
<th>Zn-Dup AAT-7 ppm</th>
<th>Pb AAT-7 ppm</th>
</tr>
</thead>
<tbody>
<tr>
<td>115747</td>
<td><0.2</td>
<td>193</td>
<td>190</td>
<td>56</td>
<td>60</td>
<td>98</td>
<td>94</td>
<td>19</td>
</tr>
<tr>
<td>115748</td>
<td>154</td>
<td>45</td>
<td>63</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>115749</td>
<td>187</td>
<td>53</td>
<td>91</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>115750</td>
<td>83</td>
<td>8</td>
<td>15</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>115751</td>
<td>167</td>
<td>54</td>
<td>83</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>115752</td>
<td>190</td>
<td>56</td>
<td>105</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>115753</td>
<td>181</td>
<td>118</td>
<td>95</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>115754</td>
<td>165</td>
<td>57</td>
<td>77</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>115755</td>
<td>177</td>
<td>59</td>
<td>97</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>115756</td>
<td>186</td>
<td>60</td>
<td>64</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>115757</td>
<td>146</td>
<td>56</td>
<td>51</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>115758</td>
<td>125</td>
<td>53</td>
<td>52</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>115759</td>
<td><0.2</td>
<td>255</td>
<td>250</td>
<td>62</td>
<td>66</td>
<td>82</td>
<td>80</td>
<td>23</td>
</tr>
<tr>
<td>115760</td>
<td>116</td>
<td>80</td>
<td>83</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>115761</td>
<td>158</td>
<td>85</td>
<td>100</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>115762</td>
<td>176</td>
<td>70</td>
<td>108</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>115763</td>
<td>188</td>
<td>75</td>
<td>130</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>115764</td>
<td>121</td>
<td>90</td>
<td>87</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>115765</td>
<td>134</td>
<td>184</td>
<td>85</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>115766</td>
<td>108</td>
<td>97</td>
<td>80</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Laboratoire Expert Inc.
127, Boulevard Industriel
Rouyn-Noranda, Québec
Canada, J9X 6P2
Telephone : (819) 762-7100, Fax : (819) 762-7510

*** Certificate of analysis ***

Client : Intrinsic

Addressee : Darlene Wojtczak

Folder : 25203
Your order number : 25203
Project : ABITIBI EAST

Total number of samples : 119

<table>
<thead>
<tr>
<th>Designation</th>
<th>Ag-Dup AAT-7 ppm</th>
<th>Cu-AAT-7 ppm</th>
<th>Cu-Dup AAT-7 ppm</th>
<th>Ni-AAT-7 ppm</th>
<th>Ni-Dup AAT-7 ppm</th>
<th>Zn-AAT-7 ppm</th>
<th>Zn-Dup AAT-7 ppm</th>
<th>Pb AAT-7 ppm</th>
</tr>
</thead>
<tbody>
<tr>
<td>115767</td>
<td>60</td>
<td></td>
<td></td>
<td>31</td>
<td></td>
<td>42</td>
<td></td>
<td>10</td>
</tr>
<tr>
<td>115768</td>
<td>20</td>
<td></td>
<td></td>
<td>11</td>
<td></td>
<td>18</td>
<td></td>
<td>5</td>
</tr>
<tr>
<td>115769</td>
<td>37</td>
<td></td>
<td></td>
<td>38</td>
<td></td>
<td>25</td>
<td></td>
<td>9</td>
</tr>
<tr>
<td>115770</td>
<td>155</td>
<td></td>
<td>105</td>
<td>106</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>115771</td>
<td><0.2</td>
<td>180</td>
<td>176</td>
<td>112</td>
<td>120</td>
<td>102</td>
<td>104</td>
<td>19</td>
</tr>
<tr>
<td>115772</td>
<td>24</td>
<td></td>
<td></td>
<td>23</td>
<td></td>
<td>26</td>
<td></td>
<td>6</td>
</tr>
<tr>
<td>115773</td>
<td>20</td>
<td></td>
<td></td>
<td>6</td>
<td></td>
<td>23</td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>115774</td>
<td>29</td>
<td></td>
<td></td>
<td>5</td>
<td></td>
<td>21</td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>115775</td>
<td>496</td>
<td></td>
<td>76</td>
<td>103</td>
<td></td>
<td></td>
<td></td>
<td>28</td>
</tr>
<tr>
<td>115776</td>
<td>220</td>
<td></td>
<td>69</td>
<td>87</td>
<td></td>
<td></td>
<td></td>
<td>21</td>
</tr>
<tr>
<td>115777</td>
<td>166</td>
<td></td>
<td>66</td>
<td>92</td>
<td></td>
<td></td>
<td></td>
<td>20</td>
</tr>
<tr>
<td>115778</td>
<td>197</td>
<td></td>
<td>87</td>
<td>95</td>
<td></td>
<td></td>
<td></td>
<td>19</td>
</tr>
<tr>
<td>115779</td>
<td>55</td>
<td></td>
<td>52</td>
<td>51</td>
<td></td>
<td></td>
<td></td>
<td>11</td>
</tr>
<tr>
<td>115780</td>
<td>37</td>
<td></td>
<td>59</td>
<td>47</td>
<td></td>
<td></td>
<td></td>
<td>10</td>
</tr>
<tr>
<td>115781</td>
<td>54</td>
<td></td>
<td>62</td>
<td>50</td>
<td></td>
<td></td>
<td></td>
<td>11</td>
</tr>
<tr>
<td>115782</td>
<td>149</td>
<td></td>
<td>59</td>
<td>88</td>
<td></td>
<td></td>
<td></td>
<td>18</td>
</tr>
<tr>
<td>115783</td>
<td><0.2</td>
<td>82</td>
<td>80</td>
<td>903</td>
<td>904</td>
<td>19</td>
<td>17</td>
<td>20</td>
</tr>
<tr>
<td>115784</td>
<td>83</td>
<td></td>
<td>757</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>18</td>
</tr>
<tr>
<td>115785</td>
<td>100</td>
<td></td>
<td>324</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>16</td>
</tr>
<tr>
<td>115786</td>
<td>87</td>
<td></td>
<td>584</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>16</td>
</tr>
</tbody>
</table>
Certificate of analysis

Client: Intrinsic

Addressee: Darlene Wojtczak

Folder: 25203

Project: ABITIBI EAST

Total number of samples: 119

<table>
<thead>
<tr>
<th>Designation</th>
<th>Ag-Dup AAT-7 ppm</th>
<th>Cu-Dup AAT-7 ppm</th>
<th>Cu-Dup AAT-7 ppm</th>
<th>Ni-Dup AAT-7 ppm</th>
<th>Ni-Dup AAT-7 ppm</th>
<th>Zn-Dup AAT-7 ppm</th>
<th>Zn-Dup AAT-7 ppm</th>
<th>Pb AAT-7 ppm</th>
</tr>
</thead>
<tbody>
<tr>
<td>115787</td>
<td>99</td>
<td>527</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>115788</td>
<td>200</td>
<td>460</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>115789</td>
<td>78</td>
<td>391</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>115790</td>
<td>55</td>
<td>404</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>115791</td>
<td>170</td>
<td>468</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>115792</td>
<td>48</td>
<td>234</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>115793</td>
<td>34</td>
<td>32</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>115794</td>
<td>33</td>
<td>29</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>115795</td>
<td><0.2</td>
<td>27</td>
<td>26</td>
<td>28</td>
<td>30</td>
<td>63</td>
<td>65</td>
<td>9</td>
</tr>
<tr>
<td>115796</td>
<td>27</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>115797</td>
<td>30</td>
<td>42</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>115798</td>
<td>29</td>
<td>32</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>115799</td>
<td>33</td>
<td>30</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>115800</td>
<td>86</td>
<td>8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>115801</td>
<td>73</td>
<td>18</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>115802</td>
<td>44</td>
<td>29</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>115803</td>
<td>29</td>
<td>24</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>115804</td>
<td>33</td>
<td>24</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>115805</td>
<td>67</td>
<td>20</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>115806</td>
<td>30</td>
<td>25</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Certificate of analysis

Laboratoire Expert Inc.
127, Boulevard Industriel
Rouyn-Noranda, Québec
Canada, J9X 6P2
Telephone : (819) 762-7100, Fax : (819) 762-7510

Client : Intrinsic

Addressee : Darlene Wojtczak

Folder : 25203
Your order number : ABITIBI EAST
Project : ABITIBI EAST

Total number of samples : 119

<table>
<thead>
<tr>
<th>Designation</th>
<th>Ag-Dup AAT-7 ppm 0.2</th>
<th>Cu-Dup AAT-7 ppm 2</th>
<th>Cu-Dup AAT-7 ppm 2</th>
<th>Ni AAT-7 ppm 2</th>
<th>Ni-Dup AAT-7 ppm 2</th>
<th>Zn AAT-7 ppm 2</th>
<th>Zn-Dup AAT-7 ppm 2</th>
<th>Pb AAT-7 ppm 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>115807</td>
<td><0.2</td>
<td>59</td>
<td>56</td>
<td>17</td>
<td>17</td>
<td>42</td>
<td>44</td>
<td>17</td>
</tr>
<tr>
<td>115808</td>
<td>46</td>
<td>22</td>
<td>66</td>
<td>16</td>
<td>10</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>115809</td>
<td>54</td>
<td>69</td>
<td>96</td>
<td>14</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>115810</td>
<td>106</td>
<td>608</td>
<td>16</td>
<td>19</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>115811</td>
<td>76</td>
<td>479</td>
<td>18</td>
<td>18</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>115812</td>
<td>76</td>
<td>414</td>
<td>17</td>
<td>18</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>115813</td>
<td>63</td>
<td>460</td>
<td>13</td>
<td>17</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>115815</td>
<td>70</td>
<td>365</td>
<td>24</td>
<td>17</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>115816</td>
<td>68</td>
<td>385</td>
<td>17</td>
<td>19</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>115817</td>
<td>64</td>
<td>409</td>
<td>14</td>
<td>17</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>115818</td>
<td><0.2</td>
<td>68</td>
<td>440</td>
<td>21</td>
<td>18</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>115819</td>
<td>63</td>
<td>64</td>
<td>361</td>
<td>18</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>115820</td>
<td>53</td>
<td>337</td>
<td>17</td>
<td>19</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>115821</td>
<td>65</td>
<td>306</td>
<td>14</td>
<td>21</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>115822</td>
<td>50</td>
<td>316</td>
<td>13</td>
<td>17</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>115823</td>
<td>52</td>
<td>270</td>
<td>12</td>
<td>14</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>115824</td>
<td>60</td>
<td>337</td>
<td>13</td>
<td>15</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>115825</td>
<td>612</td>
<td>91</td>
<td>102</td>
<td>98</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>115826</td>
<td>65</td>
<td>300</td>
<td>13</td>
<td>19</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Certificate of analysis

Laboratoire Expert Inc.

127, Boulevard Industriel
Rouyn-Noranda, Québec
Canada, J9X 6P2

Telephone: (819) 762-7100, **Fax:** (819) 762-7510

Date: 2009/09/22

Client: Intrinsic

Addressee: Darlene Wojtczak

Folder: 25203

Your order number:

Project: ABITIBI EAST

Total number of samples: 119

<table>
<thead>
<tr>
<th>Designation</th>
<th>Ag-Dup AAT-7 ppm</th>
<th>Cu AAT-7 ppm</th>
<th>Cu-Dup AAT-7 ppm</th>
<th>Ni AAT-7 ppm</th>
<th>Ni-Dup AAT-7 ppm</th>
<th>Zn AAT-7 ppm</th>
<th>Zn-Dup AAT-7 ppm</th>
<th>Pb AAT-7 ppm</th>
</tr>
</thead>
<tbody>
<tr>
<td>115827</td>
<td>64</td>
<td>368</td>
<td>16</td>
<td>15</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>115828</td>
<td>54</td>
<td>414</td>
<td>15</td>
<td>15</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>115829</td>
<td>71</td>
<td>344</td>
<td>14</td>
<td>16</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>115830</td>
<td>53</td>
<td>301</td>
<td>17</td>
<td>14</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>115831</td>
<td><0.2</td>
<td>87</td>
<td>390</td>
<td>17</td>
<td>16</td>
<td>18</td>
<td></td>
<td></td>
</tr>
<tr>
<td>115832</td>
<td>76</td>
<td>358</td>
<td>14</td>
<td>17</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>115833</td>
<td>71</td>
<td>352</td>
<td>17</td>
<td>19</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>115834</td>
<td>73</td>
<td>335</td>
<td>14</td>
<td>18</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>115835</td>
<td>70</td>
<td>368</td>
<td>17</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>115836</td>
<td>153</td>
<td>689</td>
<td>18</td>
<td>20</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>115837</td>
<td>63</td>
<td>398</td>
<td>60</td>
<td>25</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>115838</td>
<td>63</td>
<td>260</td>
<td>58</td>
<td>24</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>115839</td>
<td>151</td>
<td>1053</td>
<td>25</td>
<td>21</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>115840</td>
<td>93</td>
<td>930</td>
<td>16</td>
<td>24</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>115841</td>
<td>76</td>
<td>805</td>
<td>16</td>
<td>22</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>115842</td>
<td>126</td>
<td>1015</td>
<td>17</td>
<td>23</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>115843</td>
<td><0.2</td>
<td>115</td>
<td>576</td>
<td>45</td>
<td>47</td>
<td>21</td>
<td></td>
<td></td>
</tr>
<tr>
<td>115844</td>
<td>62</td>
<td>787</td>
<td>16</td>
<td>21</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>115845</td>
<td>73</td>
<td>766</td>
<td>16</td>
<td>21</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>115846</td>
<td>104</td>
<td>733</td>
<td>16</td>
<td>21</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Certificate of analysis

Date: 2009/09/22
Page: 12 of 18

Laboratoire Expert Inc.
127, Boulevard Industriel
Rouyn-Noranda, Québec
Canada, JOX 6P2
Telephone: (819) 762-7100, Fax: (819) 762-7510

Client: Intrinsic
Addressee: Darlene Wojtczak
Folder: 25203
Your order number:
Project: ABITIBI EAST
Total number of samples: 119

<table>
<thead>
<tr>
<th>Designation</th>
<th>Ag-Dup AAT-7 ppm</th>
<th>Cu AAT-7 ppm</th>
<th>Cu-Dup AAT-7 ppm</th>
<th>Ni AAT-7 ppm</th>
<th>Ni-Dup AAT-7 ppm</th>
<th>Zn AAT-7 ppm</th>
<th>Zn-Dup AAT-7 ppm</th>
<th>Pb AAT-7 ppm</th>
</tr>
</thead>
<tbody>
<tr>
<td>115847</td>
<td>58</td>
<td>608</td>
<td>12</td>
<td>61</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>115848</td>
<td>99</td>
<td>607</td>
<td>12</td>
<td>61</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>115849</td>
<td>74</td>
<td>573</td>
<td>13</td>
<td>18</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>115850</td>
<td>83</td>
<td>24</td>
<td>20</td>
<td>24</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>115851</td>
<td>223</td>
<td>816</td>
<td>20</td>
<td>24</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>115852</td>
<td>106</td>
<td>875</td>
<td>11</td>
<td>22</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>115853</td>
<td>83</td>
<td>788</td>
<td>11</td>
<td>22</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>115854</td>
<td>79</td>
<td>769</td>
<td>11</td>
<td>21</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>115855</td>
<td><0.2</td>
<td>141</td>
<td>143</td>
<td>989</td>
<td>1003</td>
<td>60</td>
<td>61</td>
<td></td>
</tr>
<tr>
<td>115856</td>
<td>79</td>
<td>106</td>
<td>57</td>
<td>14</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>115857</td>
<td>41</td>
<td>249</td>
<td>51</td>
<td>16</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>115858</td>
<td>94</td>
<td>403</td>
<td>20</td>
<td>30</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>115859</td>
<td>82</td>
<td>112</td>
<td>62</td>
<td>24</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>115860</td>
<td>77</td>
<td>88</td>
<td>61</td>
<td>25</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>115861</td>
<td>105</td>
<td>76</td>
<td>32</td>
<td>25</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>115862</td>
<td>82</td>
<td>133</td>
<td>44</td>
<td>27</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>115863</td>
<td>98</td>
<td>129</td>
<td>19</td>
<td>32</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>115864</td>
<td>84</td>
<td>459</td>
<td>31</td>
<td>22</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>115865</td>
<td>80</td>
<td>1054</td>
<td>36</td>
<td>25</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Designation</td>
<td>Pb-Dup AAT-7 ppm 2</td>
<td>Cu AAT-7 ppm 2</td>
<td>Cu-Dup AAT-7 ppm 2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-------------</td>
<td>--------------------</td>
<td>---------------</td>
<td>-------------------</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>115747</td>
<td>20</td>
<td>46</td>
<td>47</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>115748</td>
<td></td>
<td>33</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>115749</td>
<td></td>
<td>49</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>115750</td>
<td></td>
<td>17</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>115751</td>
<td></td>
<td>43</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>115752</td>
<td></td>
<td>47</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>115753</td>
<td></td>
<td>49</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>115754</td>
<td></td>
<td>46</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>115755</td>
<td></td>
<td>47</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>115756</td>
<td></td>
<td>45</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>115757</td>
<td></td>
<td>37</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>115758</td>
<td></td>
<td>29</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>115759</td>
<td>24</td>
<td>51</td>
<td>53</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>115760</td>
<td></td>
<td>42</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>115761</td>
<td></td>
<td>48</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>115762</td>
<td></td>
<td>49</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>115763</td>
<td></td>
<td>49</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>115764</td>
<td></td>
<td>49</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>115765</td>
<td></td>
<td>55</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>115766</td>
<td></td>
<td>49</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Certificate of analysis

Client: Intrinsic
Addressee: Darlene Wojtczak
Folder: 25203
Your order number:
Project: ABITIBI EAST
Total number of samples: 119

<table>
<thead>
<tr>
<th>Designation</th>
<th>Pb-Dup AAT-7 ppm</th>
<th>Cu AAT-7 ppm</th>
<th>Co-Dup AAT-7 ppm</th>
</tr>
</thead>
<tbody>
<tr>
<td>115767</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>115768</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>115769</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>115770</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>115771</td>
<td>18</td>
<td>49</td>
<td>49</td>
</tr>
<tr>
<td>115772</td>
<td>8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>115773</td>
<td>5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>115774</td>
<td>5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>115775</td>
<td>373</td>
<td></td>
<td></td>
</tr>
<tr>
<td>115776</td>
<td>56</td>
<td></td>
<td></td>
</tr>
<tr>
<td>115777</td>
<td>51</td>
<td></td>
<td></td>
</tr>
<tr>
<td>115778</td>
<td>49</td>
<td></td>
<td></td>
</tr>
<tr>
<td>115779</td>
<td>23</td>
<td></td>
<td></td>
</tr>
<tr>
<td>115780</td>
<td>20</td>
<td></td>
<td></td>
</tr>
<tr>
<td>115781</td>
<td>25</td>
<td></td>
<td></td>
</tr>
<tr>
<td>115782</td>
<td>46</td>
<td></td>
<td></td>
</tr>
<tr>
<td>115783</td>
<td>20</td>
<td>88</td>
<td>88</td>
</tr>
<tr>
<td>115784</td>
<td>85</td>
<td></td>
<td></td>
</tr>
<tr>
<td>115785</td>
<td>51</td>
<td></td>
<td></td>
</tr>
<tr>
<td>115786</td>
<td>87</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Certificate of analysis

Date: 2009/09/22

Laboratoire Expert Inc.
127, Boulevard Industriel
Rouyn-Noranda, Québec
Canada, J9X 6P2
Telephone: (819) 762-7100, Fax: (819) 762-7510

Client: Intrinsic

Addressee: Darlene Wojtczak

Folder: 25203

Your order number: ABITIBI EAST

Project: ABITIBI EAST

Total number of samples: 119

<table>
<thead>
<tr>
<th>Designation</th>
<th>Pb-Dup</th>
<th>Cu</th>
<th>Co-Dup</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>AAT-7 ppm</td>
<td>AAT-7 ppm</td>
<td>AAT-7 ppm</td>
</tr>
<tr>
<td>115787</td>
<td>2</td>
<td>92</td>
<td></td>
</tr>
<tr>
<td>115788</td>
<td></td>
<td>52</td>
<td></td>
</tr>
<tr>
<td>115789</td>
<td></td>
<td>65</td>
<td></td>
</tr>
<tr>
<td>115790</td>
<td></td>
<td>69</td>
<td></td>
</tr>
<tr>
<td>115791</td>
<td></td>
<td>31</td>
<td></td>
</tr>
<tr>
<td>115792</td>
<td></td>
<td>32</td>
<td></td>
</tr>
<tr>
<td>115793</td>
<td></td>
<td>21</td>
<td></td>
</tr>
<tr>
<td>115794</td>
<td></td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>115795</td>
<td>10</td>
<td>21</td>
<td>23</td>
</tr>
<tr>
<td>115796</td>
<td></td>
<td>19</td>
<td></td>
</tr>
<tr>
<td>115797</td>
<td></td>
<td>19</td>
<td></td>
</tr>
<tr>
<td>115798</td>
<td></td>
<td>19</td>
<td></td>
</tr>
<tr>
<td>115799</td>
<td></td>
<td>19</td>
<td></td>
</tr>
<tr>
<td>115800</td>
<td></td>
<td>17</td>
<td></td>
</tr>
<tr>
<td>115801</td>
<td></td>
<td>22</td>
<td></td>
</tr>
<tr>
<td>115802</td>
<td></td>
<td>19</td>
<td></td>
</tr>
<tr>
<td>115803</td>
<td></td>
<td>19</td>
<td></td>
</tr>
<tr>
<td>115804</td>
<td></td>
<td>18</td>
<td></td>
</tr>
<tr>
<td>115805</td>
<td></td>
<td>19</td>
<td></td>
</tr>
<tr>
<td>115806</td>
<td></td>
<td>17</td>
<td></td>
</tr>
</tbody>
</table>
Certificate of analysis

Client: **Intrinsic**

Addressee: Darlene Wojtczak

Folder: 25203

Your order number:

Project: ABITIBI EAST

Total number of samples: 119

<table>
<thead>
<tr>
<th>Designation</th>
<th>Pb-Dup AAT-7 ppm</th>
<th>Co-Dup AAT-7 ppm</th>
<th>Co-Dup AAT-7 ppm</th>
</tr>
</thead>
<tbody>
<tr>
<td>115807</td>
<td>18</td>
<td>19</td>
<td>20</td>
</tr>
<tr>
<td>115808</td>
<td>20</td>
<td></td>
<td></td>
</tr>
<tr>
<td>115809</td>
<td>24</td>
<td></td>
<td></td>
</tr>
<tr>
<td>115810</td>
<td>48</td>
<td></td>
<td></td>
</tr>
<tr>
<td>115811</td>
<td>52</td>
<td></td>
<td></td>
</tr>
<tr>
<td>115812</td>
<td>50</td>
<td></td>
<td></td>
</tr>
<tr>
<td>115813</td>
<td>46</td>
<td></td>
<td></td>
</tr>
<tr>
<td>115814</td>
<td>46</td>
<td></td>
<td></td>
</tr>
<tr>
<td>115815</td>
<td>37</td>
<td></td>
<td></td>
</tr>
<tr>
<td>115816</td>
<td>43</td>
<td></td>
<td></td>
</tr>
<tr>
<td>115817</td>
<td>44</td>
<td></td>
<td></td>
</tr>
<tr>
<td>115818</td>
<td>44</td>
<td></td>
<td></td>
</tr>
<tr>
<td>115819</td>
<td>17</td>
<td>40</td>
<td>31</td>
</tr>
<tr>
<td>115820</td>
<td>38</td>
<td></td>
<td></td>
</tr>
<tr>
<td>115821</td>
<td>36</td>
<td></td>
<td></td>
</tr>
<tr>
<td>115822</td>
<td>35</td>
<td></td>
<td></td>
</tr>
<tr>
<td>115823</td>
<td>31</td>
<td></td>
<td></td>
</tr>
<tr>
<td>115824</td>
<td>35</td>
<td></td>
<td></td>
</tr>
<tr>
<td>115825</td>
<td>51</td>
<td></td>
<td></td>
</tr>
<tr>
<td>115826</td>
<td>39</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Certificate of analysis

Client: Intrinsic

Addressee: Darlene Wojtczak

Folder: 25203

Your order number: 25203

Project: ABITIBI EAST

Total number of samples: 119

<table>
<thead>
<tr>
<th>Designation</th>
<th>Pb-Dup AAT-7 ppm</th>
<th>Cu AAT-7 ppm</th>
<th>Co-Dup AAT-7 ppm</th>
</tr>
</thead>
<tbody>
<tr>
<td>115827</td>
<td>2</td>
<td>38</td>
<td></td>
</tr>
<tr>
<td>115828</td>
<td>2</td>
<td>38</td>
<td></td>
</tr>
<tr>
<td>115829</td>
<td>2</td>
<td>35</td>
<td></td>
</tr>
<tr>
<td>115830</td>
<td>2</td>
<td>32</td>
<td></td>
</tr>
<tr>
<td>115831</td>
<td>2</td>
<td>18</td>
<td>37</td>
</tr>
<tr>
<td>115832</td>
<td>2</td>
<td>35</td>
<td></td>
</tr>
<tr>
<td>115833</td>
<td>2</td>
<td>38</td>
<td></td>
</tr>
<tr>
<td>115834</td>
<td>2</td>
<td>36</td>
<td></td>
</tr>
<tr>
<td>115835</td>
<td>2</td>
<td>36</td>
<td></td>
</tr>
<tr>
<td>115836</td>
<td>2</td>
<td>45</td>
<td></td>
</tr>
<tr>
<td>115837</td>
<td>2</td>
<td>54</td>
<td></td>
</tr>
<tr>
<td>115838</td>
<td>2</td>
<td>48</td>
<td></td>
</tr>
<tr>
<td>115839</td>
<td>2</td>
<td>63</td>
<td></td>
</tr>
<tr>
<td>115840</td>
<td>2</td>
<td>59</td>
<td></td>
</tr>
<tr>
<td>115841</td>
<td>2</td>
<td>53</td>
<td></td>
</tr>
<tr>
<td>115842</td>
<td>2</td>
<td>61</td>
<td></td>
</tr>
<tr>
<td>115843</td>
<td>2</td>
<td>23</td>
<td>57</td>
</tr>
<tr>
<td>115844</td>
<td>2</td>
<td>41</td>
<td>60</td>
</tr>
<tr>
<td>115845</td>
<td>2</td>
<td>47</td>
<td></td>
</tr>
<tr>
<td>115846</td>
<td>2</td>
<td>49</td>
<td></td>
</tr>
</tbody>
</table>
Certificate of analysis

Client: Intrinsic

Addressee: Darlene Wojtczak

Folder: 25203

Your order number: 25203

Project: ABITIBI EAST

Total number of samples: 119

<table>
<thead>
<tr>
<th>Designation</th>
<th>Pb-Dup AAT-7 ppm</th>
<th>Co AAT-7 ppm</th>
<th>Co-Dup AAT-7 ppm</th>
</tr>
</thead>
<tbody>
<tr>
<td>115847</td>
<td>2</td>
<td>37</td>
<td>2</td>
</tr>
<tr>
<td>115848</td>
<td></td>
<td>44</td>
<td>2</td>
</tr>
<tr>
<td>115849</td>
<td></td>
<td>40</td>
<td>2</td>
</tr>
<tr>
<td>115850</td>
<td></td>
<td>18</td>
<td>2</td>
</tr>
<tr>
<td>115851</td>
<td></td>
<td>74</td>
<td>2</td>
</tr>
<tr>
<td>115852</td>
<td></td>
<td>71</td>
<td>2</td>
</tr>
<tr>
<td>115853</td>
<td></td>
<td>51</td>
<td>2</td>
</tr>
<tr>
<td>115854</td>
<td></td>
<td>48</td>
<td>2</td>
</tr>
<tr>
<td>115855</td>
<td>20</td>
<td>57</td>
<td>58</td>
</tr>
<tr>
<td>115856</td>
<td></td>
<td>30</td>
<td>2</td>
</tr>
<tr>
<td>115857</td>
<td></td>
<td>31</td>
<td>2</td>
</tr>
<tr>
<td>115858</td>
<td></td>
<td>38</td>
<td>2</td>
</tr>
<tr>
<td>115859</td>
<td></td>
<td>51</td>
<td>2</td>
</tr>
<tr>
<td>115860</td>
<td></td>
<td>48</td>
<td>2</td>
</tr>
<tr>
<td>115861</td>
<td></td>
<td>31</td>
<td>2</td>
</tr>
<tr>
<td>115862</td>
<td></td>
<td>46</td>
<td>2</td>
</tr>
<tr>
<td>115863</td>
<td></td>
<td>37</td>
<td>2</td>
</tr>
<tr>
<td>115864</td>
<td></td>
<td>38</td>
<td>2</td>
</tr>
<tr>
<td>115865</td>
<td></td>
<td>82</td>
<td>2</td>
</tr>
</tbody>
</table>
Certificate of analysis

Laboratoire Expert Inc.

127, Boulevard Industriel
Rouyn-Noranda, Québec
Canada, J9X 6P2
Telephone : (819) 762-7100, Fax : (819) 762-7510

Client : Intrinsic
Addressee : Kevin Montgomery

Folder : 25228
Your order number :
Project : ABITIBI EAST

Total number of samples : 70

<table>
<thead>
<tr>
<th>Designation</th>
<th>Au FA-GRAV (g/t)</th>
<th>Au DCP-1 (ppb)</th>
<th>Au-Dup DCP-1 (ppb)</th>
<th>Pt DCP-1 (ppb)</th>
<th>Pt-Dup DCP-1 (ppb)</th>
<th>Pd DCP-1 (ppb)</th>
<th>Pd-Dup DCP-1 (ppb)</th>
<th>Ag AAT-7 (ppm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>115866</td>
<td>10</td>
<td>8</td>
<td>8</td>
<td>10</td>
<td>8</td>
<td>6</td>
<td><0.2</td>
<td></td>
</tr>
<tr>
<td>115867</td>
<td>7</td>
<td>8</td>
<td>8</td>
<td>5</td>
<td>7</td>
<td><0.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>115868</td>
<td>29</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>2</td>
<td><0.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>115869</td>
<td>9</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>2</td>
<td><0.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>115870</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>2</td>
<td><0.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>115871</td>
<td>7</td>
<td>5</td>
<td>5</td>
<td>7</td>
<td>2</td>
<td><0.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>115872</td>
<td>11</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>2</td>
<td><0.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>115873</td>
<td>1.47</td>
<td>1575</td>
<td>5</td>
<td>5</td>
<td><5</td>
<td>2.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>115874</td>
<td>13</td>
<td>9</td>
<td>9</td>
<td>6</td>
<td>2</td>
<td><0.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>115875</td>
<td>246</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td>0.9</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>115876</td>
<td>15</td>
<td>8</td>
<td>8</td>
<td>6</td>
<td>2</td>
<td><0.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>115877</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td>0.2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>115878</td>
<td><5</td>
<td><5</td>
<td>10</td>
<td>8</td>
<td>7</td>
<td><0.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>115879</td>
<td><5</td>
<td><5</td>
<td>5</td>
<td><5</td>
<td>0.2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>115880</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>5</td>
<td>0.2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>115881</td>
<td>5</td>
<td>10</td>
<td>5</td>
<td>7</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>115882</td>
<td>399</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td>2.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>115883</td>
<td>11</td>
<td>12</td>
<td>12</td>
<td>10</td>
<td>2.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>115884</td>
<td>8</td>
<td>12</td>
<td>12</td>
<td>11</td>
<td>2.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>115885</td>
<td>66</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Joe Landers, Manager
Client : **Intrinsic**

Addressee : **Kevin Montgomery**

Certificate of analysis

<table>
<thead>
<tr>
<th>Designation</th>
<th>Au FA-GRAV g/l 0.03</th>
<th>Au DCP-1 ppb 5</th>
<th>Au-Dup DCP-1 ppb 5</th>
<th>Pt DCP-1 ppb 5</th>
<th>Pt-Dup DCP-1 ppb 5</th>
<th>Pd DCP-1 ppb 5</th>
<th>Pd-Dup DCP-1 ppb 5</th>
<th>Ag AAT-7 ppm 0.2</th>
</tr>
</thead>
<tbody>
<tr>
<td>115886</td>
<td>8</td>
<td>8</td>
<td></td>
<td>9</td>
<td><5</td>
<td></td>
<td></td>
<td><0.2</td>
</tr>
<tr>
<td>115887</td>
<td><5</td>
<td>8</td>
<td><5</td>
<td>9</td>
<td></td>
<td></td>
<td></td>
<td><0.2</td>
</tr>
<tr>
<td>115888</td>
<td>6</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td></td>
<td></td>
<td></td>
<td><0.2</td>
</tr>
<tr>
<td>115889</td>
<td><5</td>
<td>5</td>
<td><5</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td><0.2</td>
</tr>
<tr>
<td>115890</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td>6</td>
<td><5</td>
<td><5</td>
<td></td>
<td><0.2</td>
</tr>
<tr>
<td>115891</td>
<td><5</td>
<td>7</td>
<td></td>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td><0.2</td>
</tr>
<tr>
<td>115892</td>
<td><5</td>
<td>8</td>
<td></td>
<td>7</td>
<td></td>
<td></td>
<td></td>
<td><0.2</td>
</tr>
<tr>
<td>115893</td>
<td>7</td>
<td>11</td>
<td></td>
<td>8</td>
<td></td>
<td></td>
<td></td>
<td><0.2</td>
</tr>
<tr>
<td>115894</td>
<td>314</td>
<td><5</td>
<td></td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td><0.2</td>
</tr>
<tr>
<td>115895</td>
<td>30</td>
<td>8</td>
<td></td>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td><0.2</td>
</tr>
<tr>
<td>115896</td>
<td>6</td>
<td><5</td>
<td></td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td><0.2</td>
</tr>
<tr>
<td>115897</td>
<td><5</td>
<td><5</td>
<td></td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td><0.2</td>
</tr>
<tr>
<td>115898</td>
<td><5</td>
<td><5</td>
<td></td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td><0.2</td>
</tr>
<tr>
<td>115899</td>
<td>10</td>
<td>5</td>
<td></td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td><0.2</td>
</tr>
<tr>
<td>115900</td>
<td><5</td>
<td><5</td>
<td></td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td><0.2</td>
</tr>
<tr>
<td>115901</td>
<td><5</td>
<td>5</td>
<td></td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td><0.2</td>
</tr>
<tr>
<td>115902</td>
<td><5</td>
<td><5</td>
<td>7</td>
<td>9</td>
<td><5</td>
<td><5</td>
<td></td>
<td><0.2</td>
</tr>
<tr>
<td>115903</td>
<td><5</td>
<td><5</td>
<td></td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td><0.2</td>
</tr>
<tr>
<td>115904</td>
<td><5</td>
<td><5</td>
<td></td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td><0.2</td>
</tr>
<tr>
<td>115905</td>
<td><5</td>
<td><5</td>
<td></td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td><0.2</td>
</tr>
</tbody>
</table>

Total number of samples: 70
Certificate of analysis

Client: Intrinsic
Addressee: Kevin Montgomery
Folder: 25228
Project: ABITIBI EAST
Total number of samples: 70

<table>
<thead>
<tr>
<th>Designation</th>
<th>Au (g/t) FA-GRAV</th>
<th>Au (ppb) DCP-1</th>
<th>Au-Dup (ppb) DCP-1</th>
<th>Pt (ppb) DCP-1</th>
<th>Pt-Dup (ppb) DCP-1</th>
<th>Pd (ppb) DCP-1</th>
<th>Pd-Dup (ppb) DCP-1</th>
<th>Ag (ppm) AAT-7</th>
</tr>
</thead>
<tbody>
<tr>
<td>115906</td>
<td><5</td>
<td>5</td>
<td></td>
<td>5</td>
<td><5</td>
<td></td>
<td></td>
<td><0.2</td>
</tr>
<tr>
<td>115907</td>
<td>16</td>
<td>5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
<td><0.2</td>
</tr>
<tr>
<td>115908</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
<td><0.2</td>
</tr>
<tr>
<td>115909</td>
<td><5</td>
<td>7</td>
<td>7</td>
<td>1.6</td>
<td><2</td>
<td></td>
<td></td>
<td><0.2</td>
</tr>
<tr>
<td>115910</td>
<td><5</td>
<td>7</td>
<td>7</td>
<td><2</td>
<td></td>
<td></td>
<td></td>
<td><0.2</td>
</tr>
<tr>
<td>115911</td>
<td><5</td>
<td>6</td>
<td>7</td>
<td><2</td>
<td></td>
<td></td>
<td></td>
<td><0.2</td>
</tr>
<tr>
<td>115912</td>
<td><5</td>
<td>11</td>
<td>9</td>
<td><2</td>
<td></td>
<td></td>
<td></td>
<td><0.2</td>
</tr>
<tr>
<td>115913</td>
<td><5</td>
<td>9</td>
<td>8</td>
<td><2</td>
<td></td>
<td></td>
<td></td>
<td><0.2</td>
</tr>
<tr>
<td>115914</td>
<td>6</td>
<td>8</td>
<td>10</td>
<td>13</td>
<td>9</td>
<td>11</td>
<td></td>
<td><0.2</td>
</tr>
<tr>
<td>115915</td>
<td><5</td>
<td>9</td>
<td>8</td>
<td><2</td>
<td></td>
<td></td>
<td></td>
<td><0.2</td>
</tr>
<tr>
<td>115916</td>
<td>8</td>
<td>5</td>
<td>5</td>
<td><5</td>
<td>1.6</td>
<td></td>
<td></td>
<td><0.2</td>
</tr>
<tr>
<td>115917</td>
<td>6</td>
<td>8</td>
<td>7</td>
<td>1.6</td>
<td></td>
<td></td>
<td></td>
<td><0.2</td>
</tr>
<tr>
<td>115918</td>
<td>5</td>
<td>11</td>
<td>8</td>
<td><0.2</td>
<td></td>
<td></td>
<td></td>
<td><0.2</td>
</tr>
<tr>
<td>115919</td>
<td>6</td>
<td>8</td>
<td>9</td>
<td><0.2</td>
<td></td>
<td></td>
<td></td>
<td><0.2</td>
</tr>
<tr>
<td>115920</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
<td><0.2</td>
</tr>
<tr>
<td>115921</td>
<td>7</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
<td><0.2</td>
</tr>
<tr>
<td>115922</td>
<td>38</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
<td><0.2</td>
</tr>
<tr>
<td>115923</td>
<td>27</td>
<td>11</td>
<td>13</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td><0.2</td>
</tr>
<tr>
<td>115924</td>
<td>13</td>
<td>10</td>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td><0.2</td>
</tr>
<tr>
<td>115925</td>
<td>2.13</td>
<td>2026</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td>1.0</td>
</tr>
</tbody>
</table>
Certificate of analysis

Date: 2009/09/25

Client: Intrinsic

Addressee: Kevin Montgomery

Folder number: 25228

Project: ABITIBI EAST

Total number of samples: 70

<table>
<thead>
<tr>
<th>Designation</th>
<th>Au FA-GRAV g/t</th>
<th>Au DCP-1 ppb</th>
<th>Au-Dup DCP-1 ppb</th>
<th>Pt DCP-1 ppb</th>
<th>Pt-Dup DCP-1 ppb</th>
<th>Pd DCP-1 ppb</th>
<th>Pd-Dup DCP-1 ppb</th>
<th>Ag AAT-7 ppm</th>
</tr>
</thead>
<tbody>
<tr>
<td>115926</td>
<td>20</td>
<td>16</td>
<td>10</td>
<td>11</td>
<td>10</td>
<td>12</td>
<td><0.2</td>
<td></td>
</tr>
<tr>
<td>115927</td>
<td>21</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td><0.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>115928</td>
<td>1.92</td>
<td>1985</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td>3.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>115929</td>
<td>722</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td>2.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>115930</td>
<td>62</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><0.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>115931</td>
<td>111</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><0.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>115932</td>
<td>9</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td><0.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>115933</td>
<td>40</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><0.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>115934</td>
<td>7</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><0.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>115935</td>
<td>31</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><0.2</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Certificate of analysis

Date: 2009/09/25

Client: Intrinsic

Addressee: Kevin Montgomery

Folder: ABITIBI EAST

Your order number: 25228

Project: ABITIBI EAST

Total number of samples: 70

<table>
<thead>
<tr>
<th>Designation</th>
<th>Ag-Dup AAT-7 ppm</th>
<th>Cu AAT-7 ppm</th>
<th>Cu-Dup AAT-7 ppm</th>
<th>Ni AAT-7 ppm</th>
<th>Ni-Dup AAT-7 ppm</th>
<th>Zn AAT-7 ppm</th>
<th>Zn-Dup AAT-7 ppm</th>
<th>Pb AAT-7 ppm</th>
</tr>
</thead>
<tbody>
<tr>
<td>115866</td>
<td><0.2</td>
<td>140</td>
<td>137</td>
<td>651</td>
<td>649</td>
<td>55</td>
<td>57</td>
<td>18</td>
</tr>
<tr>
<td>115867</td>
<td>103</td>
<td>705</td>
<td>41</td>
<td></td>
<td>19</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>115868</td>
<td>93</td>
<td>595</td>
<td>37</td>
<td></td>
<td>19</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>115869</td>
<td>99</td>
<td>608</td>
<td>40</td>
<td></td>
<td>20</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>115870</td>
<td>109</td>
<td>656</td>
<td>48</td>
<td></td>
<td>19</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>115871</td>
<td>93</td>
<td>501</td>
<td>58</td>
<td></td>
<td>18</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>115872</td>
<td>120</td>
<td>543</td>
<td>112</td>
<td></td>
<td>18</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>115873</td>
<td>227</td>
<td>196</td>
<td>105</td>
<td></td>
<td>21</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>115874</td>
<td>105</td>
<td>579</td>
<td>67</td>
<td></td>
<td>19</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>115875</td>
<td>59</td>
<td>21</td>
<td>55</td>
<td></td>
<td>11</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>115876</td>
<td>90</td>
<td>606</td>
<td>64</td>
<td></td>
<td>19</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>115877</td>
<td>72</td>
<td>60</td>
<td>23</td>
<td></td>
<td>21</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>115878</td>
<td><0.2</td>
<td>100</td>
<td>100</td>
<td>563</td>
<td>570</td>
<td>58</td>
<td>59</td>
<td>17</td>
</tr>
<tr>
<td>115879</td>
<td>104</td>
<td>563</td>
<td>45</td>
<td></td>
<td>19</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>115880</td>
<td>94</td>
<td>578</td>
<td>46</td>
<td></td>
<td>19</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>115881</td>
<td>92</td>
<td>590</td>
<td>84</td>
<td></td>
<td>18</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>115882</td>
<td>221</td>
<td>54</td>
<td>64</td>
<td></td>
<td>17</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>115883</td>
<td>115</td>
<td>120</td>
<td>108</td>
<td></td>
<td>16</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>115884</td>
<td>191</td>
<td>89</td>
<td>101</td>
<td></td>
<td>17</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>115885</td>
<td>185</td>
<td>99</td>
<td>48</td>
<td></td>
<td>19</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Certificate of analysis

Client: Intrinsic

Addressee: Kevin Montgomery

Folder: 25228

Project: ABITIBI EAST

Total number of samples: 70

<table>
<thead>
<tr>
<th>Designation</th>
<th>Ag-Dup AAT-7 ppm</th>
<th>Cu AAT-7 ppm</th>
<th>Cu-Dup AAT-7 ppm</th>
<th>Ni AAT-7 ppm</th>
<th>Ni-Dup AAT-7 ppm</th>
<th>Zn AAT-7 ppm</th>
<th>Zn-Dup AAT-7 ppm</th>
<th>Pb AAT-7 ppm</th>
</tr>
</thead>
<tbody>
<tr>
<td>115886</td>
<td>132</td>
<td>112</td>
<td></td>
<td>85</td>
<td></td>
<td></td>
<td></td>
<td>15</td>
</tr>
<tr>
<td>115887</td>
<td>154</td>
<td>91</td>
<td></td>
<td>97</td>
<td></td>
<td></td>
<td></td>
<td>15</td>
</tr>
<tr>
<td>115888</td>
<td>119</td>
<td>88</td>
<td></td>
<td>108</td>
<td></td>
<td></td>
<td></td>
<td>17</td>
</tr>
<tr>
<td>115889</td>
<td>97</td>
<td>355</td>
<td></td>
<td>65</td>
<td></td>
<td></td>
<td></td>
<td>16</td>
</tr>
<tr>
<td>115890</td>
<td><0.2</td>
<td>73</td>
<td>71</td>
<td>100</td>
<td>101</td>
<td>36</td>
<td>36</td>
<td>18</td>
</tr>
<tr>
<td>115891</td>
<td>86</td>
<td>159</td>
<td></td>
<td>71</td>
<td></td>
<td></td>
<td></td>
<td>16</td>
</tr>
<tr>
<td>115892</td>
<td>145</td>
<td>78</td>
<td></td>
<td>89</td>
<td></td>
<td></td>
<td></td>
<td>16</td>
</tr>
<tr>
<td>115893</td>
<td>146</td>
<td>79</td>
<td></td>
<td>88</td>
<td></td>
<td></td>
<td></td>
<td>15</td>
</tr>
<tr>
<td>115894</td>
<td>52</td>
<td>33</td>
<td></td>
<td>82</td>
<td></td>
<td></td>
<td></td>
<td>12</td>
</tr>
<tr>
<td>115895</td>
<td>111</td>
<td>454</td>
<td></td>
<td>93</td>
<td></td>
<td></td>
<td></td>
<td>15</td>
</tr>
<tr>
<td>115896</td>
<td>99</td>
<td>12</td>
<td></td>
<td>112</td>
<td></td>
<td></td>
<td></td>
<td>18</td>
</tr>
<tr>
<td>115897</td>
<td>97</td>
<td>526</td>
<td></td>
<td>65</td>
<td></td>
<td></td>
<td></td>
<td>16</td>
</tr>
<tr>
<td>115898</td>
<td>82</td>
<td>369</td>
<td></td>
<td>69</td>
<td></td>
<td></td>
<td></td>
<td>16</td>
</tr>
<tr>
<td>115899</td>
<td>100</td>
<td>369</td>
<td></td>
<td>57</td>
<td></td>
<td></td>
<td></td>
<td>17</td>
</tr>
<tr>
<td>115900</td>
<td>56</td>
<td>15</td>
<td></td>
<td>19</td>
<td></td>
<td></td>
<td></td>
<td>19</td>
</tr>
<tr>
<td>115901</td>
<td>79</td>
<td>458</td>
<td></td>
<td>36</td>
<td></td>
<td></td>
<td></td>
<td>19</td>
</tr>
<tr>
<td>115902</td>
<td><0.2</td>
<td>87</td>
<td>86</td>
<td>528</td>
<td>524</td>
<td>33</td>
<td>34</td>
<td>19</td>
</tr>
<tr>
<td>115903</td>
<td>82</td>
<td></td>
<td></td>
<td>477</td>
<td></td>
<td>31</td>
<td></td>
<td>17</td>
</tr>
<tr>
<td>115904</td>
<td>89</td>
<td>467</td>
<td></td>
<td>33</td>
<td></td>
<td></td>
<td></td>
<td>16</td>
</tr>
<tr>
<td>115905</td>
<td>97</td>
<td>497</td>
<td></td>
<td>59</td>
<td></td>
<td></td>
<td></td>
<td>18</td>
</tr>
</tbody>
</table>
Certificate of analysis

Date: 2009/09/25

Laboratoire Expert Inc.

127, Boulevard Industriel
Rouyn-Noranda, Québec
Canada, J9X 6P2

Telephone : (819) 762-7100, Fax : (819) 762-7510

Client: Intrinsic

Addressee: Kevin Montgomery

Folder number: 25228

Project: ABITIBI EAST

Total number of samples: 70

<table>
<thead>
<tr>
<th>Designation</th>
<th>Ag-Dup AAT-7 ppm</th>
<th>Cu AAT-7 ppm</th>
<th>Cu-Dup AAT-7 ppm</th>
<th>Ni AAT-7 ppm</th>
<th>Ni-Dup AAT-7 ppm</th>
<th>Zn AAT-7 ppm</th>
<th>Zn-Dup AAT-7 ppm</th>
<th>Pb AAT-7 ppm</th>
</tr>
</thead>
<tbody>
<tr>
<td>115906</td>
<td>0.2</td>
<td>104</td>
<td>538</td>
<td>73</td>
<td>18</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>115907</td>
<td>116</td>
<td>294</td>
<td>75</td>
<td>16</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>115908</td>
<td>96</td>
<td>433</td>
<td>119</td>
<td>16</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>115909</td>
<td>164</td>
<td>104</td>
<td>128</td>
<td>19</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>115910</td>
<td>156</td>
<td>87</td>
<td>111</td>
<td>14</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>115911</td>
<td>153</td>
<td>82</td>
<td>88</td>
<td>13</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>115912</td>
<td>170</td>
<td>59</td>
<td>83</td>
<td>12</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>115913</td>
<td>171</td>
<td>66</td>
<td>88</td>
<td>13</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>115914</td>
<td><0.2</td>
<td>156</td>
<td>159</td>
<td>65</td>
<td>85</td>
<td>87</td>
<td>13</td>
<td></td>
</tr>
<tr>
<td>115915</td>
<td>108</td>
<td>69</td>
<td>68</td>
<td>16</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>115916</td>
<td>99</td>
<td>50</td>
<td>73</td>
<td>14</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>115917</td>
<td>134</td>
<td>71</td>
<td>74</td>
<td>14</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>115918</td>
<td>152</td>
<td>72</td>
<td>73</td>
<td>13</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>115919</td>
<td>167</td>
<td>79</td>
<td>73</td>
<td>13</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>115920</td>
<td>80</td>
<td>39</td>
<td>74</td>
<td>14</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>115921</td>
<td>45</td>
<td>24</td>
<td>81</td>
<td>13</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>115922</td>
<td>195</td>
<td>48</td>
<td>60</td>
<td>17</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>115923</td>
<td>169</td>
<td>73</td>
<td>87</td>
<td>14</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>115924</td>
<td>161</td>
<td>68</td>
<td>82</td>
<td>13</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>115925</td>
<td>482</td>
<td>74</td>
<td>95</td>
<td>26</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
*** Certificate of analysis ***

Date: 2009/09/25
Page: 8 of 12

Client: Intrinsic
Addressee: Kevin Montgomery
Folder number: 25228
Project: ABITIBI EAST
Total number of samples: 70

<table>
<thead>
<tr>
<th>Designation</th>
<th>Ag-Dup AAT-7 ppm</th>
<th>Cu AAT-7 ppm</th>
<th>Cu-Dup AAT-7 ppm</th>
<th>Ni AAT-7 ppm</th>
<th>Ni-Dup AAT-7 ppm</th>
<th>Zn AAT-7 ppm</th>
<th>Zn-Dup AAT-7 ppm</th>
<th>Pb AAT-7 ppm</th>
</tr>
</thead>
<tbody>
<tr>
<td>115926</td>
<td><0.2</td>
<td>173</td>
<td>170</td>
<td>79</td>
<td>78</td>
<td>95</td>
<td>95</td>
<td>14</td>
</tr>
<tr>
<td>115927</td>
<td>160</td>
<td>69</td>
<td></td>
<td></td>
<td>101</td>
<td></td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>115928</td>
<td>180</td>
<td>38</td>
<td></td>
<td>71</td>
<td>59</td>
<td></td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>115929</td>
<td>70</td>
<td>31</td>
<td></td>
<td>88</td>
<td>59</td>
<td></td>
<td>26</td>
<td></td>
</tr>
<tr>
<td>115930</td>
<td>167</td>
<td>75</td>
<td></td>
<td>81</td>
<td></td>
<td></td>
<td>14</td>
<td></td>
</tr>
<tr>
<td>115931</td>
<td>153</td>
<td>82</td>
<td></td>
<td>79</td>
<td>71</td>
<td></td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>115932</td>
<td>155</td>
<td>74</td>
<td></td>
<td>71</td>
<td>71</td>
<td></td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>115933</td>
<td>150</td>
<td>75</td>
<td></td>
<td>81</td>
<td></td>
<td></td>
<td>14</td>
<td></td>
</tr>
<tr>
<td>115934</td>
<td>183</td>
<td>74</td>
<td></td>
<td>79</td>
<td></td>
<td></td>
<td>13</td>
<td></td>
</tr>
<tr>
<td>115935</td>
<td>97</td>
<td>56</td>
<td></td>
<td>54</td>
<td></td>
<td></td>
<td>14</td>
<td></td>
</tr>
</tbody>
</table>
Laboratoire Expert Inc.

127, Boulevard Industriel
Rouyn-Noranda, Québec
Canada, J9X 6P2
Telephone : (819) 762-7100, Fax : (819) 762-7510

*** Certificate of analysis ***

Date : 2009/09/25
Page : 9 of 12

Client : Intrinsic

Addressee : Kevin Montgomery

Folder : 25228
Your order number :
Project : ABITIBI EAST
Total number of samples : 70

<table>
<thead>
<tr>
<th>Designation</th>
<th>Pb-Dup AAT-7 ppm 2</th>
<th>Ca AAT-7 ppm 2</th>
<th>Co-Dup AAT-7 ppm 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>115866</td>
<td>17</td>
<td>62</td>
<td>60</td>
</tr>
<tr>
<td>115867</td>
<td></td>
<td>79</td>
<td></td>
</tr>
<tr>
<td>115868</td>
<td></td>
<td>64</td>
<td></td>
</tr>
<tr>
<td>115869</td>
<td></td>
<td>62</td>
<td></td>
</tr>
<tr>
<td>115870</td>
<td></td>
<td>72</td>
<td></td>
</tr>
<tr>
<td>115871</td>
<td></td>
<td>60</td>
<td></td>
</tr>
<tr>
<td>115872</td>
<td></td>
<td>61</td>
<td></td>
</tr>
<tr>
<td>115873</td>
<td></td>
<td>48</td>
<td></td>
</tr>
<tr>
<td>115874</td>
<td></td>
<td>66</td>
<td></td>
</tr>
<tr>
<td>115875</td>
<td></td>
<td>79</td>
<td></td>
</tr>
<tr>
<td>115876</td>
<td></td>
<td>67</td>
<td></td>
</tr>
<tr>
<td>115877</td>
<td></td>
<td>27</td>
<td></td>
</tr>
<tr>
<td>115878</td>
<td>17</td>
<td>65</td>
<td>67</td>
</tr>
<tr>
<td>115879</td>
<td></td>
<td>65</td>
<td></td>
</tr>
<tr>
<td>115880</td>
<td></td>
<td>62</td>
<td></td>
</tr>
<tr>
<td>115881</td>
<td></td>
<td>67</td>
<td></td>
</tr>
<tr>
<td>115882</td>
<td></td>
<td>32</td>
<td></td>
</tr>
<tr>
<td>115883</td>
<td></td>
<td>48</td>
<td></td>
</tr>
<tr>
<td>115884</td>
<td></td>
<td>57</td>
<td></td>
</tr>
<tr>
<td>115885</td>
<td></td>
<td>49</td>
<td></td>
</tr>
</tbody>
</table>
Certificate of analysis

Client: Intrinsic

Addressee: Kevin Montgomery

Folder: 25228
Your order number:
Project: ABITIBI EAST

Total number of samples: 70

<table>
<thead>
<tr>
<th>Designation</th>
<th>Pb-Dup AAT-7 ppm</th>
<th>Co AAT-7 ppm</th>
<th>Co-Dup AAT-7 ppm</th>
</tr>
</thead>
<tbody>
<tr>
<td>115886</td>
<td>53</td>
<td></td>
<td></td>
</tr>
<tr>
<td>115887</td>
<td>53</td>
<td></td>
<td></td>
</tr>
<tr>
<td>115888</td>
<td>55</td>
<td></td>
<td></td>
</tr>
<tr>
<td>115889</td>
<td>52</td>
<td></td>
<td></td>
</tr>
<tr>
<td>115890</td>
<td>17</td>
<td>32</td>
<td>31</td>
</tr>
<tr>
<td>115891</td>
<td>47</td>
<td></td>
<td></td>
</tr>
<tr>
<td>115892</td>
<td>51</td>
<td></td>
<td></td>
</tr>
<tr>
<td>115893</td>
<td>49</td>
<td></td>
<td></td>
</tr>
<tr>
<td>115894</td>
<td>23</td>
<td></td>
<td></td>
</tr>
<tr>
<td>115895</td>
<td>64</td>
<td></td>
<td></td>
</tr>
<tr>
<td>115896</td>
<td>54</td>
<td></td>
<td></td>
</tr>
<tr>
<td>115897</td>
<td>60</td>
<td></td>
<td></td>
</tr>
<tr>
<td>115898</td>
<td>54</td>
<td></td>
<td></td>
</tr>
<tr>
<td>115899</td>
<td>59</td>
<td></td>
<td></td>
</tr>
<tr>
<td>115900</td>
<td>15</td>
<td></td>
<td></td>
</tr>
<tr>
<td>115901</td>
<td>50</td>
<td></td>
<td></td>
</tr>
<tr>
<td>115902</td>
<td>18</td>
<td>63</td>
<td>60</td>
</tr>
<tr>
<td>115903</td>
<td>59</td>
<td></td>
<td></td>
</tr>
<tr>
<td>115904</td>
<td>57</td>
<td></td>
<td></td>
</tr>
<tr>
<td>115905</td>
<td>63</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Certificate of analysis

Client: Intrinsic

Addressee: Kevin Montgomery

Folder: 25228

Your order number:

Project: ABITIBI EAST

Total number of samples: 70

<table>
<thead>
<tr>
<th>Designation</th>
<th>Pb-Dup AAT-7 ppm</th>
<th>Ca AAT-7 ppm</th>
<th>Co-Dup AAT-7 ppm</th>
</tr>
</thead>
<tbody>
<tr>
<td>115906</td>
<td>80</td>
<td></td>
<td></td>
</tr>
<tr>
<td>115907</td>
<td>46</td>
<td></td>
<td></td>
</tr>
<tr>
<td>115908</td>
<td>63</td>
<td></td>
<td></td>
</tr>
<tr>
<td>115909</td>
<td>36</td>
<td></td>
<td></td>
</tr>
<tr>
<td>115910</td>
<td>51</td>
<td></td>
<td></td>
</tr>
<tr>
<td>115911</td>
<td>48</td>
<td></td>
<td></td>
</tr>
<tr>
<td>115912</td>
<td>48</td>
<td></td>
<td></td>
</tr>
<tr>
<td>115913</td>
<td>50</td>
<td></td>
<td></td>
</tr>
<tr>
<td>115914</td>
<td>14 45</td>
<td></td>
<td>48</td>
</tr>
<tr>
<td>115915</td>
<td>42</td>
<td></td>
<td></td>
</tr>
<tr>
<td>115916</td>
<td>32</td>
<td></td>
<td></td>
</tr>
<tr>
<td>115917</td>
<td>48</td>
<td></td>
<td></td>
</tr>
<tr>
<td>115918</td>
<td>43</td>
<td></td>
<td></td>
</tr>
<tr>
<td>115919</td>
<td>52</td>
<td></td>
<td></td>
</tr>
<tr>
<td>115920</td>
<td>26</td>
<td></td>
<td></td>
</tr>
<tr>
<td>115921</td>
<td>15</td>
<td></td>
<td></td>
</tr>
<tr>
<td>115922</td>
<td>33</td>
<td></td>
<td></td>
</tr>
<tr>
<td>115923</td>
<td>48</td>
<td></td>
<td></td>
</tr>
<tr>
<td>115924</td>
<td>47</td>
<td></td>
<td></td>
</tr>
<tr>
<td>115925</td>
<td>350</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Laboratoire Expert Inc.
127, Boulevard Industriel
Rouyn-Noranda, Québec
Canada, J9X 6P2
Telephone : (819) 762-7100, Fax : (819) 762-7510

*** Certificate of analysis ***

Client : Intrinsic
Addressee : Kevin Montgomery

Folder : 25228
Your order number :
Project : ABITIBI EAST

Total number of samples : 70

<table>
<thead>
<tr>
<th>Designation</th>
<th>Pb-Dup AAT-7 ppm</th>
<th>Co AAT-7 ppm</th>
<th>Co-Dup AAT-7 ppm</th>
</tr>
</thead>
<tbody>
<tr>
<td>115926</td>
<td>14</td>
<td>52</td>
<td>52</td>
</tr>
<tr>
<td>115927</td>
<td>44</td>
<td></td>
<td></td>
</tr>
<tr>
<td>115928</td>
<td>37</td>
<td></td>
<td></td>
</tr>
<tr>
<td>115929</td>
<td>24</td>
<td></td>
<td></td>
</tr>
<tr>
<td>115930</td>
<td>45</td>
<td></td>
<td></td>
</tr>
<tr>
<td>115931</td>
<td>45</td>
<td></td>
<td></td>
</tr>
<tr>
<td>115932</td>
<td>45</td>
<td></td>
<td></td>
</tr>
<tr>
<td>115933</td>
<td>46</td>
<td></td>
<td></td>
</tr>
<tr>
<td>115934</td>
<td>43</td>
<td></td>
<td></td>
</tr>
<tr>
<td>115935</td>
<td>32</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Certificate of analysis

Laboratoire Expert Inc.

127, Boulevard Industriel
Rouyn-Noranda, Québec
Canada, J9X 6P2
Telephone : (819) 762-7100, Fax : (819) 762-7510

Date: 2009/09/29
Page: 1 of 9

Client: Intrinsic

Addressee: Kevin Montgomery

Folder: ABITIBI EAST
Your order number: 25229
Project: ABITIBI EAST

Total number of samples: 59

<table>
<thead>
<tr>
<th>Designation</th>
<th>Au (g/t)</th>
<th>Au-Dup (ppb)</th>
<th>Pt (ppb)</th>
<th>Pt-Dup (ppb)</th>
<th>Pd (ppb)</th>
<th>Pd-Dup (ppb)</th>
<th>Ag (ppm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>115936</td>
<td>8</td>
<td>7</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><0.2</td>
</tr>
<tr>
<td>115937</td>
<td>5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><0.2</td>
</tr>
<tr>
<td>115938</td>
<td>22</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><0.2</td>
</tr>
<tr>
<td>115939</td>
<td>13</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><0.2</td>
</tr>
<tr>
<td>115940</td>
<td>12</td>
<td>5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><0.2</td>
</tr>
<tr>
<td>115941</td>
<td>9</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><0.2</td>
</tr>
<tr>
<td>115942</td>
<td>16</td>
<td>6</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><0.2</td>
</tr>
<tr>
<td>115943</td>
<td>59</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><0.2</td>
</tr>
<tr>
<td>115944</td>
<td>7</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><0.2</td>
</tr>
<tr>
<td>115945</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><0.2</td>
</tr>
<tr>
<td>115946</td>
<td>5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><0.2</td>
</tr>
<tr>
<td>115947</td>
<td>9</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><0.2</td>
</tr>
<tr>
<td>115948</td>
<td>86</td>
<td>77</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><0.2</td>
</tr>
<tr>
<td>115949</td>
<td>42</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><0.2</td>
</tr>
<tr>
<td>115950</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><0.2</td>
</tr>
<tr>
<td>115951</td>
<td>8</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><0.2</td>
</tr>
<tr>
<td>115952</td>
<td>11</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><0.2</td>
</tr>
<tr>
<td>115953</td>
<td>7</td>
<td>5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><0.2</td>
</tr>
<tr>
<td>115954</td>
<td>8</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><0.2</td>
</tr>
<tr>
<td>115955</td>
<td>188</td>
<td>6</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><0.2</td>
</tr>
</tbody>
</table>

Joe Landers, Manager
Laboratoire Expert Inc.

127, Boulevard Industriel
Rouyn-Noranda, Québec
Canada, J9X 6P2

Telephone : (819) 762-7100, Fax : (819) 762-7510

Certificate of analysis

Date: 2009/09/29

Page: 2 of 9

Client: Intrinsic

Addressee: Kevin Montgomery

Folder: 25229

Your order number: ABITIBI EAST

Project: ABITIBI EAST

Total number of samples: 59

<table>
<thead>
<tr>
<th>Designation</th>
<th>Au FA-GRAV g/t 0.03</th>
<th>Au DCP-1 ppb 5</th>
<th>Au-Dup DCP-1 ppb 5</th>
<th>Pt DCP-1 ppb 5</th>
<th>Pt-Dup DCP-1 ppb 5</th>
<th>Pd DCP-1 ppb 5</th>
<th>Pd-Dup DCP-1 ppb 5</th>
<th>Ag AAT-7 ppm 0.2</th>
</tr>
</thead>
<tbody>
<tr>
<td>115956</td>
<td></td>
<td>19</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td>2.4</td>
</tr>
<tr>
<td>115957</td>
<td></td>
<td>13</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
</tr>
<tr>
<td>115958</td>
<td></td>
<td>15</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
</tr>
<tr>
<td>115959</td>
<td></td>
<td>6</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
</tr>
<tr>
<td>115960</td>
<td></td>
<td>6</td>
<td>8</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
</tr>
<tr>
<td>115961</td>
<td></td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
</tr>
<tr>
<td>115962</td>
<td></td>
<td>5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
</tr>
<tr>
<td>115963</td>
<td></td>
<td>7</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
</tr>
<tr>
<td>115964</td>
<td></td>
<td>6</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
</tr>
<tr>
<td>115965</td>
<td></td>
<td>7</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
</tr>
<tr>
<td>115966</td>
<td></td>
<td>33</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
</tr>
<tr>
<td>115967</td>
<td></td>
<td>7</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
</tr>
<tr>
<td>115968</td>
<td></td>
<td>9</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
</tr>
<tr>
<td>115969</td>
<td></td>
<td>13</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
</tr>
<tr>
<td>115970</td>
<td></td>
<td>6</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
</tr>
<tr>
<td>115971</td>
<td></td>
<td>8</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
</tr>
<tr>
<td>115972</td>
<td></td>
<td><5</td>
<td>5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
</tr>
<tr>
<td>115973</td>
<td></td>
<td>11</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
</tr>
<tr>
<td>115974</td>
<td></td>
<td>8</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
</tr>
<tr>
<td>115975</td>
<td></td>
<td>2.23</td>
<td>2062</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td>1.0</td>
</tr>
</tbody>
</table>
Laboratoire Expert Inc.
127, Boulevard Industriel
Rouyn-Noranda, Québec
Canada, J9X 6P2
Telephone : (819) 762-7100, Fax : (819) 762-7510

Certificate of analysis
Date : 2009/09/29
Page : 3 of 9

Client : Intrinsic
Addressee : Kevin Montgomery
Folder number : 25229
Project : ABITIBI EAST
Total number of samples : 59

<table>
<thead>
<tr>
<th>Designation</th>
<th>Au (g/t)</th>
<th>Au-Dup (g/t)</th>
<th>Pt (ppb)</th>
<th>Pt-Dup (ppb)</th>
<th>Pd (ppb)</th>
<th>Pd-Dup (ppb)</th>
<th>Ag (ppm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>115976</td>
<td>6</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><0.2</td>
</tr>
<tr>
<td>115977</td>
<td>11</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><0.2</td>
</tr>
<tr>
<td>115978</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><0.2</td>
</tr>
<tr>
<td>115979</td>
<td>6</td>
<td><5</td>
<td>6</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><0.2</td>
</tr>
<tr>
<td>115980</td>
<td>7</td>
<td>5</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td><0.2</td>
</tr>
<tr>
<td>115981</td>
<td>20</td>
<td>7</td>
<td>6</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><0.2</td>
</tr>
<tr>
<td>115982</td>
<td>8</td>
<td>6</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><0.2</td>
</tr>
<tr>
<td>115983</td>
<td>9</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><0.2</td>
</tr>
<tr>
<td>115984</td>
<td>7</td>
<td>8</td>
<td>6</td>
<td>5</td>
<td>7</td>
<td>7</td>
<td><0.2</td>
</tr>
<tr>
<td>115985</td>
<td>13</td>
<td>6</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td><0.2</td>
</tr>
<tr>
<td>115986</td>
<td>13</td>
<td>8</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td><0.2</td>
</tr>
<tr>
<td>115987</td>
<td>177</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td>2.4</td>
</tr>
<tr>
<td>115988</td>
<td>84</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td>2.4</td>
</tr>
<tr>
<td>115989</td>
<td>42</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td>1.6</td>
</tr>
<tr>
<td>115990</td>
<td>11</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><0.2</td>
</tr>
<tr>
<td>115991</td>
<td>11</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><0.2</td>
</tr>
<tr>
<td>115992</td>
<td>31</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><0.2</td>
</tr>
<tr>
<td>115993</td>
<td>6</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><0.2</td>
</tr>
<tr>
<td>115994</td>
<td>10</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><0.2</td>
</tr>
</tbody>
</table>
Laboratoire Expert Inc.
127, Boulevard Industriel
Rouyn-Noranda, Québec
Canada, J9X 6P2
Telephone : (819) 762-7100, Fax : (819) 762-7510

*** Certificate of analysis ***

Date : 2009/09/29
Page : 4 of 9

Client : Intrinsic
Addressee : Kevin Montgomery

Folder : 25229
Your order number :
Project : ABITIBI EAST

Total number of samples : 59

<table>
<thead>
<tr>
<th>Designation</th>
<th>Ag-Dup</th>
<th>Cu</th>
<th>Cu-Dup</th>
<th>Ni</th>
<th>Ni-Dup</th>
<th>Zn</th>
<th>Zn-Dup</th>
<th>Pb</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>AAT-7 ppm</td>
<td>ppm</td>
</tr>
<tr>
<td>115936</td>
<td><0.2</td>
<td>145</td>
<td>143</td>
<td>70</td>
<td>69</td>
<td>96</td>
<td>92</td>
<td>16</td>
</tr>
<tr>
<td>115937</td>
<td>154</td>
<td>69</td>
<td>85</td>
<td>77</td>
<td>16</td>
<td>17</td>
<td></td>
<td></td>
</tr>
<tr>
<td>115938</td>
<td>126</td>
<td>84</td>
<td>78</td>
<td>15</td>
<td>18</td>
<td>16</td>
<td></td>
<td></td>
</tr>
<tr>
<td>115939</td>
<td>133</td>
<td>73</td>
<td>86</td>
<td>16</td>
<td>17</td>
<td>17</td>
<td></td>
<td></td>
</tr>
<tr>
<td>115940</td>
<td>151</td>
<td>89</td>
<td>80</td>
<td>16</td>
<td>16</td>
<td>16</td>
<td></td>
<td></td>
</tr>
<tr>
<td>115941</td>
<td>154</td>
<td>80</td>
<td>83</td>
<td>15</td>
<td>15</td>
<td>15</td>
<td></td>
<td></td>
</tr>
<tr>
<td>115942</td>
<td>172</td>
<td>92</td>
<td>107</td>
<td>17</td>
<td>17</td>
<td>17</td>
<td></td>
<td></td>
</tr>
<tr>
<td>115943</td>
<td>131</td>
<td>74</td>
<td>83</td>
<td>16</td>
<td>16</td>
<td>16</td>
<td></td>
<td></td>
</tr>
<tr>
<td>115944</td>
<td>148</td>
<td>79</td>
<td>86</td>
<td>15</td>
<td>15</td>
<td>15</td>
<td></td>
<td></td>
</tr>
<tr>
<td>115945</td>
<td>53</td>
<td>150</td>
<td>49</td>
<td>13</td>
<td>13</td>
<td>13</td>
<td></td>
<td></td>
</tr>
<tr>
<td>115946</td>
<td>26</td>
<td>40</td>
<td>30</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>115947</td>
<td>55</td>
<td>142</td>
<td>55</td>
<td>13</td>
<td>13</td>
<td>13</td>
<td></td>
<td></td>
</tr>
<tr>
<td>115948</td>
<td><0.2</td>
<td>61</td>
<td>63</td>
<td>124</td>
<td>125</td>
<td>56</td>
<td>53</td>
<td>12</td>
</tr>
<tr>
<td>115949</td>
<td>28</td>
<td>28</td>
<td>41</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>115950</td>
<td>63</td>
<td>9</td>
<td>14</td>
<td>26</td>
<td>26</td>
<td>26</td>
<td></td>
<td></td>
</tr>
<tr>
<td>115951</td>
<td>49</td>
<td>32</td>
<td>42</td>
<td>9</td>
<td>9</td>
<td>9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>115952</td>
<td>158</td>
<td>83</td>
<td>76</td>
<td>16</td>
<td>16</td>
<td>16</td>
<td></td>
<td></td>
</tr>
<tr>
<td>115953</td>
<td>153</td>
<td>79</td>
<td>92</td>
<td>16</td>
<td>16</td>
<td>16</td>
<td></td>
<td></td>
</tr>
<tr>
<td>115954</td>
<td>173</td>
<td>83</td>
<td>98</td>
<td>16</td>
<td>16</td>
<td>16</td>
<td></td>
<td></td>
</tr>
<tr>
<td>115955</td>
<td>146</td>
<td>93</td>
<td>83</td>
<td>15</td>
<td>15</td>
<td>15</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Certificate of analysis

Client: Intrinsic

Addressee: Kevin Montgomery

Folder: ABITIBI EAST

Total number of samples: 59

<table>
<thead>
<tr>
<th>Designation</th>
<th>Ag-Dup ppm</th>
<th>Cu ppm</th>
<th>Cu-Dup ppm</th>
<th>Ni ppm</th>
<th>Ni-Dup ppm</th>
<th>Zn ppm</th>
<th>Zn-Dup ppm</th>
<th>Pb ppm</th>
</tr>
</thead>
<tbody>
<tr>
<td>115956</td>
<td>71</td>
<td>79</td>
<td>77</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>16</td>
</tr>
<tr>
<td>115957</td>
<td>25</td>
<td>21</td>
<td>28</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>7</td>
</tr>
<tr>
<td>115958</td>
<td>53</td>
<td>33</td>
<td>40</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>11</td>
</tr>
<tr>
<td>115959</td>
<td>146</td>
<td>76</td>
<td>71</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>14</td>
</tr>
<tr>
<td>115960</td>
<td><0.2</td>
<td>139</td>
<td>135</td>
<td>68</td>
<td>66</td>
<td>67</td>
<td>67</td>
<td>15</td>
</tr>
<tr>
<td>115961</td>
<td>138</td>
<td>76</td>
<td>80</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>16</td>
</tr>
<tr>
<td>115962</td>
<td>169</td>
<td>79</td>
<td>92</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>16</td>
</tr>
<tr>
<td>115963</td>
<td>167</td>
<td>84</td>
<td>89</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>16</td>
</tr>
<tr>
<td>115964</td>
<td>177</td>
<td>84</td>
<td>90</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>15</td>
</tr>
<tr>
<td>115965</td>
<td>158</td>
<td>72</td>
<td>83</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>11</td>
</tr>
<tr>
<td>115966</td>
<td>31</td>
<td>118</td>
<td>42</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>8</td>
</tr>
<tr>
<td>115967</td>
<td>62</td>
<td>138</td>
<td>66</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>11</td>
</tr>
<tr>
<td>115968</td>
<td>190</td>
<td>86</td>
<td>98</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>13</td>
</tr>
<tr>
<td>115969</td>
<td>144</td>
<td>81</td>
<td>80</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>13</td>
</tr>
<tr>
<td>115970</td>
<td>114</td>
<td>98</td>
<td>79</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>11</td>
</tr>
<tr>
<td>115971</td>
<td>79</td>
<td>124</td>
<td>58</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>11</td>
</tr>
<tr>
<td>115972</td>
<td><0.2</td>
<td>81</td>
<td>79</td>
<td>116</td>
<td>111</td>
<td>202</td>
<td>205</td>
<td>10</td>
</tr>
<tr>
<td>115973</td>
<td></td>
<td>169</td>
<td>84</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>12</td>
</tr>
<tr>
<td>115974</td>
<td></td>
<td>143</td>
<td>73</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>10</td>
</tr>
<tr>
<td>115975</td>
<td></td>
<td>469</td>
<td>74</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>26</td>
</tr>
</tbody>
</table>
Certificate of analysis

Date: 2009/09/29
Client: Intrinsic
Addressee: Kevin Montgomery
Folder number: 25229
Project: ABITIBI EAST
Total number of samples: 59

<table>
<thead>
<tr>
<th>Designation</th>
<th>Ag-Dup AAT-7 ppm</th>
<th>Cu-Dup AAT-7 ppm</th>
<th>Cu-Dup AAT-7 ppm</th>
<th>Ni AAT-7 ppm</th>
<th>Ni-Dup AAT-7 ppm</th>
<th>Zn AAT-7 ppm</th>
<th>Zn-Dup AAT-7 ppm</th>
<th>Pb AAT-7 ppm</th>
</tr>
</thead>
<tbody>
<tr>
<td>115976</td>
<td>0.2</td>
<td>138</td>
<td></td>
<td>97</td>
<td></td>
<td>84</td>
<td></td>
<td>13</td>
</tr>
<tr>
<td>115977</td>
<td>54</td>
<td></td>
<td></td>
<td>112</td>
<td></td>
<td>62</td>
<td></td>
<td>10</td>
</tr>
<tr>
<td>115978</td>
<td>138</td>
<td></td>
<td></td>
<td>120</td>
<td></td>
<td>77</td>
<td></td>
<td>11</td>
</tr>
<tr>
<td>115979</td>
<td>146</td>
<td>110</td>
<td></td>
<td>89</td>
<td></td>
<td>117</td>
<td></td>
<td>16</td>
</tr>
<tr>
<td>115980</td>
<td>146</td>
<td>108</td>
<td></td>
<td>117</td>
<td></td>
<td>17</td>
<td></td>
<td>16</td>
</tr>
<tr>
<td>115981</td>
<td>167</td>
<td>98</td>
<td></td>
<td>409</td>
<td></td>
<td>16</td>
<td></td>
<td>15</td>
</tr>
<tr>
<td>115982</td>
<td>143</td>
<td>98</td>
<td></td>
<td>141</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>115983</td>
<td>143</td>
<td>100</td>
<td></td>
<td>136</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>115984</td>
<td><0.2</td>
<td>140</td>
<td>138</td>
<td>96</td>
<td>92</td>
<td>132</td>
<td>134</td>
<td>16</td>
</tr>
<tr>
<td>115985</td>
<td>126</td>
<td>95</td>
<td></td>
<td>123</td>
<td></td>
<td></td>
<td></td>
<td>15</td>
</tr>
<tr>
<td>115986</td>
<td>174</td>
<td>110</td>
<td></td>
<td>338</td>
<td></td>
<td></td>
<td></td>
<td>17</td>
</tr>
<tr>
<td>115987</td>
<td>96</td>
<td>43</td>
<td></td>
<td>165</td>
<td></td>
<td></td>
<td></td>
<td>22</td>
</tr>
<tr>
<td>115988</td>
<td>56</td>
<td>32</td>
<td></td>
<td>89</td>
<td></td>
<td></td>
<td></td>
<td>22</td>
</tr>
<tr>
<td>115989</td>
<td>175</td>
<td>87</td>
<td></td>
<td>168</td>
<td></td>
<td></td>
<td></td>
<td>19</td>
</tr>
<tr>
<td>115990</td>
<td>150</td>
<td>85</td>
<td></td>
<td>117</td>
<td></td>
<td></td>
<td></td>
<td>17</td>
</tr>
<tr>
<td>115991</td>
<td>148</td>
<td>86</td>
<td></td>
<td>90</td>
<td></td>
<td></td>
<td></td>
<td>17</td>
</tr>
<tr>
<td>115992</td>
<td>139</td>
<td>79</td>
<td></td>
<td>90</td>
<td></td>
<td></td>
<td></td>
<td>17</td>
</tr>
<tr>
<td>115993</td>
<td>153</td>
<td>84</td>
<td></td>
<td>91</td>
<td></td>
<td></td>
<td></td>
<td>17</td>
</tr>
<tr>
<td>115994</td>
<td>148</td>
<td>87</td>
<td></td>
<td>89</td>
<td></td>
<td></td>
<td></td>
<td>16</td>
</tr>
</tbody>
</table>
Certificate of analysis

Date: 2009/09/29

Client: Intrinsic

Addressee: Kevin Montgomery

Folder: 25229

Your order number: ABITIBI EAST

Project: ABITIBI EAST

Total number of samples: 59

<table>
<thead>
<tr>
<th>Designation</th>
<th>Pb-Dup AAT-7 ppm</th>
<th>Co AAT-7 ppm</th>
<th>Co-Dup AAT-7 ppm</th>
</tr>
</thead>
<tbody>
<tr>
<td>115936</td>
<td>15</td>
<td>40</td>
<td>42</td>
</tr>
<tr>
<td>115937</td>
<td>43</td>
<td></td>
<td></td>
</tr>
<tr>
<td>115938</td>
<td>43</td>
<td></td>
<td></td>
</tr>
<tr>
<td>115939</td>
<td>47</td>
<td></td>
<td></td>
</tr>
<tr>
<td>115940</td>
<td>51</td>
<td></td>
<td></td>
</tr>
<tr>
<td>115941</td>
<td>46</td>
<td></td>
<td></td>
</tr>
<tr>
<td>115942</td>
<td>53</td>
<td></td>
<td></td>
</tr>
<tr>
<td>115943</td>
<td>44</td>
<td></td>
<td></td>
</tr>
<tr>
<td>115944</td>
<td>45</td>
<td></td>
<td></td>
</tr>
<tr>
<td>115945</td>
<td>29</td>
<td></td>
<td></td>
</tr>
<tr>
<td>115946</td>
<td>13</td>
<td></td>
<td></td>
</tr>
<tr>
<td>115947</td>
<td>31</td>
<td></td>
<td></td>
</tr>
<tr>
<td>115948</td>
<td>12</td>
<td>30</td>
<td>29</td>
</tr>
<tr>
<td>115949</td>
<td>15</td>
<td></td>
<td></td>
</tr>
<tr>
<td>115950</td>
<td>15</td>
<td></td>
<td></td>
</tr>
<tr>
<td>115951</td>
<td>17</td>
<td></td>
<td></td>
</tr>
<tr>
<td>115952</td>
<td>49</td>
<td></td>
<td></td>
</tr>
<tr>
<td>115953</td>
<td>51</td>
<td></td>
<td></td>
</tr>
<tr>
<td>115954</td>
<td>46</td>
<td></td>
<td></td>
</tr>
<tr>
<td>115955</td>
<td>44</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Certificate of analysis

Client: Intrinsic

Addressee: Kevin Montgomery

Folder: 25229

Project: ABITIBI EAST

Total number of samples: 59

<table>
<thead>
<tr>
<th>Designation</th>
<th>Pb-Dup AAT-7 (ppm)</th>
<th>Ca AAT-7 (ppm)</th>
<th>Co-Dup AAT-7 (ppm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>115956</td>
<td>2</td>
<td>35</td>
<td></td>
</tr>
<tr>
<td>115957</td>
<td></td>
<td>11</td>
<td></td>
</tr>
<tr>
<td>115958</td>
<td></td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>115959</td>
<td></td>
<td>44</td>
<td></td>
</tr>
<tr>
<td>115960</td>
<td>14</td>
<td>43</td>
<td>43</td>
</tr>
<tr>
<td>115961</td>
<td></td>
<td>48</td>
<td></td>
</tr>
<tr>
<td>115962</td>
<td></td>
<td>49</td>
<td></td>
</tr>
<tr>
<td>115963</td>
<td></td>
<td>48</td>
<td></td>
</tr>
<tr>
<td>115964</td>
<td></td>
<td>47</td>
<td></td>
</tr>
<tr>
<td>115965</td>
<td></td>
<td>39</td>
<td></td>
</tr>
<tr>
<td>115966</td>
<td></td>
<td>19</td>
<td></td>
</tr>
<tr>
<td>115967</td>
<td></td>
<td>26</td>
<td></td>
</tr>
<tr>
<td>115968</td>
<td></td>
<td>48</td>
<td></td>
</tr>
<tr>
<td>115969</td>
<td></td>
<td>38</td>
<td></td>
</tr>
<tr>
<td>115970</td>
<td></td>
<td>31</td>
<td></td>
</tr>
<tr>
<td>115971</td>
<td></td>
<td>22</td>
<td></td>
</tr>
<tr>
<td>115972</td>
<td>10</td>
<td>24</td>
<td>24</td>
</tr>
<tr>
<td>115973</td>
<td></td>
<td>45</td>
<td></td>
</tr>
<tr>
<td>115974</td>
<td></td>
<td>40</td>
<td></td>
</tr>
<tr>
<td>115975</td>
<td></td>
<td>359</td>
<td></td>
</tr>
</tbody>
</table>
Client: Intrinsic

Addressee: Kevin Montgomery

Folder: 25229
Your order number:
Project: ABITIBI EAST
Total number of samples: 59

<table>
<thead>
<tr>
<th>Designation</th>
<th>Pb-Dup AAT-7 ppm</th>
<th>Ca AAT-7 ppm</th>
<th>Co-Dup AAT-7 ppm</th>
</tr>
</thead>
<tbody>
<tr>
<td>115976</td>
<td></td>
<td>50</td>
<td></td>
</tr>
<tr>
<td>115977</td>
<td></td>
<td>23</td>
<td></td>
</tr>
<tr>
<td>115978</td>
<td></td>
<td>43</td>
<td></td>
</tr>
<tr>
<td>115979</td>
<td></td>
<td>49</td>
<td></td>
</tr>
<tr>
<td>115980</td>
<td></td>
<td>52</td>
<td></td>
</tr>
<tr>
<td>115981</td>
<td></td>
<td>54</td>
<td></td>
</tr>
<tr>
<td>115982</td>
<td></td>
<td>47</td>
<td></td>
</tr>
<tr>
<td>115983</td>
<td></td>
<td>49</td>
<td></td>
</tr>
<tr>
<td>115984</td>
<td>15</td>
<td>49</td>
<td>46</td>
</tr>
<tr>
<td>115985</td>
<td></td>
<td>46</td>
<td></td>
</tr>
<tr>
<td>115986</td>
<td></td>
<td>54</td>
<td></td>
</tr>
<tr>
<td>115987</td>
<td></td>
<td>27</td>
<td></td>
</tr>
<tr>
<td>115988</td>
<td></td>
<td>23</td>
<td></td>
</tr>
<tr>
<td>115989</td>
<td></td>
<td>54</td>
<td></td>
</tr>
<tr>
<td>115990</td>
<td></td>
<td>49</td>
<td></td>
</tr>
<tr>
<td>115991</td>
<td></td>
<td>51</td>
<td></td>
</tr>
<tr>
<td>115992</td>
<td></td>
<td>51</td>
<td></td>
</tr>
<tr>
<td>115993</td>
<td></td>
<td>52</td>
<td></td>
</tr>
<tr>
<td>115994</td>
<td></td>
<td>53</td>
<td></td>
</tr>
</tbody>
</table>
Certificate of analysis

Date: 2009/09/25
Page: 1 of 6

Client: Intrinsic
Addressee: Kevin Montgomery
Folder: 25230
Project: ABITIBI EAST
Total number of samples: 29

<table>
<thead>
<tr>
<th>Designation</th>
<th>Au FA-GRAV (g/t)</th>
<th>Au DCP-1 (ppb)</th>
<th>Au-Dup DCP-1 (ppb)</th>
<th>Pt DCP-1 (ppb)</th>
<th>Pt-Dup DCP-1 (ppb)</th>
<th>Pd DCP-1 (ppb)</th>
<th>Pd-Dup DCP-1 (ppb)</th>
<th>Ag AAT-7 (ppm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>115995</td>
<td><5</td>
<td><5</td>
<td>8</td>
<td>10</td>
<td>8</td>
<td>8</td>
<td><0.2</td>
<td></td>
</tr>
<tr>
<td>115996</td>
<td>12</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><0.2</td>
<td></td>
</tr>
<tr>
<td>115997</td>
<td>5</td>
<td>8</td>
<td>9</td>
<td><0.2</td>
<td></td>
<td><0.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>115998</td>
<td>5</td>
<td>8</td>
<td>7</td>
<td><0.2</td>
<td></td>
<td><0.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>115999</td>
<td>89</td>
<td>7</td>
<td>6</td>
<td><0.2</td>
<td></td>
<td><0.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>116000</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><0.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>118401</td>
<td>35</td>
<td>5</td>
<td>6</td>
<td><0.2</td>
<td></td>
<td><0.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>118402</td>
<td>19</td>
<td><5</td>
<td><5</td>
<td><0.2</td>
<td></td>
<td><0.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>118403</td>
<td>15</td>
<td><5</td>
<td><5</td>
<td><0.2</td>
<td></td>
<td><0.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>118404</td>
<td>6</td>
<td><5</td>
<td>5</td>
<td><0.2</td>
<td></td>
<td><0.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>118405</td>
<td><5</td>
<td>5</td>
<td>5</td>
<td><0.2</td>
<td></td>
<td><0.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>118406</td>
<td><5</td>
<td>7</td>
<td>6</td>
<td><0.2</td>
<td></td>
<td><0.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>118407</td>
<td>25</td>
<td>15</td>
<td>8</td>
<td>7</td>
<td><0.2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>118408</td>
<td>5</td>
<td>10</td>
<td>7</td>
<td><0.2</td>
<td></td>
<td><0.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>118409</td>
<td>19</td>
<td>12</td>
<td>7</td>
<td><0.2</td>
<td></td>
<td><0.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>118410</td>
<td>112</td>
<td>6</td>
<td><5</td>
<td><0.2</td>
<td></td>
<td><0.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>118411</td>
<td>227</td>
<td>5</td>
<td><5</td>
<td>1.6</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>118412</td>
<td>21</td>
<td>12</td>
<td>10</td>
<td><0.2</td>
<td></td>
<td><0.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>118413</td>
<td>65</td>
<td>12</td>
<td>9</td>
<td><0.2</td>
<td></td>
<td><0.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>118414</td>
<td>121</td>
<td>5</td>
<td><5</td>
<td><0.2</td>
<td></td>
<td><0.2</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Joe Landers, Manager
<table>
<thead>
<tr>
<th>Designation</th>
<th>Au (g/t)</th>
<th>Au (pgb)</th>
<th>Au-Dup (ppb)</th>
<th>Pt (ppb)</th>
<th>Pt-Dup (ppb)</th>
<th>Pd (ppb)</th>
<th>Pd-Dup (ppb)</th>
<th>Ag (ppm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>118415</td>
<td>355</td>
<td>15</td>
<td></td>
<td>11</td>
<td></td>
<td></td>
<td></td>
<td><0.2</td>
</tr>
<tr>
<td>118416</td>
<td>18</td>
<td>13</td>
<td></td>
<td>9</td>
<td><5</td>
<td></td>
<td></td>
<td><0.2</td>
</tr>
<tr>
<td>118417</td>
<td>260</td>
<td>9</td>
<td></td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td><0.2</td>
</tr>
<tr>
<td>118418</td>
<td>11</td>
<td>9</td>
<td></td>
<td>9</td>
<td></td>
<td></td>
<td></td>
<td><0.2</td>
</tr>
<tr>
<td>118419</td>
<td>9</td>
<td>11</td>
<td>10</td>
<td>8</td>
<td>10</td>
<td>9</td>
<td></td>
<td><0.2</td>
</tr>
<tr>
<td>118420</td>
<td>244</td>
<td>12</td>
<td></td>
<td>9</td>
<td></td>
<td></td>
<td></td>
<td><0.2</td>
</tr>
<tr>
<td>118421</td>
<td>1.85</td>
<td>8</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td><0.2</td>
</tr>
<tr>
<td>118422</td>
<td>485</td>
<td><5</td>
<td></td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td><0.2</td>
</tr>
<tr>
<td>118423</td>
<td>19</td>
<td><5</td>
<td></td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td><0.2</td>
</tr>
</tbody>
</table>
Laboratoire Expert Inc.
127, Boulevard Industriel
Rouyn-Noranda, Québec
Canada, J9X 6P2
Telephone : (819) 762-7100, Fax : (819) 762-7510

*** Certificate of analysis ***

Date : 2009/09/25
Page : 3 of 6

Client : Intrinsic

Addressee : Kevin Montgomery

Folder : 25230
Your order number :
Project : ABITIBI EAST

Total number of samples : 29

<table>
<thead>
<tr>
<th>Designation</th>
<th>Ag-Dup</th>
<th>Cu</th>
<th>Cu-Dup</th>
<th>Ni</th>
<th>Ni-Dup</th>
<th>Zn</th>
<th>Zn-Dup</th>
<th>Pb</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ppm</td>
<td>ppm</td>
<td>ppm</td>
<td>ppm</td>
<td>ppm</td>
<td>ppm</td>
<td>ppm</td>
<td>ppm</td>
</tr>
<tr>
<td>115995</td>
<td><0.2</td>
<td>74</td>
<td>72</td>
<td>392</td>
<td>388</td>
<td>93</td>
<td>93</td>
<td>17</td>
</tr>
<tr>
<td>115996</td>
<td>142</td>
<td>109</td>
<td>356</td>
<td>28</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>115997</td>
<td>86</td>
<td>103</td>
<td>482</td>
<td>75</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>115998</td>
<td>126</td>
<td>482</td>
<td>75</td>
<td>20</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>116000</td>
<td>45</td>
<td>261</td>
<td>50</td>
<td>19</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>118401</td>
<td>44</td>
<td>225</td>
<td>41</td>
<td>20</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>118402</td>
<td>50</td>
<td>353</td>
<td>67</td>
<td>19</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>118403</td>
<td>49</td>
<td>388</td>
<td>77</td>
<td>30</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>118404</td>
<td>39</td>
<td>323</td>
<td>60</td>
<td>19</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>118405</td>
<td>67</td>
<td>350</td>
<td>71</td>
<td>19</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>118406</td>
<td>108</td>
<td>355</td>
<td>71</td>
<td>19</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>118407</td>
<td><0.2</td>
<td>93</td>
<td>95</td>
<td>19</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>118408</td>
<td>106</td>
<td>350</td>
<td>71</td>
<td>19</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>118409</td>
<td>89</td>
<td>355</td>
<td>71</td>
<td>19</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>118410</td>
<td>129</td>
<td>93</td>
<td>95</td>
<td>19</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>118411</td>
<td>118</td>
<td>95</td>
<td>95</td>
<td>19</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>118412</td>
<td>142</td>
<td>95</td>
<td>95</td>
<td>19</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>118413</td>
<td>125</td>
<td>95</td>
<td>95</td>
<td>19</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>118414</td>
<td>45</td>
<td>95</td>
<td>95</td>
<td>19</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Total number of samples: 29
<table>
<thead>
<tr>
<th>Designation</th>
<th>Ag-Dup AAT-7 ppm</th>
<th>Cu AAT-7 ppm</th>
<th>Cu-Dup AAT-7 ppm</th>
<th>Ni AAT-7 ppm</th>
<th>Ni-Dup AAT-7 ppm</th>
<th>Zn AAT-7 ppm</th>
<th>Zn-Dup AAT-7 ppm</th>
<th>Pb AAT-7 ppm</th>
</tr>
</thead>
<tbody>
<tr>
<td>118415</td>
<td>223</td>
<td>71</td>
<td></td>
<td>122</td>
<td></td>
<td></td>
<td></td>
<td>16</td>
</tr>
<tr>
<td>118416</td>
<td>114</td>
<td>204</td>
<td></td>
<td>75</td>
<td></td>
<td>15</td>
<td></td>
<td></td>
</tr>
<tr>
<td>118417</td>
<td>79</td>
<td>152</td>
<td></td>
<td>39</td>
<td></td>
<td>13</td>
<td></td>
<td></td>
</tr>
<tr>
<td>118418</td>
<td>117</td>
<td>62</td>
<td></td>
<td>91</td>
<td></td>
<td>14</td>
<td></td>
<td></td>
</tr>
<tr>
<td>118419</td>
<td><0.2</td>
<td>112</td>
<td>113</td>
<td>69</td>
<td>70</td>
<td>88</td>
<td>88</td>
<td>15</td>
</tr>
<tr>
<td>118420</td>
<td>120</td>
<td>69</td>
<td></td>
<td>118</td>
<td></td>
<td>16</td>
<td></td>
<td></td>
</tr>
<tr>
<td>118421</td>
<td>157</td>
<td>38</td>
<td></td>
<td>102</td>
<td></td>
<td>27</td>
<td></td>
<td></td>
</tr>
<tr>
<td>118422</td>
<td>600</td>
<td>36</td>
<td></td>
<td>89</td>
<td></td>
<td>21</td>
<td></td>
<td></td>
</tr>
<tr>
<td>118423</td>
<td>130</td>
<td>47</td>
<td></td>
<td>62</td>
<td></td>
<td>11</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Certificate of analysis

Client : Intrinsic
Addressee : Kevin Montgomery
Folder : 25230
Your order number :
Project : ABITIBI EAST
Total number of samples : 29

<table>
<thead>
<tr>
<th>Designation</th>
<th>Pb-Dup AAT-7 (ppm)</th>
<th>Ca AAT-7 (ppm)</th>
<th>Co-Dup AAT-7 (ppm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>115995</td>
<td>17</td>
<td>64</td>
<td>63</td>
</tr>
<tr>
<td>115996</td>
<td></td>
<td>39</td>
<td></td>
</tr>
<tr>
<td>115997</td>
<td></td>
<td>63</td>
<td></td>
</tr>
<tr>
<td>115998</td>
<td></td>
<td>59</td>
<td></td>
</tr>
<tr>
<td>115999</td>
<td></td>
<td>62</td>
<td></td>
</tr>
<tr>
<td>116000</td>
<td></td>
<td>16</td>
<td></td>
</tr>
<tr>
<td>118401</td>
<td></td>
<td>49</td>
<td></td>
</tr>
<tr>
<td>118402</td>
<td></td>
<td>42</td>
<td></td>
</tr>
<tr>
<td>118403</td>
<td></td>
<td>40</td>
<td></td>
</tr>
<tr>
<td>118404</td>
<td></td>
<td>54</td>
<td></td>
</tr>
<tr>
<td>118405</td>
<td></td>
<td>59</td>
<td></td>
</tr>
<tr>
<td>118406</td>
<td></td>
<td>54</td>
<td></td>
</tr>
<tr>
<td>118407</td>
<td>19</td>
<td>59</td>
<td>59</td>
</tr>
<tr>
<td>118408</td>
<td></td>
<td>59</td>
<td></td>
</tr>
<tr>
<td>118409</td>
<td></td>
<td>63</td>
<td></td>
</tr>
<tr>
<td>118410</td>
<td></td>
<td>48</td>
<td></td>
</tr>
<tr>
<td>118411</td>
<td></td>
<td>49</td>
<td></td>
</tr>
<tr>
<td>118412</td>
<td></td>
<td>45</td>
<td></td>
</tr>
<tr>
<td>118413</td>
<td></td>
<td>49</td>
<td></td>
</tr>
<tr>
<td>118414</td>
<td></td>
<td>24</td>
<td></td>
</tr>
</tbody>
</table>
Laboratoire Expert Inc.

Certificate of analysis

Client: Intrinsic
Addressee: Kevin Montgomery
Folder: 25230
Your order number:
Project: ABITIBI EAST
Total number of samples: 29

<table>
<thead>
<tr>
<th>Designation</th>
<th>Pb-Dup AAT-7 ppm</th>
<th>Co AAT-7 ppm</th>
<th>Co-Dup AAT-7 ppm</th>
</tr>
</thead>
<tbody>
<tr>
<td>118415</td>
<td>2</td>
<td>48</td>
<td></td>
</tr>
<tr>
<td>118416</td>
<td>2</td>
<td>53</td>
<td></td>
</tr>
<tr>
<td>118417</td>
<td>2</td>
<td>30</td>
<td></td>
</tr>
<tr>
<td>118418</td>
<td>2</td>
<td>46</td>
<td></td>
</tr>
<tr>
<td>118419</td>
<td>15</td>
<td>45</td>
<td>45</td>
</tr>
<tr>
<td>118420</td>
<td>2</td>
<td>46</td>
<td></td>
</tr>
<tr>
<td>118421</td>
<td>2</td>
<td>33</td>
<td></td>
</tr>
<tr>
<td>118422</td>
<td>2</td>
<td>35</td>
<td></td>
</tr>
<tr>
<td>118423</td>
<td>2</td>
<td>22</td>
<td></td>
</tr>
</tbody>
</table>
APPENDIX D CERTIFICATE OF EXPENDITURES

Golden Chalice Resources
Abitibi East Property
Diamond Drilling Program
Larder Lake Mining Division
August 13 to September 20, 2009

Senior Geologists $ 7,375.60
Contract Geologists $ 14,752.50
Geological Field Technicians $ 13,203.75
Core Drilling $ 230,076.37
Core Shack Rental (1.5 months) $ 4,095
Office Support $ 503.65
Exploration Supplies $ 480.25
Transport of Samples to Lab $ 82.13
Assaying $ 9,843.49
Truck Rental $ 3,276
ATV Rental $ 1,638
Fuel $ 1,340.56
Report Writing & Map Drafting $ 4,785

TOTAL $ 291,452.00

Cost per metre drilled $ 142.94

Distribution of Expenditures per Claim

<table>
<thead>
<tr>
<th>Claim No</th>
<th>Hole</th>
<th>Length</th>
<th>Total drilled on claim</th>
<th>claim expenditure</th>
</tr>
</thead>
<tbody>
<tr>
<td>4202666</td>
<td>GCAE09-01</td>
<td>227</td>
<td>227</td>
<td>32,446</td>
</tr>
<tr>
<td>4202669</td>
<td>GCAE09-02</td>
<td>326</td>
<td>326</td>
<td>46,597</td>
</tr>
<tr>
<td>4214736</td>
<td>GCAE09-03,4,7</td>
<td>918</td>
<td>131,219</td>
<td></td>
</tr>
<tr>
<td>421473</td>
<td>GCAE09-05,6</td>
<td>568</td>
<td>81,190</td>
<td></td>
</tr>
<tr>
<td>TOTAL</td>
<td></td>
<td>2,039</td>
<td>2,039</td>
<td></td>
</tr>
</tbody>
</table>

Certified by: **Kevin Montgomery**

Date: October 14, 2009

Note: This certificate has been constructed from the invoices submitted to Golden Chalice Resources.
SECTION LOOKING NORTHWEST

ROCK CODES

- **BAMF**: basalt massive flow
- **BAP**: basalt pillow
- **FI**: felsic intrusive (undifferentiated)
- **PP**: feldspar porphyry
- **GS**: gabbro
- **P**: porphyry
- **OVBN**: overburden
- **SAPH**: Porphyric Basalt

ITEMS

- **A11**:

SECTION SPECS:

- **REF PT. E, N**: 556530 m, 5356550 m
- **EXTENTS**: 350.2 m, 312.8 m
- **SECTION TOP, BOT**: 292.8 m, -19.95 m
- **TOLERANCE ±**: 50 m

SCALE 1 : 1000

Golden Chalice Resources (Intrinsic Minerals)
Abitibi East East Extension
GCAE09-06 Section
October 11, 2009
SECTION LOOKING WEST

SECTION SPECS:
- REF PT: E, N
- 537300 m, 5386000 m
- EXTENTS: 395.2 m, 312.6 m
- SECTION TOP, BOT: 390 m, -12.75 m
- TOLERANCE: ±25 m

SCALE: 1:1000

POSTED TEXT
- Rock Codes
- PAT
- LABEL
- DESCRIPTION
- Item Codes
- All

Golden Chalice Resources (Intrinsic Minerals)
Abitibi East West Extension
GCAE09-02 Section
September 11, 2009
Claim 4202666

GCAE09-01
Az 003
Dip -60

0.28% Zn / 0.65 m (219.1-219.75 m)

SECTION LOOKING WEST

GOLDEN CHALICE RESOURCES INC

Golden Chalice Resources (Intrinsic Minerals)
Abitibi East West Extension
GCAE09-01 Section
September 11, 2009